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Steady Couette and pressure-driven turbulent channel flows have large regions in 
which the gradients of the viscous and Reynolds stresses are approximately in balance 
(stress gradient balance regions). In the case of Couette flow, this region occupies 
the entire channel. Moreover, the relevant features of pressure-driven channel flow 
throughout the channel can be obtained from those of Couette flow by a simple 
transformation. It is shown that stress gradient balance regions are characterized by 
an intrinsic hierarchy of ‘scaling layers’ (analogous to the inner and outer domains), 
filling out the stress gradient balance region except for locations near the wall. The 
spatial extent of each scaling layer is found asymptotically to be proportional to its 
distance from the wall.

There is a rigorous connection between the scaling hierarchy and the mean velocity 
profile. This connection is through a certain function A(y+) defined in terms of 
the hierarchy, which remains 0(1) for all y+. The mean velocity satisfies an exact 
logarithmic growth law in an interval of the hierarchy if and only if A is constant. 
Although A is generally not constant in any such interval, it is arguably almost 
constant under certain circumstances in some regions. These results are obtained 
completely independently of classical inner/outer/overlap scaling arguments, which 
require more restrictive assumptions.

The possible physical implications of these theoretical results are discussed.

1. Introduction
Boundary-layer and pressure-driven or shear-driven channel flows transition to 

turbulence at sufficiently high Reynolds numbers, t  Within the turbulent regime, 
numerous empirical observations, e.g. Gad-el-Hak & Bandyopadhyay (1994), indicate 
that many of the statistical properties of these flows are similar, even though they 
possess different driving mechanisms. This apparent statistical similarity supports 
claims for an underlying similarity in the dynamical structure of the turbulence as 
well. In the case of pressure- and shear-driven turbulent flows, structural similarity 
will be one of the themes in this paper.

Theoretical approaches to the description of the mean velocity profile in both shear- 
and pressure-driven flows often start by assuming a mathematical structure formally 
describing behaviour in two separate scaling regions -  the inner, where the law of

t  This paper will prim arily employ the so-called K arm an  num ber, S+ =  SuT/v ,  where S is the 
boundary-layer thickness o r channel half-height, v is the kinem atic viscosity, u T is the friction 
velocity (= ^ / twaii/p), rwau is the surface shear stress, and p mass density.
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the wall holds, and the outer, where the defect law governs the flow. Subsequent 
analyses (classical and modern) then typically propose the existence of a region of 
overlap where both representations are valid. Such traditional methodologies have 
their origin in the work of Tzakson (1937) and Millikan (1939). (Gill (1968) rightly 
showed that in addition to assuming the existence of an overlap region, one must 
assume appropriate maximal rates of growth, as the outer variable approaches 0, of 
the discrepancy between the outer approximation and the true solution, and similarly 
with the inner approximation as that variable approaches oo.)

This traditional framework constitutes the basis for a number of the theoretical 
approaches attempting to describe the physical behaviours of wall turbulence. For 
example, this inner/outer/overlap structure promotes the notion that the logarithmic 
region of the mean profile is an inertial sublayer in physical space (e.g. Tennekes & 
Lumley 1972), and has been employed in constructing descriptions of the Reynolds 
normal and shear stresses (Monin & Yaglom 1971; Panton 1997, 2005). More gener
ally, the classical train of thought has been at the foundation of a great many theore
tical treatments of wall-bounded turbulence in the last decade or so (Afzal 1993, 
2001a, b; George & Castillo 1997; Panton 1997, 2005; Buschmann & Gad-el-Hak 
2003a, b).

For the mean velocity profile, the hypothesized overlap region is traditionally hand
led by matching the velocity gradient, as simultaneously represented by the inner and 
outer functions (e.g. Tennekes & Lumley 1972). Tn this way a logarithmic velocity 
profile is obtained. There is, however, a rational basis for questioning the logic 
of the methodology. First, while generic prototypical two-scale problems with an 
overlap region arising in other contexts lead to the solution being constant in the 
overlap domain, such constancy in the present case is not acceptable. Tt is known 
that the mean velocity profile is a strictly increasing function of distance from 
the wall. Secondly, it is straightforward to construct quite arbitrary mathematical 
functions with inner and outer scaling regions in which the traditional forms for the 
corresponding approximations are satisfied, but which have no overlap zone of joint 
validity, and no logarithmic profile. Thirdly, while the overlap ideas often constitute 
an empirically convincing framework for organizing data, a lucid description of the 
dynamical structure underlying such a region has yet to emerge. The foundation 
provided in Wei et al. (2005), upon which the present analysis builds, avoids the 
ambiguity associated with the overlap hypothesis by basing its analysis directly on 
the scaling properties of the mean differential statement of Newton’s second law.

To summarize, there is reason to question whether the pair of hypotheses, (i) an 
overlap zone exists, and (ii) the profile is strictly increasing, forms a reasonable basis 
for a derivation (see the further discussion in Wei et al. 2005). One goal of the present 
work is to construct an approach to the derivation of features of the mean velocity 
and Reynolds stress profiles that is distinct from the classical one. This approach 
seeks to employ a train of reasoning beginning with credible hypotheses that are 
disconnected from the phenomenon to be explained.

The present paper greatly expands on Wei et al. (2005). Specifically, the arguments 
in that paper reveal that while Reynolds-number dependencies in the mean velocity 
profile (using inner scaling) appear only very subtly, the Reynolds-number-dependent 
behaviour of the terms in the mean momentum balance are both clearly evident 
in existing data, and derivable from the equations of motion. From these new 
results, we are also led to conclusions regarding flow structure that are contrary 
to a number of well-established notions within the turbulent wall-flow literature. 
Notable among the latter are (i) that viscous forces are only comparable to turbulent
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inertia in the buffer layer and below (say y + = yuT/ v  less than about 30), (ii) the 
aforementioned correspondence between a logarithmic mean profile and an inertial 
sublayer-like structure in physical space, and (Hi) the exclusivity of the inner and 
outer scales with regard to describing the behaviour of mean momentum transport 
and its Reynolds-number dependence. The new assertions, contrary to those just 
listed, are corroborated by the highest quality data available (Zagarola & Smits 1997; 
Moser, Kim & M ansour 1999; DeGraaff & Eaton 2000; McKeon et al. 2004), as well 
as via multiscale analyses under a minimal set of well-founded assumptions. At the 
heart of this theory is the actual balance of terms in the mean momentum equation 
(as opposed to the mean profile and stress-based interpretations, as in Tennekes & 
Lumley 1972; Hinze 1975; Townsend 1976; Panton 1990; Pope 2000). Resulting from 
this effort is the identification of a layer structure for channel flows, and by extension 
for boundary-layer and pipe flows, and that is well-founded in the mathematical 
representation of mean flow dynamics. A primary element of this layer structure is 
the so-called stress gradient balance layer.

As the name implies, a stress gradient balance layer exists when there is a balance 
between the viscous and Reynolds stress gradient terms in the mean momentum 
equation (see (2.1) below). In boundary layers, pipes and channels, the stress gradient 
balance layers extend from the edge of the viscous sublayer (y+ « 3 )  to an inner 
normalized wall-normal position that is proportional to the square root of the global 
Reynolds number, y/8+. As is readily apparent, at high Reynolds numbers, the 
position y + ~  ^/S+ extends well into the traditional logarithmic layer of the mean 
profile. In terms of non-normalized physical dimension, this layer thickness is given 
by the intermediate length, yfSv/uz (Long & Chen 1981; Afzal 1984; Sreenivasan & 
Sahay 1997). These scaling behaviours find universal support from existing empirical 
data, and have been theoretically derived through the aforementioned multiscale 
analyses of the equations of motion. In addition to showing the necessity of this inter
mediate scaling for describing the mean momentum field in wall-bounded flows, there 
is evidence that a mean profile having features of a logarithmic profile can occur, 
entirely owing to the flow physics intrinsic to the stress gradient balance layer, i.e. 
independent of any flow structure requiring description via inner/outer overlap ideas 
(Wei et al. (2005), together with the much stronger argument and more exact definition 
of these features given in the present paper).

In this paper, these basic results are extended to show that stress gradient balance 
layers have a mathematical structure composed of a hierarchy of length scales. The 
picture of only two scaling regions -  inner and outer -  with their attendant analysis, 
is shown with considerable rigour to be inadequate for a full understanding. It is 
argued here, through rescaling arguments, that the mathematical structure of the 
flow involves a continuum of length scales, in a sense to be explained below. Each 
has its own ‘scaling layer’, with characteristic length asymptotically proportional to 
distance from the wall as that distance, in wall coordinates, increases. In all, this 
continuum of layers serves to connect the traditional ‘outer’ region with a region 
close to the ‘inner’ one. Although the analysis here is sound, the relationship between 
this mathematical structure and the instantaneous motions in the flow is, at this time, 
speculative. Furthermore, while there may be connections between the hierarchical 
scalings formally admitted by the mean dynamical equation (as shown herein) and the 
hierarchical eddy structures posed in Townsend’s attached eddy hypothesis (Townsend 
1976; Perry & Chong 1982; Perry & Marusic 1995), such connections await future 
verification. Possible implications of the scale hierarchy identified by the present effort, 
relative to flow physics and hierarchy-based models, are briefly discussed in § 5.
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The scale hierarchy revealed herein also has consequences relating to the functional 
form of the mean velocity profile. Specifically, a rigorous connection is established 
between a certain well-defined characteristic function A(y+) associated with the 
hierarchy, and the mean velocity profile. The function A is guaranteed to take on 0(1) 
values for all y + in the hierarchy, and to be constant in any interval if and only if 
the profile is logarithmic in that same interval. Tf A is almost constant (and there are 
indications when this may be the case), then the profile is close to being logarithmic. 
Although it is generally not constant, an argument pointing to its constancy in certain 
regions in the limit as Re^> oo is given in §3.5.2. For finite Re , other functions such 
as certain power laws could be accommodated, and certainly i?e-dependence as well. 
Nevertheless, it is the firmest theoretical basis yet found for a generalized logarithm- 
type growth, and is entirely independent of the classical arguments for logarithmic 
growth based on an overlap hypothesis.

