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" ABSTRACT

The purpose of this paper is to introduce an adaptive nonlinear
digital filtering algorithm which use the sequential regression (SER)
method to update the second order Volterra filter coefficlents in a
recursive way. Conventionally, the SER method has been used to invert
large matrices which result from direct application of the Wiener filter
theory to the Volterra filter. However, the algorithm proposed in this
paper adopts the simplified least squares solution that results when the
input signals are Gaussian, and hence the size of the matrix to be inverted
is smaller than that of the conventional approaches. Simulation results
are also included to demonstrate the performance of the proposed algorithm

1. INTRODUCTION
The Volterra aeries'representatibn,of nonline#r systems 1s an
extension of the linear system theory. The output y(k) of a (causal)

discrete—time, nonlinear system can be represented as a function of the
input x(k) using the Volterra series as
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where h‘(ml,mi,...,gg) is the p-th order Volterra kernal [l] of the
nonlinear system. This paper is concerned with adaptive identification of
nonlinear systems that can be represented using a second order Volterra
series. A least square (LS) solution is obtained for the system
identification problem assuming Gaussian reference inputs and an adaptive
filtering algorithm which computes the LS solution in a recursive manner
using the sequential regression (SER) method is derived.

Conventionally, the SER method has been used to invert a large matrix
which results from'direct application of the Wiener filter theory to
nonlinear systems [6]. However, the algorithm proposed in this paper
adopts the simplified solution [5] that results when the input signals are
Gaussian, and therefore the size of the matrix to be inverted is smaller
than that of the conventional approach.
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The rest of the paper is organized as follows: In Section 2, a formal
statement of the problem is presented. A LS solution to the problem is
derived in this section. The adaptive Volterra filter with SER algorithm
is derived in Section 3. The effectiveness of the proposed algorithm is
demonstrated using a simulation example in Section 4. Finally, we make the
concluding remarks in Section 5.

2. PROBLEM STATEMENT AND OPTIMUM SOLUTION

Let H in Fig. 1 represent an unknown nonlinear system, that can be
represented as a second order Volterra filter. Then, the output y(k) can
be obtained using the matrix equation in terms of the input x(k) as

y() = ATx(0) + ex{B[x(0x (k) - R ]} (2)
where
X(K) = [%(K),x(k=1), 000, x(k-N+1)]7T
T
A = [aﬂ’al""’aw~l] ,
%0,1 LR 1
by ) P

by, vt Byer,-n

) ; 1 T .
is a symmetric matrix so that bi,j = by 1s Rex = E{X(k)X*(k)} 1s the
autocorrelation matrix of X(k), tr{+} denotes the trace of the matrix

f+} and (-)T denotes the transpose of the vector {+). We will assume that
the input x(k) is Gaussian. Also, it will be assumed without loss of
generality that x(k) and y(k) are zero mean.

The problem here is to derive an adaptive filtering algorithm that
uses the SER method to track the (possibly time-varying) parameters A and B
of the Volterra filter im (2) so as to minimize the cost functional

C(ACk) ,B(K) )= E a(1, 10 {y(D~[A00) TX(D) -ex [BOO) (x(0X ()= (k) )]}
o (3)
where denotes an estimated quantity and q(i k) is a welghting function
for the squared estimation error [y(i) - yk(i)] at time i, when the
estimates &(k), B(k) and R x(K) at time k are used to obtain the
estimate yk(i) of y(i). For analytical tractability, we will assume that
the autocorrelation matrix Ry, is estimated at time k as

“ k :
R_(k) = J q(i,l0X(0XT(k) . (%)
XK
i=0
Then, the cost functional that is to be minimized becomes
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We can minimize the above cost functional with respect to A(k} by
setting the gradient of C(A(k),B(k) ) with respect to A(k) to zero, i.e., by

setting VA(k)C(A(k),ﬁ(k)) = 0. After some straightforward computations, we
obtain

- ~ 0 ~ k
R (k) = R () Alk) + 2 by, oK) {izoqu,k)‘xu«m)x(i—n)x«:i)]

m,n=0 |
" | |
+ [ aGL,x 1B ] | Zq(i,k)xu)], (6a)
JsO i=0 |
where
» k
R (k) = 7§ q(i,k)y(1)X(1) (6b)
yx 1=0

1] ~ -~
and A(k) yields the minimum C(A(k),B(k)).

