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ABSTRACT 

The P1.u:'polJe .of thls paper is to introduce an adaptive nonlinear 
.:IfgHa! algorithm which use the sequential regression ,( 
l)letnod to update second order Volterra fil tar coefficients in !l 

recu:n1 Ve we.y. Conventionally, the SEll method has been .\.lsed to invert 
large matrices whichre.sult from direct application of· the Wiener filter 
cheory to the VoIterrafilter. However, the algorithm proposed in. this 
paper adopts the simplified least squares solution that results When the 
input dgnals are Gaussian, and hence the siz'e ;of the matrix to he 
is smaller than that of the conventional appr()aches. Simulation result!! 
are also included to demonstrate the perfo,rmance of the proposed algodtlN. 

1. INTRODUCTION 

The Volterra series representation of nonlinear systems is an 
extension of the linear system theory. The output y(k) of a (causal) 
discrete-time. nonli.near system can be represented as a function of the 
input x(k) u.Bing the Volterra s,eries as 

y(k) .'" 

.. 

., .. 

+ .'.'. 

when hp(ml ,mi ••••• mn) the order Volterra kernal [l J of the 
nonliOlUU' system.. Tllis paper concerned with adaptive ldel'ltiHcatio!l Qf ~ 
nonlinear systems that can be represented using Ii second order VolLl:ert'a 
series. A least square (LS) solution is obtained for the system 
identification problem assuming Gaussian reference inputs and. an adaptive 
f:Uterlng algorithlll which computes the. L8 solution in a recursiVe IlJaMer 
using the sequential regre.ssion (SEIt) 1Jlethod 1.8 derived, 

Conventi.onally. the SEIt method has been used to invert a large otauh 
which results from 'direct application of the Wiener filter theory to 
nonlinear: systems [6]. However, the algorithm proposed in this paper: 
adopts the simplified solution [5] that results when the input signals ate 
GaUSSian, and therefore the size of the otatrb: to be inverted is smaller 
than that of the conventional approach. 

15:?; 



Tbe r:est of the paper is organized as follows: In Section 2, a formal 
state_tlrt aftne problem is presented. A L8 solution to the problem is 
derived in this section. The adaptive Volteru. filter with SIR algorithm 
18481:'11'8d1I1, Section 3. The effectiveness of, t:h~proposed algorithm is 
delllOaatrate·4 using a simulstion example in Section 4. Ffnally. we make the 
co~lud:l.q remarks in Section 5. ' 

. . 

Let"K1.D Fig. lrepreSelltall unkllownll"~l1neat system, that cali be 
represented as a second order Volterra filter. Then, the output y(k) cali 
be. obtained. using the matI'ix equation in terms of the input x(k) all 

(2) 

T X(k) .. (x(k).x(k-l) ••••• x(k-N+l)] • 

A 

bO• 1 ~.. bO•N- 1 

b l • l bI.N-l 

is a~,..trlc ma.trf.l; so tbat bt,j .. bj.i.~ .. '{X(l~)XT(k)r;£.atJt.e. 
autocorrelatl(!n mstdli:: ofX(·k) .tr{.} .' del1O!t:es t:l14t1:a.ce ofebe"'''t~tz: 
{"}alla'.)'l' denotes. the trau.po" of" the vector{.)~ We ~ll'ass~_ 't:hlI.t: 
eM input x(k)lsGaulI81an. Also. it Will be ass_d Without loss of 
seDeralte, that x(k) an4 y(k) are zero _an. 

ThclP'roblellthere1sto derive an sdapt1vefl,ltEYiring' algpritbll!that 
1lS __ tMSR Il!etbOd totraclttM (possibly t11111il-varying) parameters A and .B 
of tbe Volterra fUter in (2) 80 as t9m1n1m1zCfthe CQ.8;t; fU11l:tio¥l' 

C(!(it) ,.B(l<»)- r q(i,k>{y(i)-[A(k») TX(1)-.tr[B(k)(X(1)XT(i)"fixx(k»)U 2 
i-O . ..' (3) 

1fl'IjJ1'e dellotesall estimated quantity and q(1.k) 18 a weighting fanction 
"2 fo-c::.tbe.squared estimation error [y(1) - rlt(!)] at tilDe!. wen the 

estimates A(kl. B(lt} and i (It) at time It are used to obtain the .. xx 
e8~lmate 'Yk~l) of y<;1)' 'oJ." snalyUcal tJ."aQtabi.UJ:Y·. we will SHU1IIE! that 

tMau.tocorrelatioDmatdxlxx 111 estimated at U_ It as 

A k or 
Rxx(k) .. r q(i,k)X(k)X (k) • 

1-0 
Then. tne cost functional that is to be minilllized beeolles 
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C(A(k),i(k»).- ~ (q(i.k){,(i) - i T(k)X(l) - tr[B.(k)(XCi)XT(i) 
l~O 

k 
- L qO,k)X(j)xT(j»))J2} • (;) 

j=O 

We ctm minimize tTle above cost functional with respect to ACt) by 

setting gradient of c(A(k),B.(k») with respect to A(k) to zero,i.e., by 
setting 'ilA,(k)C(ACk),B(k)) =0. After some straightforward 
obtain 