Finally, the general location where the hierarchy begins can be predicted, and 
coincides roughly with the empirical onset of the traditional logarithmic part of the 
velocity profile. Specifically, this location is theoretically shown to be identified with 
where the derivative of the Reynolds stress, namely ( d /d j+){Mu)+, is in a range near 
—0.01, with its second derivative positive. This implies that the start of the log profile 
is near j+  =  30.

The analysis in this paper proceeds directly from the mean momentum balance 
equation, whose terms represent the different forces acting in the fluid. This is contary 
to traditional practice, in which the integrated form of that equation is used, the terms 
representing stresses. The two forms are equivalent, but the unintegrated form more 
directly displays the flow information (scaling structure) that is of primary interest 
here (see figure 1. (Tn other analogous settings, compare the velocity vs. vorticity forms 
of the flow equations; although equivalent, they convey flow information in different 
ways, and are therefore useful for different purposes.)

The theoretical and empirical evidence to date provide good reasons for exploring 
further the physical and mathematical properties of stress gradient balance layers. 
Tn this regard, consideration of purely shear-driven flow (turbulent Couette flow) is 
especially relevant. As will be shown, the properties of turbulent Couette flow are 
exclusively derived via stress gradient balance layer dynamics. Moreover, the scaling 
properties of turbulent channel flow can be derived from those of Couette flow 
by a simple transformation. The latter therefore provides a particularly useful and 
general context for educing the essential characteristics of stress gradient balance 
layer dynamics, which is a primary objective of this paper. The analysis of Couette 
flow (§3) and turbulent channel flow (§4) will be preceded (§2) by a review of existing 
results relating to the structure of pressure-driven turbulent flow in a channel, and 
followed (§ 5) by a discussion of the implications of the major results.

2. M omentum balance layer structure o f turbulent channel flow
This section gives a brief recapitulation of known results about the structure of the 

mean momentum balance in turbulent channel flow. Tts intent, in part, is to provide a 
context for comparisons with turbulent Couette flow, which will be the primary topic 
of the analysis in § 3.

Tn this and subsequent sections, the time-averaged form of the axial momentum 
balance will be considered for statistically stationary, fully developed flow in a channel 
of height 28. As is customary, the mean velocity, U(y), is in the x-direction with the 
transverse coordinate, y, extending from its origin at the lower wall to the channel
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Ratio of stress 
gradients

F ig u r e  1. Sketch o f the four layers o f  turbulent channel flow at a fixed Reynolds num ber; 
layer I is the inner viscous/pressure gradient balance layer, layer II is the stress gradient 
balance layer, layer III is the viscous/pressure gradient balance mesolayer and layer IV is the 
Reynolds stress/pressure gradient balance layer. N ote layer I in the zero pressure gradient 
turbulent boundary layer is different from  tha t o f  channel and pipe flow in that all o f  the 
terms in the boundary-layer equation are zero at the wall.

centreline at y =  5. In the case of pressure driven flow in the channel, the inner 
normalized differential statement of Newton’s second law is

j _  (2])
•• ,;• •• d>,+ ' 1

It is crucial to recognize, in different parts of the flow, the relative orders of magnitude, 
as 5+ —► oo, of the three terms in (2.1). The only possibilites are; (i) the three dynamical 
effects are, in order of magnitude, in balance, or (ii) two terms are in balance with 
the third much smaller. The various possibilities can be gauged by the ratio of two 
of the three terms in (2.1); the gradient of the viscous stress and the gradient of the 
Reynolds stress, i.e. \&2U+/&y+1 / &(uv)+/ &y+\.

Consideration of the balance of terms in (2.1) reveals the layer structure shown 
schematically in figure 1 (from Wei et al. 2005). This figure depicts a thin sublayer 
(0 y + 3) where the mean pressure gradient and the viscous stress gradient dominate 
the balance equation (layer I, the inner viscous/pressure gradient layer). Outside this 
thin layer is a region defined by a nearly perfect balance between the viscous and 
Reynolds stress gradients (layer 11, the Reynolds stress/viscous stress gradient balance 
layer). The thickness of this stress gradient balance layer exhibits a clear Reynolds- 
number dependence, extending well into the traditionally accepted logarithmic region 
of the mean velocity profile at sufficiently large Reynolds number. Near the location, 
>’+, of maximum Reynolds stress, the viscous force and pressure gradient are, once 
again, nearly in balance (layer 111, the viscous/pressure gradient mesolayer). Around
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y£, the gradient of the viscous stress is much larger than the gradient of the Reynolds 
stress, although |{wi>)+| >  dU+j d y +. For greater distances from the wall, the Reynolds 
stress gradient has changed sign and the viscous stress gradient becomes much smaller 
than either the Reynolds stress gradient or the mean pressure gradient terms. In this 
region (layer IV, the Reynolds stress/pressure gradient balance layer), the Reynolds 
stress and pressure gradients are essentially in balance.

As is readily apparent, this layer structure constitutes a considerable departure from 
the sub-, buffer, logarithmic, wake layer structure typically ascribed to turbulent wall- 
flows. The detailed scaling behaviours associated with the layer structure depicted in 
figure 1 are revealed in detail by Wei et al. (2005). In what follows, the structure of a 
turbulent flow that is entirely characterized by stress gradient balance layer dynamics 
(i.e. Couette flow) is contrasted with, yet found to be intimately connected to, the 
pressure-driven channel flow.

3. Scaling analysis o f turbulent Couette flow
This section is devoted to an investigation of steady turbulent Couette flow, via the 

averaged equation of (streamwise) momentum balance and concepts from multiscale 
analysis. Specifically, implications relating to the scaling-layer structure of the flow and 
the behaviour of the mean velocity U+ = U/ux and Reynolds stress T + = —( u v ) / u \  
profiles across the channel will be explored.

The two channel walls are situated at positions y = 0 and y = 2S. The lower one is 
stationary and the upper one is in steady motion. The dimensionless inner scaled half
width of the channel is denoted by S+ = uTS/v. The parameter e =  l/^/5+, which is 
assumed to be small, will figure prominently in the various scalings. The traditional 
inner and outer scaled distances from the lower wall are y + and rj =  €2y +, respectively. 
The latter is simply the physical distance from the lower wall, normalized by 8. The 
centreline is at rj = 1, i.e. y + = e^2 =  8+. A major conclusion will be that the designation 
of coordinates as being either ‘inner’ or ‘outer’ may be misleading, because they re
present only the extreme ends of a spectrum of scaled distances. In fact, the theoretical 
basis for judging the relevance of using y + near the wall and rj near the centreline 
is extended here to derive the existence of the intermediate scaling regions. The new 
intermediate scalings therefore enjoy a theoretical foundation as firm as that of the 
traditional inner and outer regions.

3.1. The averaged momentum balance equations 
The averaged equation of streamwise momentum balance for steady turbulent Couette 
flow expresses an exact balance between the transverse gradients of the viscous and 
Reynolds stresses:

The variables U+ and T + satisfy the following boundary conditions at y+ =  0:

dT+ d*7+
r+(0) =  d ^ (0) =  ^ +(0) =  ° ; d ^ (° ) =  L

(3.2)

In terms of rj, (3.1) becomes

(3.3)
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At the centreline, there are boundary conditions

d J+  d2U+ n
—— =  , = 0  at rj = 1. (3.4)
dr] dr]'

Beyond r] = 1, U+ and T + can be continued by symmetry considerations: U+ is odd 
and T+ is even with respect to their values at the centreline (see the details following 
(3.11)). This means, for example, that the centreline velocity £/t+ is equal to V+/2, 
where V + is the inner normalized velocity of the upper wall.

Equation (3.1) can be integrated with use of (3.2) to obtain

d U + t n— — -  1 +  J+  =  0; (3.5)
d j+

or in terms of variable rj,

e2^ ± -  _  i +  T + =  o. (3.6)
d?7

The 'outer approximation' is found by setting € =  0 in (3.6), which yields

T +(n) = 1. (3.7)

Alternatively, we can define a scaled Reynolds stress T(t]) by

T+ = T+ +  e2r ,  (3.8)

where =  r + t, and thereby rewrite (3.3) as

<” >
This, together with the observation from (3.4) that both terms in (3.9) vanish at rj = 1, 
expresses a balance between rescaled forces and therefore suggests that the rescaling 
in question (U+ and T as functions of rj) is the correct one in the outer regime. In 
§ 3.4.6, a stronger corroboration of this conclusion will be presented.

To reiterate, scaling arguments imply that near the centreline, (3.7) holds to lowest 
order as e —>0, T(r]) is a regular function (i.e. its derivatives with respect to rj up to 
some finite order are bounded depending on e), and (3.9) holds to next order, again 
as e —>0. Some of these conclusions are well known (e.g. Panton 2005); they are given 
here as an illustrative example of the methodology used in this paper to reveal a 
hierarchy of layers (§ 3.4.3).