If the weighting function q(i,k) for 0 € i < k represents the impulse
response function of a 1awpass filter with unit galn at zero frequency, i.e,

Z q(i,k)=1, we can see that z g(i,k)x(i-j) and 2 q(i,k)x(i-m)x(i-n)x(£-5)
i=0 i=0 i=0
approximate the mean and third order moment of x(k), respectively, which
means that second and third terms of (6a) are approximately zero.
Substitution of this in (6b) results in the simplified expression

Q
for A(k), which is given by
0 »_1 -
A(k) = Rxx(k) Ryx(k) . (7

To obtain the LS solution for B(k), we once again set the gradient of
C(A(k),B(k)) with respect to B(k) to zero and obtain

0 151, ~—1
B(k) = 5 Rxx(k)Tyx(k)RXx(k) (8)
where
k " :
T (k) = ] q(1,k)y(i)X(1)X (i) . : (9)
¥x i=0

The derivation is straightforward and can be found in [3]. It makes use of
the fact that for a Gaussian signal x(k),

E{x(k=1)x(k=j)x(k-m)x(k-n)}
rxx(i~j)rxx(m-m) + r (i=m)r  (j-n) + r(i-n)r  (j-m) (10}
and the approximate relationship
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qu(i,k)xcium)x(i—n) eew x(i-3) = E{x(k-m)x(k-n) ... xCk=j)}. (i
i=

In (10), r  (i-j) = E{x(k-1)x(k-j)}.

It may be pointed out that the LS solutions given by (7) and (8) have
the same form as those derived for the optimal minimum mean squared
estimates for A(k) and B(k) in [4,5].

Also, for the general case, when the .relevant signals are stationary,
applying the Wiener filter theory yields the optimum solution [6]

2o e

H=R R (12)
where

H = [a 3@, 58,ynnss8 , b ,b yeensh ]T

0°21°%2 N-1° °0,0”°0,1 N-1,N-1

) - wl¥ ~T

R E{X()X (k) ]

e E{y(k)X(k) }
and :

K = [X(k) ,x(k=1) 0 v 0y x(emN#1), x2(k)-r, (0),X(OX(k=1)-r (1),

cery ElemD) -1 (0] .

From (12) it _can be_seen that computing the optimal solution requires
inverting an (H+N2)x(N+H2) matrix, which may be computationally very
difficult for large values of N. In comparison, the solutions derived in
(7) and (8) require inverting only an NxN matrix. The savings in
computations involved is quite evident from the above discussion.

In the next section, we will develop an exponentially weighted SER
algorithm for recursively computing A(k) and B(k).

3. THE EXPONENTIALLY WEIGHTED SER ALGORITHM

The SER algorithm has been used to update the optimum linear [2] and
nonlinear [6] filter coefficients in a recursive manner. In this section,
we adopt the LS solution in (7) and (8) and apply the SER algorithm to
update the Volterra filter welghts that minimize the cost functional given
by (5) with the weighting function q(i,k) selected as

a1,k = (1-p)g*t (13)
where 0 < B < 1. This weighting function penalizes the current estimation
errors more than the past ones. It may be noted here that for large values
of k

k
k+1 .
Lol = 1-87 " =1, (14)
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and therefore the results in Section 2 are applicable here. Then, the 1S
solutions work out to

0 " - :
Ak) = R () R (k) (15)
and
Bk =1 rlwo 1,00 R (k) (16)
where
- k-1 :
R (k) = (1-8) 2 y(1)X(4i). an
R_ (k) = (1-8) Zoak'ixci)xTci) (18)
=
and
k 4
T, ) = (1) ] & tyoxcnxT) . (19)
1=0