A ~ 0 N-l ~ II. 
R",,(k) "'. Rxx(k) A(k) + I bm n(lI:) [ l. q(1,k)x(i-m)x(i-n)X(i)] 

J" m,o=O' i-O 
k T A k 

+ [ r q(j ,k)X (j)B(k)X(1) J [ I q(i,k)X(1)], (fla) 

where 

R (k) '" yx 

j=O i"'O 

k 
l. q(i,k)y(1)X(i) 

i=O 
o ~ " 

and ACk) yields the minimum C(A(k),B(k»). 

If the weighting function q( i ,k) for 0 <; i <. k represents the Impuls.e 
response function of a lowpass filter with unit gain at zero frequency. 

k k k 
L q(i,k)=l, we can sae that L q(l,k}x.(i-j) and L q(i,k)x(i-m)x(l-n)x(l-j) 

i=O 1=0 i"'O 
approximate the mean and third order moment of x(k). respectively. wbicb: 
lIIeans that: second and third terns of (6a) are approllimately zero, 
Substitution of this in (fib) re.sults in the simplified expression 

() 
for A(k). which is given by 

o A 1 
A(k) ,. Ie (k) R (II..) • 

xx yx 

To obtain the LS solution for B(k). we once again set the gradient: of 

CLACk) ,BCk») With rupeet to B(k) to :tero and obtain 

(8) 

where 

k. T 
T (It) '" L q(i,k)y(i)X(i)X (,0 • (9) 
yx 1"0 

The derivation is straightforward lind can be found i.n [3]. It makes use 
the fact that for a Gaussian signal x(k), 

g {x(k-l)lI.(k-j )x(k-m)x(k-n)} 

and the approximate relationship 



__ "'~"cc-~--~--------------------- -- -- - ------ - ----

k 
X q(1.,k)x(i-m)x(i-n) ••• x(i-j) .. E{x(k-a)x(k-n) ••• x(t-j)}. (10 

:1 .. 0 

hi UOh 'E'XX(i-j) .. E{x(k-i):x(k-j)}. 

It may be pointed out that the L8 solutions given by (7) and (8) have 
t1Iff .. fJJQIe •.• form as those derived for the optimal lDin111J!l11l __ squared 
uti_e.. for A(k) and B(k) in [4.51. -. 

JUso, fo';;~ the gen.eral C4.se,wben the,re1evant signals are sbltionary. 
~pply:Lq- tbe: Wiener filter theory yields the OptilDUID solution [6} 

i _rli 
xx.J'X (12) 

where 

X(k) - -[X(k) .x(k-l) ••••• x(k-N+1). x 2 (k)-rx:x(O).X(k)X(k-O-rxx(l) • 

•••• x2 (k-N+l) - I." (O)]T. 
xx 

From (1.2) it can be seen thatcolDputing theoptluitli solution requires 
1.IIV~n:·t1ag an (N+N2)x(N+N2) matrix. which iaay be c01l.putatlonali-Y very 
.difficult. for large va1ue.s of .N •. In comp~r1son. the lilOiu;:ions. derived in 
(7)amln) require inverdngonly an Nxlfmatrix •. 'f11e.sav11ls.sin . 
coiaputat-iwBinvotv-ediequiteeddeut-'ft:OIII the above discussion. 

lDtba next section~ we rill develop an~xponentially weishted SER 

algori thllifl;lr recursively colllp1i1ting . A(k) and~(k). 

3. THE EXPONENTIALLY WEIGRTED SER ALGORltRK 

The SERalgorithm has bE.en used to update theopUmU1l. linear [2J and 
nonlinear [6] filter coefficient. in a recur8iv~. manner. In this section • 
.... adopt. the . LS solution in (7) and. (8).and 'appl.'Y the .. SER algorithm to 
update the Volterra filter weights that millimize the cost functional given 
by (5) with the weighting function q(1.k) selected as 

q(1.lt) - (l_~)~k-i (13) 

where 0 < ~ < 1. This weighting function penalizes the current estimation 
errors 111Kure than the pst ones;· It maybe llotedhere that: for-'large valueli' 
of It 

(14) 
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aud therefore the results in Section 2 are applicable here. Then, 
solutions workout to 

and 

'i<k) • t B:;,!(k) Tyx(k) B:;!<k) 

.mere 

and 

i;(k) .. (1-13) I ,f-iY(i)X(;). 
i-o 

To obtain the recursive relationships. we proceed as follows: 
Substituting (17) in (15) and simplifying, we get 