Since the outer solution (3.7) does not satisfy the boundary condition (3.2) at the 
lower wall, it cannot be uniformly valid; there is a thin layer near that wall where the 
outer scaling gives way to the inner scaling. More precisely, it will be shown, in fact, 
that a whole hierarchy of scalings are appropriate, forming a transition between the 
outer and the inner regions. First, however, a more detailed comparison with channel 
flow will be provided, as well as some features of the flow near the centreline.

3.2. Comparative formulation o f  turbulent channel flow
In this section, a digression is made in order (a) to make pertinent comparisons 
between Couette and channel flow, and (b) to introduce a transformation, (3.12), whose 
generalizations will lead to far-reaching implications for the profiles of both Couette 
and channel flows.

Physically, pressure-driven turbulent channel flow differs from Couette flow in the 
nature of the force driving the flow. A pressure gradient, present throughout the flow,
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provides that forcing in place of the differential motion of the upper and lower walls 
characteristic of Couette flow.

The mean momentum balance for channel flow is
, ] ’ /? • , | t  •

d ^  +  d ^ + ' 2 = ° -  <310)

The extra term e2 =  l /S+ represents the dimensionless pressure gradient, and (3.4) 
is replaced by

dU+
J + =  —— =  0 at ?7 =  1. (3.11)

d v '
In Couette flow, U+ is odd about the point {ri =  1, U+ =  £/+} where £7+ is the centre

line velocity (at // =  1). This means that f /+(2 — ??) =  2f/t+ — f /+(?7), which results in a 
positive velocity V + =  2U^  at the upper wall, // =  2. Also T + is even in the sense that 
T ' {2 — >i) = T ' {i/l In contrast, channel flow has U+(2 — rjj) = U+(rj) and T +(2^rj)  = 
—T +(ij), which imply (3.11). Thus the two kinds of flow differ with respect to simple 
symmetry considerations.

There is, however, a deeper mathematical relation between them. In the Couette 
flow case, we can define an adjusted Reynolds stress

f  = T + ^ € 2y +. (3.12)

Then (3.1) becomes

^  +  - ^ l  +  e2 = 0 , (3.13)
d.v d.v

which in form coincides with (3.10). Thus, this simple transformation from T + to f  
converts the differential equation for Couette flow to that for channel flow. Moreover, 
the boundary conditions satisfied by the variables in (3.13) turn out to be approxi
mately the same as those satisfied by the corresponding variables in pressure-driven 
channel flow.

Qualitatively, the portion {0< rj < 1} for Couette is analogous to a region close to 
the wall, {0 <rj < r]m =  0(e)}, for channel flow (Wei et al. 2005), where r]m =  O(e) is 
the location of the peak value of T +. In both cases, T + rises to a maximum and U+ 
rises to a point where dU+/dr] has a smaller order of magnitude than it does at rj =  0. 
That is, in both cases, the flow domain interior to the peak in T + constitutes a stress 
gradient balance layer. It will be shown that this observation leads to methodological 
similarities in describing other aspects of the two flows.

3.3. Properties o f 'T + and U+ at the centreline
Order of magnitude estimates for the magnitude of T + at the centreline, as well as 
for the curvature (flatness) of T + and U+ will now be derived by scaling arguments.

Throughout the paper, the order symbol O(-) will be used with respect to e ^ - 0  
or (8^-0 (fi is a small parameter introduced in §3.4.1). For example, a =  0(b)  for 
positive a(e) and b(e) will be taken to mean that a/b  and b/a  are both bounded for 
small e.

Based on all empirical evidence, it may be assumed that for 0 < r] < 1

dU+ n d2U+ n
2* 0, , < 0 (Couette and channel),

d . v ' d . v '

d T _  ifT_
dy+ > ’ d.v'

, x  , (3.14)
dJ+  d T '

> 0’ ~a— < 0 (Couette), the latter for y + > a certain value.
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F ig u r e  2. Reynolds stress around the peak, showing d2T/drj2 = 0(e2) and I — Tm = 0(e2). 
Although these order of magnitude relations are clear, it is difficult to read off even the 
approximate value of d2T/drj^. The case Rer =  82 is from DNS of Bech et al. (1995), and the 
other two cases are from DNS of Kawamura, Abe & Shingai (2000).

From this and (3.5), we see that for Couette flow, T + < 1 and that T + increases 
monotonically as we proceed from the lower wall to the centreline. Let T+ = T^=l be 
the maximal value of T +. Recall the definition of T in (3.8), and (3.9). As mentioned, 
they suggest that near the centreline, both T and U+ scale with rj, in the sense 
that all their derivatives with respect to rj are ^  0(1) quantities. Further justification 
of this assertion will be provided in §3.4.6. In particular, d2T/dr]2 ^  0(1), so that 
d2T +/dt]2 ^  0 (e 2). Therefore in that neighbourhood

T + «  r+  — A.V (>/ — l)2,

for some K independent of e, or

T+ _  T + _  AVe( v _  ,5+)2_ (3.15)

This provides the order of magnitude of the curvature of the T + profile at the 
centreline. Very good experimental support for this analytical prediction is given in 
figure 2, albeit only over a small range of Reynolds numbers.

Use of (3.6) at the centreline also provides the order of the deviation of T+ from 
the value 1. Since it was noted above that rj is the correct scaled variable for U+ at 
the centreline, it is now seen that

T+ =  1 -  0 (e 2). (3.16)

Again, table 1 provides remarkable corroboration of (3.16).
In contrast, in pressure-driven turbulent channel flow, the proximity of to 1 is 

given by T+ =  1 — O(e), and the curvature of the graph of T +(y+) is 0 (e 3) near the 
peak (Wei et al. 2005). Table 2 provides a review of data corroborating the relation 
for channel flow. The contrast between the data of tables 1 and 2 is strong evidence 
of (3.16), despite the small range of Ret .
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Investigators R eT T" + m
1 — T+-1 -Lm 

€

i _ rr  41 1 m
e2

Bech et al. 82.2 0.955 0.4080 3.699
Kawamura et al. 128.5 0.9729 0.3066 3.476
Kawamura et al. 181.3 0.9817 0.2459 3.311

T ab le  1. Properties o f T+ for turbulent Couette flow. D N S d ata  from  Bech et al. (1995)
and K aw am ura et al. (2000).

Investigators R eT 7’ +m
1 _ 'J' 4
1 1 m

€
1 — T+-1 * m

e2

Moser et al. 180 0.7321 3.696 49.321
Moser et al. 395 0.8370 3.228 69.935
Moser et al. 590 0.8647 3.278 79.447
Iwamoto et al. 109.4 0.6071 4.110 42.995
Iwamoto et al. 150.4 0.689 3.815 46.799
Iwamoto et al. 297.9 0.8006 3.442 59.401
Iwamoto et al. 395.7 0.8321 3.340 66.448
Iwamoto et al. 642.5 0.8746 3.179 80.574

T ab le  2. Properties o f T+ for turbulent channel flow. D N S d ata  from M oser et al. (1999) 
and Iwam oto, Suzuki & Kasagi (2002).

Finally since dU+/drj 0(1) at rj =  1,

d U '
«SO(e2) (3.17)

<J.v'

at y + =  €~2. Note that d2U+/dr)2 =  0 at rj= 1, which illustrates that the actual order 
of derivatives of scaled quantities may be sg 0 (1) rather than =  0 (1)).

3.4. The scale hierarchy
The transformation (3.12), when generalized, leads to remarkable consequences re
garding the structure of stress gradient balance layers. The foregoing scaling argu
ments, together with artificial adjusted Reynolds stresses, will be used systematically 
to reveal a continuum of scales, extending almost completely across the channel.

3.4.1. Adjusted Reynolds stresses
Let fi be a small positive number. Restrictions on it will be given later. Let

T p(y+) =  T +(y+) -  fiy+. (3.18)

(Note that fi is a superscript not an exponent.) These are simply mathematical 
constructs that define the adjusted Reynolds stresses T(i. They satisfy

d T fi dT
d ^  =  d ^ - A  , 3 1 9 )

and from (3.1) (as always, for Couette flow),

d2U+ d T? „ n
_ _  +  _  +  ^ 0 .  (3.20)

From DNS data of Kawamura et al. (2000), the adjusted Reynolds stresses for dif
ferent fl are shown in figure 3.
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F ig u re  3. Adjusted Reynolds stress profile for various values of f). The case f ) = e 4 corresponds 
within 0 { e 2) to the genuine Reynolds stress for Couette flow (see §3.4.6), and f ) = e 2 is an 
approximation to that for pressure-driven channel flow. The DNS data is from Kawamura 
et al. (2000), 8+ =  Rez =  181.3 and e =  0.074.

T he m ain  in terest is in  those ad justed  stress functions th a t exhibit local m axim a. 
This happens w hen fi is sufficiently small. The reasoning  in §3.5 uses these functions 
to  educe the existence o f  a special scaling region (layer) Lp for each fi in a certa in  
range. P a rt o f  the argum en t involves ob ta in ing  an  exact differential equation , (3.29), 
for rescaled variables having no  explicit dependence on  f  o r /i. A n o th e r p a rt entails 
the recognition  th a t (3.20) expresses an  approx im ate  balance betw een its first two 
term s (since fi is sm all), an d  th a t this balance m ust be b roken  an d  changed  to 
a n o th e r k ind  o f  balance w hen y + a tta in s  a value such th a t the th ree term s in  (3.20) 
have the sam e o rder o f  m agnitude.