To obtain the recursive relationships, we proceed as follows:
Substituting (17) in (15) and simplifying, we get

. “ k=1 . _ -
Ree (A = (=8 [ BTy (DX() + (1-8)y(1)X(K) (209
i= ;
and
k=l 4
[C1=B) § B “x(i)X Te1y) AGk-1) = (1-8) 2 g yxen) (21)
1=0 i=1 :

o~ ~ f 1]
where we have used A(k) and B(k) instead of A&k) and B(k). Substituting
(21) in (20) and manipulating the resultant equation, we obtain the

recursive relationship for A(k) as
A(k) = A(k-1) + (1-B) R lckmk) [y(k) - xT(k)A(k-1)] . (22)

The derivatiom of the recursive relationship for the quadratic welghts
is more involved, even though straightforward. We will give only the final

result. For detalls, the reader is referred to [3]. ﬁ(k) is related to
B(k~1) as

B(K) = 5 (1-(1=B)R_ - (0 x(0X () JBk=1) [ 1-(1-8)X (X (IR (1) ]
1 o-1 T g WP
+ 7 (1=B)y(OR L GOXX (R (K) (23)

where I denotes the NxN identity matrix. Also, R;;(k) is computed using
the recursive relationship [3]

Loy =L i lek-1y = L (A28 g1 (g- OXTIR (k-1)] ‘
Rxx(k) g Rxx(k 1) 00 [ 2 Rxx(k DX(k)X (k)Rxx(k 1)] (24)
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where

(k)R “L(-1)%(k) (25)

d(k)=l+183 xT

and d(k) is assumed to be nonzero. In deriving (24) we made use of the
fact that

o TR o PTON |
Rxx(k) BRxx(k 1) + (1-B)X(k)X" (k) (26)
and then used the matrix inversion lemma [7] which says that if A = B + CD,
a7t =gt o L glops!
1 +DB "C

with 1 + DB 1¢ # 0.

In the next section, we will demonstrate the usefulness of the
proposed algorithm with a simulation example.

4. A SIMULATION EXAMPLE

To study the performance of the proposed algorithm, we consider the
system identification problem for a second order Volterra filter whose
coefficients A and B are given by

a,
i [a?]’ E-gg] (27)

0_‘15 | . (28)

bHote that B is symmetric. The system idemtification problem is
schematically depicted in Fig. 1, where the reference input x(k) is white,
Gaussian with zero mean and unit variance and y(k) is obtained from x(k)

using (2) with A and B given by (27) and (28), respectively. The algorithm
was initialized with

AC0) = [g] .

-~ 1 |
o -3 g

- 1 o0
Rxxm) = [0 1]

Thirty independent simulations were run using 2000 data samples each
and the results presencad are averaged over the thirty runs. Figure 2a-2e

display plots of a (k), a (k), 00“‘)' Ol(k) = bm(k) and b“(k),

respactively. In each‘ case, we can see that the algorithm converges to the
correct values. Also, the plot of the squared estimation error as a

function of time in Fig. 2f shows that the extimation error decreases
exponentially with time.
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5. SUMMARY AND CONCLUSIONS

The adaptive second order Volterra filter with the SER algorithm was
developed in this paper. The recursive algorithm tracks the LS solution
that minimizes the given cost functional. The simulation results presented
demonstrated the effectiveness of the algorithm in estimating the system
parameters of a second order Volterra filter.

The Gaussian assumption for the reference input reduces the
computational load considerably over the direct approach given by (12},
The theoretical convergence properties of the adaptive filter are currently
under investigation and will be the subject of a later paper.
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Figure 1, Tapped delay line model realization of a second order
Volterra filter for the system identification problem.
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Figure 2. Ensemble averages of the system identification
problem in the simulation example (8 = 0.998).
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Figure 2, (cont.)
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