"'" It-I k i 
a (k)A(k)· (1-/J) L ~ - y(i)X(i) + (l-/J)y(k)X(k) 
xx i~O 

, J 

k-l A k-l L~J 
[0-(3) L Bk-~X(i)xT(I)] A(k-l)- (1-13) .L f3k- i y(i)X(1) • (%0;1 

i-O, " i-I, ,"?'j 

and 

A "', " 0 ' '0 ,-12;1 
where we baveused A(It) and B(lt} inatead of A(k) and B(lt). Substitut:;l.(:,~ j 
(21) in (20) andlllllnipulating the resultallt equation, we obtain the i,;~'~ 

recursive relationship for A(k) as' ,'j 
('I 

A<lt) .. A(k-l) + (1-13) 1-1(k)X(k) [y(k)- XT(k)A(k-n} '"i\ "t~l)~ 
xx ' ' .. ,'" "', 

The derivation of the recuraiv~ relatiooship for the Quadraticwe1;IIUi 
18 lIIore involved, evell!. though straightforward. We, wll~give ,onl,. thef1l:llll! 
result. ror details. tbe reader ia referred to [3]. B(It) iarelatft, to i 
B(lt-1) a8 I 

B(lt) • t (I-o-:Olmi;!(It)X(k)XT(ltj ]B(k-l) [I-(l-I3)X(lt)XT<k)R;!(~>1 

where I denotes the NKN identity matrix. ,Also.'R:!<~) 
the recursive relationship (3] , 
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a.'re 
~j~Jd" 1 +:1;1) X'l'(k)8:;!(k-l)X(k) (25) 

1l!I4'·4(k) is· aasl,II1Iedto be' nonzero. In deriving (24) we made use of the 
het: that; 

i (k) =aR (k-l) + (l-a)X(k)XT(k) (26) :xx: ". xx 
~n. UisC4tbe .matrix inversion le_ [7] which says that if A .. B + CD, 

... :'1 ' .. i,,:I _ 1 B-1CDI-1 
1 + DB-ie 

yU;bJ.l.+DB-1C ". O. 

, ,In,tJ1,e. Tlextll8etiao. we will demonstrate tbe, tlSefulness of the 
poposed-diwr1tbm wltha silllulation example. 

4. A SIMULATION EXAKi'LE 

· .. To,8itudytbe. pQ'iorlllllnee of the proposed, algoirithlll. we eons1der the 
.,Ilt$.idellt;1f1eaUon problem for a secolldorde,r :Volterraf11ter whose 

. cufficients A and Bare liven by 

A. i .. [:oJ-
[

0960 (27) . -,0,.2 '1 . 
lAd . 

e··· [ .. , -0.1 J B .. ... ~ - (28) 
b1.o. b l ,l I -0.1 0.15 .,' 

, , " .; ~ ',: -

Note that. B:ts s)"lllllfetric.The sys.tem:fdentif'1ution problem, 1s 
' •• t1c£al1y depleted in Pig. 1. wbere.tbe l:eference input x(lt) 1s,wiUte. 
C16u.ai,an rith zero. mean and unit variance andy(k) is obtained frolll x(k) 
~s111i(2J ritb A atlld B given by (27) and (28). respectively. The dgodtM w. luit·1alized with 

I, thirty independent silllulations were run lIlsing 200'0 da ea saaples eacb 
_the results presented are averaged over the thirty runs. P:l.gure 2a-2e 

41e}:llay plots 0'£ ~O'k). ;1(k). boo(k). b01(k) • blOCk) and bu(k), 

respecu'Y'ely. In each case" we can see that the alsodthlll converses to the 
~rtect values. Also, the plot of the squared estimation error as a 
flll1ctio,:I'1. of time in Fig. 2f shows that tbe ext:1matlon error decreases 
I!SpOnenu'ally with time. 
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5. SlJlIIHARY AND CONCUJS IONls'"1 

The adaptive second order Volterra filter with the SBR algoritimllililS '<~ 
developed in tbis paper. The recursive algorithm tracks the LS soluttoa ';i 
that m1ni1ll1zelJ the given cost functional. The simulation results pre~, >i 
diemo,nstrated the e,ffectiveness of the algorithm in estimating the ayllta J 

parame~r:::s:a:e:::~:::: :::t:::a r:::::::e input reduces the'J 
computationa,l, load considerably over the direct approaclil given by (12:). j 
The t1l4o:r;eU,cal convergence properties of the adaptive filter are currentl1· \11 

under investigation and will be the subject of a later paper. " 
<'C_J 
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Primary Input 
UnknoWl;1 y(k)' 

Nonlinear Systeml----------.-f 
H 

y(k) 

JI'igure 1. Tapped delay line mQdel realization of a second order 
VOlterra filter fot' the system identific.ation problem. 
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Fig\l.r~2. Ensemble averages of the system !dent ification 
problem in the simulation example (6" 0.998), 
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