B alance-exchange occurs w hen fi is such th a t there are  locations ;y+ =  for which 
the m iddle term  in (3.20) is positive an d  significantly g rea te r th an  the last term . The 
ac tual balance-exchange will h ap p en  a t slightly larger values o f  y +, as show n below. 
Therefore we require / d y +(yQ) >• fi. F ro m  (3.19), this will be the case w hen

d t +
- ^ ( y + ) > fi. (3.21)

Tem porarily , (3.21) will be replaced by

d  7 +
—  (;y0+) ^  10)8. (3.22)

Since this m ay be too  restrictive, however, it will be relaxed a t a la te r p o in t by 
allow ing the coefficient 10 to  be changed  to  som e n u m b er in the in terval 5 to  20. 
M oreover, only po in ts  w here d vp y d .v  • =  d T  ’ /d.v ’ <  0 will be relevant, i.e. only 
po in ts  on the decreasing p a r t o f  figure 4.

F ro m  figure 4, we see th a t m a x [ d r +/d}>+] ~ 0 .0 7 , a tta in ed  a t y + ~ 7 ,  so th a t (3.22) 
will be true for som e if

0 <  p  sc 0.007. (3.23)
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F ig u re  4. Inner normalized Reynolds stress gradient for a variety of flows. The turbulent 
Couette flow data are from Bech et al. (1995) and Kawamura et al. (2000). Also included are 
turbulent boundary layer DNS from Spalart (1988).

3.4.2. Peaks o f

L et fi satisfy (3.23). There is a p o in t on the righ t-hand  (descending) b ranch  o f  figure 
4 a t w hich (d F +/d;y+)(;y+) =  fi, hence from  (3.19) the function  has a m axim um  
there  (since its slope is 0 and  its second derivative negative). Call the position  o f 
th a t m axim um  y,'„(fi). As fi decreases, increases tow ard  its m axim al allow ed value, 
w hich is 1 /e 2 since th a t is the centreline. Tt will be show n in §3.4.6 th a t fi =  0 ( e 4) at 
the centreline.

A  balance-exchange argum ent will be used to  show  th a t for each fi satisfying (3.23) 
an d  Js 0 (e4), there  exists a ‘scaling layer’ Lp w ith characteristic  w idth 0 ( f i ^ l/2) in 
the inner variab le y +, con ta in ing  y + (fi), such th a t in  this layer, the  functions U + and 
T+  vary w ith characteristic  length  Tt will also be show n th a t the characteristic  
w id th  p ^ l/2 is o f  the  o rder o f  the  actual layer position  y^(fi)  as increases.

To reiterate, a t the po in t y^(fi)  (w here T $ is m axim al), it follows from  (3.19) th a t
d r +

- ( y M )  = P-
d.v

(3.24)

y^(fi)  increases as fi decreases, 
■ 0 ( e 4). O n  the o ther hand , the

H ence since &T+/& y+ is a decreasing function  o f  y 4 
w ith (as was m entioned  in  §3.4.6) —> 1 /e 2 as f i - 
range  o f  fi is lim ited, (3.23), by 0.007, an d  hence by figure 4, the  lower b o u n d  on 
is ab o u t 30.

This provides a lower b o und  on  the allow able values o f  w hich will be considered 
here as peaks in  the  graphs o f  TP, w ith fi subject to  (3.22). Since the coefficient 10 in 
th a t inequality  was quite arb itrary , it is w orth  exploring  the consequences o f  replacing 
it by som e n u m b er betw een 5 an d  20. Tf th a t is done, it is found  th a t the lower b ound  
on  is betw een 20 and  36.

Tn sum m ary,

(20 to  36) <  y+(fi)  <  1 /e 2 w hen (0.0035 to  0.014) >  0  >  0 ( e 4). (3.25)

This range in  y + will be the pred icted  range o f  the h ierarchy, constructed  below.
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3.4.3. A continuum o f  scalings
I t  will be show n th a t w ith in  each layer Lp (to be defined below), the variables y + 

and  T p m ay be rescaled in such a way th a t the basic differential equation  (3.20) is 
transfo rm ed  in to  an  exact equation  having no  explicit dependence on e o r fi. This 
con tinuum  o f scales can  be param eterized  by e ither fi o r y+, since y t̂ (fi) is a m onotone 
function. Tt will be called a scale hierarchy. A s will be show n an d  discussed further, 
there  are  com pelling reasons to  believe th a t scale hierarchies constitu te  a fundam ental 
s truc tu ra l feature o f  the w all-tu rbu lence  equations; underlying, for exam ple, the 
possible logarithm ic b ehav iou r o f  the m ean  profile, and  replacing the trad itiona l 
overlap ideas as the  theoretical parad igm  fo r th a t behaviour. T he p red iction  th a t the 
beginning o f  the layered dom ain  lies betw een y + =  20 an d  y + =  36 is in teresting, in 
th a t it roughly  coincides w ith the trad itio n a l em pirical onset o f  the logarithm ic-like 
profile. M ore generally, the strik ing  connection  betw een the h ierarchy  an d  the profiles 
o f  U + an d  T + is explored in §3.5.

T he details o f  the  origin an d  p roperties o f  the layer Lp are now  explained. Take fi 
in  the  interval (3.23). T hen  (3.22) ho lds for som e y§ < y^ t (fi). T herefore for y + =  yQ, 
it follows from  (3.22) th a t the  first tw o term s in  (3.20) are each m uch larger th an  
the last te rm  and  balance, except for an  e rro r te rm  fi. This, in fact, continues to 
be true  as y + increases to  la rger values, except th a t as y + approaches the location  
y^iifi) w here T& achieves its m axim um  (denoted  by T£(fi)) the m iddle term  in (3.20) 
becom es sm aller th a n  0 (1 ) , an d  therefore the  first te rm  does as well. T he m iddle term  
eventually  a tta in s the value fi (say) a t som e po in t, w hich will be called y + =  y t (P)-  
By (3.20), the first te rm  d '{ /  /d y  ' =  2fi there. T herefore a t y + =  y^(fi),  all three 
term s in  (3.20) have the sam e o rd er o f  m agnitude, an d  it is n a tu ra l to  seek a rescaling 
w hich reflects this equality. T he new variables will be called y (which also depends 
on  fi) and  T $. A s exemplified in  W ei et al. (2005), rescaling is best done using the 
differentials, dy  and  d T^. F o r coefficients a  and  y ,  to  be determ ined  depend ing  on 
fi, we set

dy  =  a  dy . d T fi =  y d f fi. (3.26)

U n d er th is tran sfo rm atio n , the  first tw o term s in (3.20) becom e a~~2d2U +/d ( y )2 and 
(y  / a ) ( d f P / d y )  respectively. They m ust m atch , in form al o rd er o f  m agnitude, the th ird  
term , fi. T his requires a  =  fi~~{/1 an d  y  =  f i {/1. Therefore

dy =  f i~l/2 dy . d T p =  f i l/1 d T p. (3.27)

T he equations (3.27) can be in teg ra ted  w ith in teg ra tion  constan ts  chosen such th a t 
y =  0 w hen y+ =  y+(P)  and  T-0 =  0 w hen T p =  Tft (fi):

y + =  y+(fi)  +  /! '''• v. T p =  T% + f i ^ 2fP .  (3.28a, b)

The basic equation  (3.20) then  becom es

d 2U + d f ' 1'
—t t t "  +  ~ p r  +  l = 0 -  (3.29)

d r  dy

T his is an  exact equation  w ith no  explicit dependence on any  param eters , and 
it suggests th a t the  fi-dependen t rescaling ju s t described, (3.28), accurately  depicts 
the b eh av io u r o f  U + and  (hence T +) in  som e ‘scaling p a tch ’, b u t th a t evidence 
is n o t quite sufficient. Tt shou ld  also be independen tly  dem o n stra ted  th a t a t som e 
location  in  the channel, the individual derivatives appearing  in (3.29) are actually  
^  0 (1 )  quantities. T hen  the existence o f  a scaling patch  conta in ing  th a t location  can
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be surm ised. In  the patch , U + an d  T $ will be regu lar functions o f  y, w hich m eans 
in  pa rticu la r th a t the  derivatives o f  those functions (to orders 1, 2 an d  3, say) w ith 
respect to  y will also be 0 (1 )  quantities. T here  are, in fact, tw o cand idates for such a 
location : yf i f i )  and  y£(fi).  F o r exam ple by construction , a t y f i f i )  the term s o f  (3.29) 
are —2, 1 an d  1, respectively. This, together w ith the fact th a t y f  is no t a t a boundary , 
w here ex ternal influences could occur, is evidence o f  the presence o f  a local ‘scaling 
layer’ Lp  con ta in ing  th a t point. In  o th e r w ords, the characteristic  length  scale in  this 
interval, referred  to  the variab le y, has the o rd er unity, an d  thus by (3.28) in wall 
un its is 0{fi~~i/2).

T he o th e r cand idate  is the p o in t y^ifi)  w here the th ree term s in (3.29) are  —1 ,0  
an d  1, respectively. The layer Lp  will con ta in  b o th  points, bu t the la tter, y^ifiX will 
be chosen in  this p ap e r to  p in po in t the  layer. In  view o f (3.28a), the characteristic  
length £+ in the layer can  be taken  as £+ =  fi~~l/2.

A t this po in t, it has been show n th a t for each value o f  fi in  the range (3.25);  there 
exists an  in terval Lp  con ta in ing  y^(fi)  (and y f(/8)) w ith in  w hich U + an d  T $ are 
regu lar functions o f  y, hence w ith reference to  the inner variable y + , these functions 
vary w ith characteristic  length fi~~l/2.

T he ‘w id th ’ o f  Lp in the inner variable y + can then  be surm ised as being 0 ( f i ~~l/2), 
a lthough  its w id th  is no t a w ell-defined concept, since Lp overlaps w ith  nearby  layers 
(Lp,, for fi' n ear fi.) Since y f i f i )  an d  y^(fi)  are  in  L p , som e co rro b o ra tio n  o f  its 
m agn itude  being 0(fi~~l/2) m ay be ob ta ined  by estim ating y^(fi) — yfi f i ) ,  w hich by
(3.28) is A y+ =  fi 1/2A y. A y =  0 y t . The correspond ing  increm ent in d 2U +/ d y 2 is

H ow ever, for som e value y* in  layer Lp,  the  m ean  value theorem  says th a t the left- 
h an d  side = (d 3t r+/ d y 3)(y*)A^, so th a t A y =  (d3t r+/d y 3)“ 1. By d ifferentiating (3.29), it 
is seen th a t d 3t r+/d y 3 =  — d 2f ^ / d y 2. This derivative, evaluated  a t y =  0 (y+ =  y^(/6)) 
will be called

a lthough  it depends also (p robably  w eakly except for fi values correspond ing  to 
m axim a near the centreline) on e. It is the curvatu re  o f  the peak  in 7 ^ , in locally 
scaled coord inates, so th a t A(fi) >  0. It will be show n below  in § 3.4.4 th a t A(fi) =  0 (1 )  
for all fi. Therefore A y =  1/A  =  0 (1 ))  as well. This co rrobora tes the characteristic  
w id th  A y+ =  0(fi~~l/1) found  before.

I f  fix an d  fii are  close to  each o ther, Lp, an d  Lp2 overlap. H ow ever, a discrete set o f  
values o f  fi m ay  be chosen so th a t the  associated  layers do no t overlap, b u t nevertheless 
fill ou t the entire dom ain  o f  the  h ierarchy  (3.25). I f  this is done, the n u m b er o f  m em bers 
in  the ensem ble increases indefinitely as e —► 0.

In  sum m ary, layer Lp is characterized  in p a rt by the characteristic  length  (in inner 
units) o f  varia tion  o f  U + an d  T + being 0(fi~~i/2) and

the higher derivatives o f  d U +/ d y  an d  T  are s$ 0 (1 ).
Its location  will be considered in § 3.4.4.
This process, by w hich the layer Lp  appears, involves a b reak ing  o f  the  approx im ate 

balance o f  the first two term s in (3.20) as y + increases past a critical value yj1-, and

(3.30)

d U +f d y  =  0 ( 1), d U +/ d y + =  0 ( f i l/2) (3.31)
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its rep lacem ent by a balance am ong  all three term s in (3.20), as ind icated  form ally by 
(3.29). However, the m iddle term  o f (3.29) soon vanishes (at v =  vw (/{)). resulting in 
a balance betw een the first an d  th ird  term s alone. This b reak ing  an d  reestablish ing 
o f  a balance can be called a ‘balance exchange’. I t  plays a very p rom inen t role in the 
scaling analysis o f  tu rbu len t channel flow (Wei et al. 2005), an d  as show n here is an  
em bedded  p roperty  o f  stress g rad ien t balance layers.

T he above constitu tes the theoretical fo u ndation  for the scale hierarchy. N am ely, 
it provides the existence o f  a layer Lp,  for each value o f  P in the in terval 
0 (e4) <  P <  (a value betw een 0.0035 an d  0.014), located  a t y£(P)-  T here  will be 
considerable overlapping o f  layers. This transla tes in to  the range o f  given by
(3.25).

A n im p o rtan t question rem ains as to  how  the u nad justed  R eynolds stress T + scales 
in Lp. T he answ er com es from  (3.18): T + =  +  P y + =  T£ +  Py^  +  p ,/2( f P  +  y) =  
T i  +  Py,n -  />', /27 \ (  v). w here this expression defines T..(y) =  T'i(y) -  v. I t  is a regular 
function  o f  y. Therefore the conclusion is th a t in Lp, T + also scales w ith y. In  fact

T + =  t ? + p y +  +  p ,/2T „  (3.32)

w here T» is a regular function  o f y  (i.e. its derivatives are bounded  independently  
o f  e or p).  O f course, U + is also a regular function  o f  y  in Lp. This result is self- 
consistently  reinforced by the fact th a t (3.32) is analogous to  the rescaling derived in
(3.28).

3.4.4. Locations o f  the layers

A n im p o rtan t piece o f  in fo rm ation  is still lacking. This relates to  how  the location 
y^(P)  (w hich serves to  p in po in t Lp) o f  the m axim um  o f T p depends on p.  O nce this 
is found, the b ehav iou r o f  the velocity U +( y +) an d  the R eynolds stress T +( y +) can 
in principle be obtained. It is show n, in fact, th a t for large y,'„(P), the characteristic  
extent o f  the layer has the o rder o f  m agn itude  o f  its distance y,'„(P) from  the wall. 
This m eans th a t the layer occupies a fraction  o f the distance y + from  the wall to  the 
centre o f  the layer itself.

By d ifferentiating  (3.24) w ith respect to  P, we ob tain

d 2r  rf v
=  1- (3-33)

This equation  holds for all for which y,'„(P) is defined, an d  in pa rticu la r for all 
given by (3.25). A lso by (3.27)

d 2r +  d : r  d 2 r  , , , d 2f p
d7 ^ /! ""dp"' ( }

In  Lp, derivatives such as d 2T p/ d y 2 are  0 (1 )  quantities (independen t o f  e to  d o m inan t 
order). R ecall (3.30) A =  —(d 2f^ /d 5 ?2)$= o; then  A =  0 (1 )  (see below). A lthough  A will 
generally depend  on p,  i.e. on 3?+, its o rder o f  m agnitude  will n o t change. F ro m  (3.34),

d 2r +

d^3
P u tting  this in to  (3.33) gives

- A ( y + ) p ^ 2. (3.35)
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Since A (f } ) =  0 (1 ) , it satisfies bounds o f  the form  0 <  at  <  1/A  <  a 2, an d  from  (3.36), 
there  is a C independen t o f  p  w ith  y+(p)  =  C — f  (1/A)p~~3/2 dp ,  so th a t

2 a ,r ' /2 +  C <  y+(P) <  2a2P~~i/2 +  C. (3.37)

In  short, y^(P) =  0(P~~i/2) (/?—>0), an d  since p~~i/2 is the characteristic  length  in Lp, 
th is establishes the claim  th a t the characteristic  length  o f  Lp is asym pto tically  p ro p o r
tional to its d istance from  the wall.

I t  is ap p ro p ria te  here to discuss fu rth e r the issue o f  the constancy  o f  the  o rd er o f  
m agn itude  o f  A{fi). I t was show n th a t the rescaled variables belonging to  each m em ber 
o f  the scaling h ierarchy satisfy (3.29) exactly  (no approxim ation). T he param eters  fi 
an d  € do  n o t a p p ea r in  th a t equation  (except im plicitly in the definitions o f  the 
rescaled variables). Therefore a lthough  the definitions (3.28) o f  the rescaled variables 
y an d  T & depend  on fi (3.28), the equation  they satisfy does not. This suggests th a t 
in  each scaling p a tch  the functions U +(y)  an d  T^{y),  o f  the  /^-dependent variable 
y w ould  be in v arian t (approxim ately) w hen fi changes, i.e. w ould enjoy som e fi- 
independence w hen evaluated  a t the  sam e value o f  y w ith in  the various different 
scaling patches. This w ould  ho ld  as well for the ir derivatives. This conclusion is given 
m ore  credence, in  fact, by the observation  th a t a t the p o in t y  + =  y+(P),  i.e. a t y =  0, 
each term  app earin g  in  (3.29) has a value (—1,0 , 1), respectively, independen t o f  fi, 
an d  the und ifferen tia ted  quan tity  7 ',; =  0 does as well. I t is to be concluded  th a t 
A{fi) =  0 (1 )  for all fi, an d  th a t there  m ay be circum stances w hen the function  A itself 
is a lm ost constan t.

3.4.5. Determination o f  U +( y +) f rom A
K now ledge o f  the characteristic  function  A(P)  o f  the h ierarchy  w ould lead rigor

ously an d  uniquely, up  to in teg ra tion  constan ts, to  the profiles o f  U + and  T +. This is 
done by in teg ra ting  (3.36), (3.24) an d  (3.5), w hich are  w ritten  here in term s o f  the 
general coord inate  y + =  y+ in the hierarchy, rep resen ting  the location  o f  the m axim al 
po in t o f  7 ^ :

dy+ 1 -3 /2

dp A(py 
d  T +

d  ̂  
d  U+ _
d y+

(3.38)

(3.39)

1 -  T + . (3.40)

In teg ra tio n  o f  (3.38) yields y + ^ C  as a function  o f  fi, w here C is an  in teg ra tion  
co n stan t w hich can be determ ined  by fitting a know n value o f  y + w ith its know n 
value o f  p.  Inverting  th a t function  gives p  as a function  o f  y + — C. In teg ra tin g  (3.39) 
an d  then  (3.40) finally provides T + an d  U +. As m entioned, the  resulting  function U + 
is logarithm ic if  an d  only if  A =  constan t.

3.4.6. The case p  =  e4
H ere  it is show n th a t the trad itio n a l o u te r scaling r] =  e 2y + fits in to  the h ierarchy 

a t p  =  e 4, an d  th a t it is the p ro p er scaling to use n ear the centre o f  the flow (r) =  1), 
as was asserted  below  (3.9). I t is seen from  (3.27) th a t in  the case p = e 4

dy =  <r dy =  drj, (3.41)
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so th a t y  and  t] differ only in the ir origins:

y  =  r) — t)m, (3.42)

w here t]m is defined as the  value o f  r] w here r<^=e4) has its m axim um . Therefore it is to 
be expected  th a t rj =  1 is in  the layer Lp=ei. Tn fact, the  o rd e r o f  m agn itude  o f  1 — rjm 
can  be found. A t th a t po in t, the  left-hand  side o f  (3.19) =  0, an d  by differentiating  
(3.15), the  rig h t-h an d  side 2A V ’( I / f 2 ^  y,n ) —  ̂ The graphs in  figure 2 suggest th a t 
AT ~  4. Therefore 1 / e 2^ y +  ~ ( l / 8)e“ 2, i.e.

1 -  rjm ~  1/8. (3.43)

E m pirical d a ta  show, in fact, th a t 1 — rjm ~ 0 .1 .
Tn sum m ary, w hen fi =  e4, the location  o f  the m axim um  adjusted  R eynolds stress 

T (fs=e * lies w ith in  a d istance o f  ab o u t 0.1 (in t), i.e. in  y  for this value o f  fi) o f  the 
m axim um  o f T + itself, w hich is a t rj =  1. T hus for fi =  e4, except fo r a sm all shift o f  
the o rd er ~ 0 .1 ,  y  an d  rj are  identical scaled distances. T hus the centreline rj =  1 lies 
in the layer Lp=e2, w here U + an d  T & =  (T? — 2 ^ ) /e 2 (3.28) are  regu lar functions o f  rj. 
This co rrobora tes the assertion  to  th a t effect following (3.9).

3.5. The question o f  logarithmic-type growth

A  cen tra l issue in the history  o f  tu rb u len t channel flow investigations is w hether and 
w here the m ean  velocity profile exhibits a logarithm ic grow th. The ap p ro ach  ad o p ted  
in th is p a p e r provides new insight in to  th is issue. The first conclusion to be reached is 
th a t logarithm ic profiles o f  U + depend  crucially  on A(fi) (§3.4.4) being constan t. Tf it 
is constan t, then  exact logarithm ic grow th follows easily from  the calcu lations below. 
Tf it is n o t constan t, then  the grow th is n o t logarithm ic. Tf A  is a lm ost co n stan t (and  
reasons fo r supposing  th a t it is so u n d er certa in  circum stances are  given), then  the 
profile o f  U + is bounded  betw een two nearby  logarithm ic functions. F inally  in  §3.5.2, 
a non-rigorous argum en t is p resen ted  leading to  the conclusion th a t as Re^>  00, A 
approaches a co n stan t in certa in  m oving ranges (characterized  explicitly) o f  y + values.

3.5.1. The issue o f  the constancy o f  A(fi)
T he reasoning  following (3.37) an d  below  in § 3.5.2 indicates th a t A  m ay be app rox i

m ately  co n stan t for values o f  y+ fa r  from  the lim its o f  its allow ed range (3.25). F o r 
now, suppose th a t A =  co n s tan t in som e interval. F rom  (3.38), we find

y+ =  C  +  | r 1/2, fi =  p t . V  -  c r 2, (3.44)

an d  hence from  (3.39),
d  T +
d v . =  (2 //U 2fy,« 2- (3-45)

R eplacing  by the  general variab le  y + an d  in tegrating ,

T+(y+)  =  C ' ~  (2/ A f ( y + -  C )“ 1. (3.46)

Since T + —► 1 as y + —► 00 (this is only possible in the lim it e —► 0), the  co n stan t C' =  1. 
P u tting  th is in to  (3.5) yields

A T J +

=  1 _  J + =  (2/,4 )2( v ' -  c r 1. (3.47)

In teg ra tin g  again,

U+(y+)  =  ( 2 /A )2 l n ( y '  -  C)  +  C", (3 .48 )
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F ig u r e  5. A(>-+ ) fo r d ifferen t R eyno lds num bers  as estim ated  by finite difference o f  T +(y+). 
T hese estim ates ind ica te  a tren d  to  la rger in te rna l in tervals o f  relatively  co n s tan t A  fo r la rger 
Re, th u s agreeing w ith  the p resen t theory . T he to ta l ran g e  o f  the func tion  A also  increases w ith  
Re. T he values o f  A  w ere ca lcu la ted  from  finite d ifferencing D N S  d a ta  o f  Bech et al. (1995) 
an d  K aw am u ra  et al. (2000), (3.35), w ith  locations >•+ d e te rm ined  from  figure 3.

providing logarithm ic grow th w ith a ‘von K a rm a n  co n stan t’ k =  A 2/ 4. A lthough  the 
usual logarithm ic law lacks the co n stan t C, an  additive ad justm en t o f  this type has 
been p roposed  b o th  by the studies o f  G eorge & C astillo  (1997) and  O berlack  (2001).

T he conclusions (3.48) and  (3.46) were u n d er the assum ption  th a t A =  constan t. 
T h a t assum ption  o f  constancy  is unlikely ever to  be exactly true. H ow ever, the trend  
show n in the com puted  values o f  A in figure 5 (unknow n accuracy) suggests th a t for 
large Re, A(fi) m ay be ‘relatively’ co n stan t in in te rio r regions o f  its range. A n extrem e 
case is discussed in §3.5.2.

T he effect o f  an  approx im ate  constancy  o f A on the validity  o f  (3.46) an d  (3.48) 
can be easily seen. W rite the dependence o f  A on fi as dependence on =  y^(fi),  
i.e. A =  A(y^(fi)).  Suppose th a t the function  A(y+) has a range lying in the interval 
Ao — a  ^  A (y+) ^  Ao +  a  for som e co n stan t Ao and  som e sm all positive n u m b er a.  
T hen  (3.36) becom es a p a ir  o f  inequalities w hich b o u n d  the left-hand  side inside an  
in terval depending  on a.  The in teg ra tion  steps (3.45)-(3.48) then  result in inequalities 
o f  the form

1 -  (co +  a c ,  )(y+ -  C f '' <  T + <  1 -  (c0 -  a c ,  )(>>+ - C )  (3.49)
(<'2 — 0x 3) In (y + — C ) U + — C" (<'2 +  0x 3) In (y + — C).  (3.50)

3.5.2. A limiting situation 

In  the h ierarchy, each y + can  be identified as being a p o in t y^(fi) for som e fi. The 
correspond ing  fi will be called f i(y+). In  this way, each y + has a layer Lp(y~) con tain ing  
y +, such th a t —A(fi) is the  scaled second derivative o f  a t its peak. W h at m echanism  
will cause A(fi) to  vary? C erta in ly  n o t the m ean  m om entum  balance partia l differential 
equation , (3.29), in th a t vicinity, n o r the values o f  the scaled derivatives / A y  =  0 or 
d 2U +/ d y 2 =  —1 (from  (3.29)) a t th a t peak  location , because these th ings do  n o t change 
w ith fi. T he only source for such a varia tion  w ould be influence from  neighbouring

+ ' Re'x = 82: 'Bech et al. ' ' 
x 128.5: Kawamura et al
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layers. E xtending  th a t chain  o f  influence, we could  speak, on  the one hand , o f  the 
influence due to  layers L p  low er in  the h ierarchy  w ith  fi' >  fi, stre tch ing  dow n to 
those values o f  y + a t o r n ear the low er lim it o f  the h ierarchy, i.e. the sm allest values 
o f  y + w hich accom m odate  a layer, y + ~  20 to  36, (3.25). I t  s tands to  reason  th a t this 
influence o f  the low er p a rt o f  the h ierarchy  will dim inish  as it becom es m ore rem ote, 
i.e. as the  orig inal y + becom es large.

A  sim ilar chain  o f  influence extends tow ard  higher values o f  y +, i.e. fi' <  fi, capped  
only by the u p p er b ound  y + =  e~~2, a t o r n ear the centreline. T he centreline, however, 
becom es fu rther, as e —► 0, from  the orig inal p o in t y + if  the  la tte r is fixed o r m oves 
ou tw ard  as e ^>-0 m ore slowly th an  e “ 2.

C onsider, then, a b an d  o f  values o f  y +, depend ing  on e, w hich m igrate  aw ay from  
the wall (m easured in the wall coord inate  y +) as e —>0, bu t m ore slowly th an  e“ 2. 
A n exam ple w ould be the in term edia te  b an d  ( e _l/2 <  y + <  e~~3/2}. In  th a t in te rio r 
band , the above argum ent suggests th a t the values o f  A  will becom e m ore and  m ore 
independen t o f  any influence from  the u p p er and  low er lim its o f  the hierarchy, and 
therefore w ould tend  to  becom e constan t. In  the lim it as e —► 0, therefore, the analysis 
re la ting  to the case A  =  co n stan t w ould apply  so th a t (3.46) and  (3.48) w ould be 
app roached  in th a t band.

3.6. Summary

These argum ents verify th a t fo r each y + in  the range

(a value betw een 20 an d  36) <  y + ^  1 /e 2, (3.51)

there is a layer Lp w ith  y + =  y^(fi),  w here y  and  T & are the  p ro p er scaled variables for 
d istance an d  ad justed  R eynolds stress T p, (3.18). The characteristic  length  in this layer 
is 0 (1 )  in  the scaled variable y,  an d  0(fi~~i/2) in  y +. T hus for sm all enough fi, the 
characteristic  length  coincides in o rd er o f  m agn itude  w ith  its position  y +. In  regions 
w here A  is approxim ately  constan t, logarithm ic-type grow th, (3.49) an d  (3.50), holds.

4. Turbulent channel flow induced by a pressure gradient
T he purpose o f  this section is to  illustra te  th a t scale hierarchies exist in pressure- 

driven flow. In  fact, the evidence below  indicates why these hierarchies n o t only 
com prise the stress g rad ien t balance layer, b u t the  en tire flow dom ain  o f  the tra d i
tionally  defined logarithm ic layer.

4.1. Previous analytical results

The follow ing is a sum m ary  o f  the m ain  findings con ta ined  in  W ei et al. (2005). E ach 
o f  these results is in accord  w ith  the scaling analysis in  th a t p ap e r an d  the d a ta  
com piled there from  past experim ental and  D N S  sources. We use the sam e n o ta tion , 
such as >,+, rj, U + , T+, S+ , e, as Wei et al. T he averaged  m ean  m om en tum  equation  is 
(3.10), w ith  b o undary  cond itions (3.2) an d  (3.11).

T he channel is divided in to  fou r p rincipal layers w ith  the properties described in § 2.
T he R eynolds stress profile has the follow ing features. T he function  T + vanishes 

w ith its derivative a t y + =  0, increases m onoton ically  w ith y + to a m axim um  value 
T+  =  1 — 0 ( e )  a t a p o in t y+ =  0 ( l / e ) ,  and  then  slowly decreases, app roach ing  the 
value 0 in  a linear fash ion  as rj —► 1. The expression for T + in  this la tte r region is

T +(rj) =  1 - i j  +  0 ( 6 2). (4.1)
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In  a vicinity o f  the m axim um , the function  T (y ) has the behav iou r

7' (y ) ~  T+ -  C e 3(y+ -  y+)2. (4.2)

T he m esolayer constitu tes a region in w hich |y+ — v + 1 ^  <3(l/e). Tn it, the  profiles 
are p roperly  described  in term s o f  T  an d  U + as functions o f  y, w here T + =  T+ +  eF (y ) 
an d  y + =  y+ +  e ^ 1y.

4.2. Hierarchy
To exhibit a h ierarchy o f  layers in the  channel-flow  profile, all th a t is needed is to 
revise slightly the  definition o f  the  ad justed  R eynolds stresses, (3.18). The new one is 
defined by

7V'( v ) =  7' fy ) +  e2y + -  fix . (4.3)

This transfo rm s the basic m om entum  balance equation , (3.10), into

d2u+ dT? „ n /4
d F T  +  d ^ - 0 - <4 ' 4 >

w hich is o f  the  sam e form  as (3.20).
Therefore, w ith  the newly ad justed  R eynolds stresses, the channel-flow  contex t is 

am enable  to  the  balance exchange processes described  in §3.4.1, the construction  o f  
a con tinuum  o f  scalings w ith associated  layers in §3.4.3, and  (under som e assum p
tions) the derivation  o f  logarithm ic-like profiles in §3.5. T he scaling in Lp is still given 
by (3.27).

T he m ean  profile calcu lations are given here only for the sim plest case A =  constan t, 
a lthough  analogues o f  (3.38)-(3.40) can  be derived. A s before, the  expressions (3.36) 
an d  (3.35) are ob ta ined  in the presen t setting  as well; bu t the in teg ra tion  o f  (3.35) 
yields a different in teg ra tion  constan t. Tt is required  th a t d r +/ d y + = 0  a t y + =  y+, the 
location  o f  the  m axim um  o f  the orig inal u n ad justed  T +. T herefore (3.45) is replaced, 
u n d er the sam e supposition  th a t A =  constan t, by

d r +
— (y+) =  (2 /A )2[(y+ -  ( T 2 -  (y+ -  ( T 2]. (4.5)

w here now  the variab le y + is the sam e variable as in (3.46) an d  y+ w as ju s t defined. 
N o te  th a t this derivative changes sign as y + passes th ro u g h  y+, as it should. In teg ra tin g  
once again, we ob ta in

7' (y ) =  C' -  (2/A )2(y+ -  ( T 1 -  (2 /A )2(y+ -  C )^ 2y + . (4.6)

H ow ever, there is now  a know n b o undary  cond ition , T + =  0 a t y + =  1 /e 2; this serves 
to  determ ine the co nstan t C'.

S im ilar to the previous procedure, we m ay now  use the in teg ra ted  form  o f  (3.10) to 
determ ine d U +/ d y + an d  in tegra te  it w ith  the boun d ary  cond itions th a t the derivatives 
o f  U + vanish  as y + —> oo to  ob ta in  the sam e log dependence as in (3.48):

U+(y+) =  (2 /A )2 In (y+ -  C)  +  C". (4.7)

A gain , this is all u n d er the  (doubtfu l) assum ption  th a t A is exactly constan t. Tn the 
case th a t it is alm ost constan t, we o b ta in  a p a ir  o f  b ounds like (3.50), valid now  for 
the m ean  velocity in channel flow for the  range o f  y+ constructed  as before. N ote  
th a t in the case fi =  e2, by (4.3), T & =  T +.
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4.3. The mesolayer
W hen fi =  e 2, the ad justed  R eynolds stress T f\  (4.3), coincides w ith the ac tual R eynolds 
stress T +, so th a t the correspond ing  layer Lp^ei will be located  n ear the  location  o f  the 
m axim um  o f T +. As m en tioned  in §4.1, this is how  the m esolayer ITT was identified 
in Wei et al. (2005).

E ach  o f  the layers Lp can  be th o u g h t o f  as an  ad justed  m esolayer, constructed  by 
replacing the ac tual T + by T ,;. Tn th is sense, the ac tual m esolayer Lp^ei =111 is ju s t 
one am ong  m any. Tt is distinguished, however, on  the one h an d  as the  location  w here 
the ac tual R eyno lds stress reaches its m axim um  an d  its g rad ien t changes sign, and  
on the o th e r h an d  as the location  w here an  im p o rtan t force balance exchange takes 
place.

4.4. The outer layer and the extent o f  the hierarchy

W hen =  e 4, it follows as before from  (3.27) th a t d_y+ =  e ” 2d>’ =  €~~2drj, so th a t ou te r 
scaling holds an d  Lp^e4 is in the  o u te r region, fa r beyond y+.  T he range o f  the 
h ierarchy  therefore extends well beyond the trad itio n a l lo g  layer’.

5. Summary and discussion
T heoretical tools o f  m ultiscale analysis were show n in W ei et al. (2005) to  be useful 

in elucidating  the s truc tu re  o f  fully developed pressure-driven tu rb u len t channel flow 
found, in the  sam e paper, by an  exam ination  o f em pirical da ta . T h a t s truc tu re  consists 
o f  fou r p rim ary  layers, one o f  them  being a stress g rad ien t balance layer, w herein 
the grad ien ts o f  the viscous an d  R eynolds stresses balance, to  w ithin a very good 
approxim ation .

The analogous fully developed tu rb u len t C ouette  flow consists o f  only the stress 
g rad ien t balance layer, since those tw o grad ien ts provide the only forces in ternal 
to  the flow. Tn the p resen t paper, the range o f  applicability  o f  the sam e m ultiscale 
techniques was show n to be m uch g reater th an  show n in W ei et al. (2005). A pplied  to 
C ouette  flow, they reveal a m athem atica l s truc tu re  in w hich the m ean axial velocity 
an d  R eynolds stress exhibit a h ierarchy  o f  characteristic  lengths an d  correspond ing  
layers (in a sense secondary  to  the p rim ary  stress g rad ien t balance layer) covering the 
m a jo r p a r t o f  the flow dom ain . O th e r im p o rtan t in fo rm ation  is also found, such as:

(i) The characteristic  lengths are  asym pto tically  p ro p o rtio n a l to  d istance betw een 
the wall an d  the layer (they are rem iniscent of, bu t different from , the m ixing lengths 
o f  P ran d tl (P ran d tl 1925; von K arm an  1930).

(ii) There is a rigorous connection  betw een the 0 (1 )  function  A(/3), defined expli
citly in term s o f  the  layer h ierarchy, an d  the m ean  velocity an d  R eyno lds stress 
profiles.

(iii) The U + profile is logarithm ic in an  in terval only if A  =  co n stan t in th a t sam e 
in te rv a l; there  is evidence, theoretical an d  com pu ta tio n a l, th a t it is relatively co n stan t 
in som e in tervals in som e cases. H ow ever, the focus o f  the p ap e r has been m ore 
on offering exp lanations an d  reasons fo r im p o rtan t phenom ena th an  on ob tain ing  
num erical inform ation .

(iv) The range o f  values o f  y+ a t w hich the layered region begins is predicted , and  
m atches the em pirical location  o f  the  onset o f  the trad itio n a l logarithm ic profile.

(v) O rder o f  m agn itude  p roperties o f  the R eynolds stress profile n ear the  centreline 
(its cu rvatu re  an d  the deviation  o f  its m axim um  from  1) a re  found.

A n o th e r im p o rtan t finding is th a t a sim ple transfo rm ation , app lied  to  the  R eynolds 
stress, provides the way to  tran sfe r a lm ost all o f  this in fo rm ation  to  the analogous
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pressure-driven  tu rb u len t flow. N am ely , in the la tte r se tting  there is also a h ierarchy 
o f  scales and  layers w ith p roperties (i)-(iv) (properties (v) were ob ta ined  in W ei et al. 
2005).

T he h ierarch ical layer struc tu re  is associated  w ith  exchange o f  balance phenom ena 
very sim ilar to  th a t used to  reveal the properties o f  the m esolayer in W ei et al. (2005). 
T he generalization  in this p ap e r used ‘ad justed  R eyno lds stresses’.

T he success o f  theoretical tools applied  only to the  R eynolds-averaged  m om entum  
balance equation  m ay be surprising, since the equation  is n o t closed, underdeterm ined , 
an d  therefore n o t capable  o f  supplying an  exact solution. A long  w ith the analysis, 
som e crucial, bu t m inim al, assum ptions o f  an  essentially physical n a tu re  were required. 
T he existence o f  a co rrect scaling o f  the variables w ith its concom itan t scaling layer 
was in each case surm ised by show ing (i) th a t it leads to a differential equation  which, 
to  leading order, expresses a force balance betw een a t least two o f  the three term s in 
an  ad justed  conservation  o f  m om en tum  equation , an d  (ii) th a t a t som e location , the 
term s in th a t differential equation  are, w hen properly  scaled, each 0 ( 1 ) in m agnitude. 
These crite ria  for the  existence o f  a layer, in  fact, also form  the theoretical basis 
for the trad itio n a l inner an d  ou ter scalings. O th er useful in fo rm ation , gleaned from  
em pirical d a ta , are th a t the m ean  velocity an d  R eynolds stress profiles are  m ono tone 
increasing in distance from  the low er wall, w ith  the ir slopes decreasing beyond a 
certa in  point.

O verall, the form ula tions herein provide considerable in fo rm ation  relative to the 
m athem atica l s truc tu re  o f  the equations governing w all-turbulence. A n overarching 
elem ent o f  this analysis is the m an n er by w hich the term s in the m om en tum  equation  
undergo  the exchange o f  balance ju s t m entioned. A s show n regard ing  the fundam enta l 
layer struc tu re  o f  pressure-driven  channel flow by W ei et al. (2005) an d  herein  w ith 
regard  to  the con tinuum  o f  layers constitu ting  the scale hierarchy, the pa rticu la r 
exchange o f  balance phenom enon  u n d er considera tion  (o thers m ay occur under 
different flow configurations) takes place across a R eyno lds-num ber-dependen t layer 
an d  is characterized  by specific scaling behav iours derivable from  the properties o f  
the m om en tum  equation  w ith in  this layer. F o r the  pressure-driven  flow equation  
em ploying the unad justed  R eynolds stress, this physically represents a transitio n  from  
m ean  flow dynam ics characterized  by a balance betw een the viscous an d  R eynolds 
stress g rad ien t to  dynam ics described by a balance involving all three forces, and  
on  to a balance betw een the R eynolds stress g rad ien ts an d  the m ean  axial pressure 
gradient. F o r the m em bers o f  the  scale h ierarchy (described by equations con ta in ing  
the ad justed  R eynolds stresses), the physical in te rp re ta tio n  is less clear cut. In  either 
case, however, the flow field decom position  resu lting  from  exchange o f  balance 
m athem atics is re ta ined  as a p roperty  in trinsic to  the s tructu re  o f  the m ean  flow 
equations. T he im plications o f  these conclusions are significant w ith regard  to  b o th  
m odelling an d  theoretical considerations.

F o r exam ple, since the m ean  flow equations have been show n inheren tly  to con ta in  a 
h ierarch ical layer s tructu re , h ierarchy-based  m odels (e.g. Tow nsend 1976; Perry & 
C hong  1982; Perry & M arusic  1995; K erste in  1999) w ould seem to have n a tu ra l 
advantages. T h a t is, irrespective o f  the details o f  any  given m odel, the hierarchical 
p roperty  alone w ould p robab ly  yield a relatively high degree o f  efficacy. It is relevant 
to  no te  th a t the results o f  § 3.4.3 revealed th a t for large (inner) d istance, the distance 
from  the wall is a length  scale em bodied in the com position  o f  the scale hierarchy. 
W hile the distance from  the wall is often  invoked as a characteristic  length  in 
tu rb u len t wall layers (e.g. T ow nsend 1976; Schlichting & G ersten  2000), its use relies 
on  physical a rgum en ts th a t are  n o t necessarily supp o rted  by observations. Perhaps
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the m ost com m on assertion  in this regard  is th a t the  scale o f  the largest eddy n ear the 
wall is well represen ted  by the distance from  the wall. M easures o f  the scale o f  the 
vorticity  bearing  m otions, how ever, do  n o t lend direct sup p o rt for such an  assertion  
(K lew icki & Falco  1996). Indeed , the series o f recent results from  the U niversity 
o f  Illinois an d  elsew here (see below) ind icate  a significantly m ore  com plex s itua tion  
in w hich in stan tan eo u s agglom erations o f  eddies (i.e. packets) collectively exhibit a 
d istance from  the  w all scaling. Indep en d en t o f  em pirical evidence, the present results 
provide theore tica l justifica tion  for the  d istance from  the w all as a characteristic  
length  th a t is founded  in  the  m athem atica l s truc tu re  o f  the m ean  m om en tum  balance. 
A s revealed herein, this p roperty  com es ab o u t non-triv ially  th ro u g h  the s tructu re  o f 
the scale hierarchy.

T he m athem atics underly ing  the m ean  m om entum  balance layer struc tu re  an d  the 
em bedded  scale h ierarchy  argue quite strongly against the app rop ria teness o f  the 
classical overlap ideas (as ou tlined  in  § 1) for describ ing the m ean  velocity profile. 
T h a t is, while consequences o f  overlap ideas have obviously been em pirically  verified 
to  provide a useful fram ew ork  for curve-fitting the d a ta , the present analyses indicate 
th a t a concep tual fram ew ork  in the form  o f ou te r an d  inner dom ains, plus som ething 
else in betw een, is con tra ry  to  the  ac tual s tructure , in  w hich the inner an d  ou ter 
scales are  sim ply tw o extrem es in  a spectrum  o f scaling dom ains. T he discussion is 
first clarified by no tin g  th a t the in n e r/o u te r  m atch ing  p rocedure described by Izakson  
(1937) an d  M illikan  (1939) m ust be supplem ented  by the restrictive add itio n a l physical 
assum ption  th a t the  m ean  velocity profile is strictly  increasing w ith distance from  
the wall. G eneric exam ples, however, show  th a t this is an  unusu a l occurrence am ong 
tw o-scale problem s. A n o th er generic class o f  exam ples (discussed in the cited paper) 
questions the  hypothesis th a t there  even exists a dom ain  o f  overlap. M oreover, in  the 
case o f  C ouette  flow, sim ultaneously  satisfying an  ou ter (inertial) functional form  and  
an  inner (viscous) one is n o t conceptually  consisten t w ith the fact th a t the en tire flow 
constitu tes a stress g rad ien t balance layer. Sim ilarly, in  boundary -layer an d  pressure- 
driven channel flow the em pirical and  theore tica l evidence given herein and  in W ei 
et al. (2005) show  th a t, accord ing  to  the  m ean  m om entum  balance, the  trad itionally  
defined overlap layer actually  con ta ins all or p a rt o f  th ree (principal) layers described 
by distinctly  different dynam ics. O n the o th e r hand , the exchange o f balance p roperty  
elucidated  herein n o t only describes the  layer-to-layer transitions an d  the in ternal 
s truc tu re  o f  stress g rad ien t balance layers, bu t also analytically  predicts the  existence 
o f  a generalized logarithm ic-like varia tion  in  the m ean  profile. Specifically, in  §3.5 
it was show n th a t un d er som e circum stances the scale h ierarchy  na tu ra lly  leads to 
m ean  profile varia tions close to  logarithm ic functions. These inequalities are, to  date, 
believed to  constitu te  the  m ost theoretically  w ell-founded bounds for the  shape o f  the 
m ean  profile.

G iven the loss o f  in fo rm ation  associated  w ith tim e averaging, these m ay in  fact be 
the m ost th a t can  be said w ith m uch theore tica l rigour. I t  is im p o rtan t to  n o te  th a t the 
inexactness expressed by these bounds no  dou b t allows R eyno lds-num ber dependence, 
an d  b o th  ‘logarithm ic’ an d  som e lim ited pow er law  form s to  be fit betw een the bounds. 
Thus, even th ough  the ideas o f  Izakson  an d  M illikan  yield conclusions w hich are 
generally  consisten t w ith those ob tained  here, overlapping  function  m athem atics have 
little connection  to  e ither m ean  flow dynam ics or to  the origin o f  the logarithm ic-like 
behav iou r o f  the m ean  profile.

Lastly, while the scale h ierarchy  is b o rn  from  the m athem atics associated  w ith the 
structu re  o f  the  tim e-averaged  equations o f  m otion , speculative connections to  the in 
s tan taneous m otions in  tu rb u len t wall flows are  w orthy  o f b rief m ention. Tn p articu lar,
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recent detailed  particle im age velocim etry (P1V) m easurem ents provide m ounting  
evidence th a t organized packets o f  hairp in-like vortices are  an  im p o rtan t (arguably  ir
reducible) elem ent o f  the in stan taneous structu re  o f  boun d ary  layers (M einhart & 
A drian  1994; A drian , M ein h art &  Tom kins 2000; C hristensen  &  A drian  2001; 
G an ap a th isu b ram an i, L ongm ire &  M arusic  2003; Tom kins &  A d rian  2003). Key 
a ttrib u tes  o f  these vortex  packets have in trigu ing  sim ilarities to  the scale hierarchy, 
including: (i) an  em bedded  h ierarch ical structure , (ii) linear scale grow th w ith distance 
from  the wall, an d  (iii) a d istinct velocity increm ent em bedded  w ith in  each level o f  
the vortex  packet structure. W hile these sim ilarities m ay sim ply be coincidence, the 
identification  o f  an  in stan taneous connection  to  the  tim e-averaged structu re  o f  the 
governing equations w ould  constitu te  an  enorm ous advance. F o r this reason, fu rther 
investigation  an d  experim ents (especially a t h igher R eynolds num bers) are felt to  be 
w arran ted .
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