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Abstract—This paper presents a design flow for timed asyn
chronous circuits. It introduces lazy transitions systems as a new 
computational model to represent the timing information required 
for synthesis. The notion of laziness explicitly distinguishes 
between the enabling and the firing of an event in a transition 
system.

Lazy transition systems can be effectively used to model the be
havior of asynchronous circuits in which relative timing assump
tions can be made on the occurrence of events. These assumptions 
can be derived from the information known a priori about the delay 
of the environment and the timing characteristics of the gates that 
will implement the circuit. The paper presents necessary condi
tions to generate circuits and a synthesis algorithm that exploits the 
timing assumptions for optimization. It also proposes a method for 
back-annotation that derives a set of sufficient timing constraints 
that guarantee the correctness of the circuit.

Index Terms—Asynchronous circuits, lazy transition systems, 
logic synthesis, relative timing.

I. INTRODUCTION

DURIN G  the last decade, there has been significant 
progress in developing m ethods and tools for asyn

chronous circuit synthesis [1]-[5]. The two chief directions in 
this w ork have been the following two synthesis approaches, 
one based on the H uffm an’s state m achine m odel [6], [7] and 
the other deriving from  M uller’s concept o f speed-independent 
circuit [8]. The former, also known as fundam ental mode 
circuit design, makes strong assumptions about the delay of 
the environm ent com pared to that o f the circuit. It requires 
the environm ent to be slow enough in applying the new input 
values so as to allow the circuit to stabilize after responding to 
the previous input. The m ost well-known m ethod associated 
with this approach is the one called burst-mode (BM) circuit 
design, developed in [9], [3], and [10]. The second approach,
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on the contrary, makes no assum ptions about the delays of 
the environm ent, perm itting some o f the inputs to switch in 
response to changes in some o f the circuit’s outputs, w ithout 
waiting for their com plete stabilization. This m odel is called 
input-output (IO) mode. The recently developed design 
m ethods and software based on signal transition graphs (STGs)
[5], [11] exemplify this approach and produce speed-indepen
dent circuits, w hose behavior is invariant to delays in gates but 
m ay be sensitive to wire delays.

The synthesis techniques described in this paper are an at
tem pt to com bine the expressive power o f STGs (that allow a de
signer to finely tune concurrency, sequencing and choice) with 
the optim ization power o f BM  FSM s and m anual tim ing-driven 
design [12] (that allow a designer to avoid waiting for signals 
that are known to be stable). By doing so, high optim ization 
levels are achieved, while keeping the flexibility of our CA D  
framework. O f course, this power comes at a price: our syn
thesis algorithms are radically m ore com plex than their BM  
counterparts (but only m oderately m ore so than speed-indepen
dent synthesis). Exploration of efficient heuristics to cope with 
large specifications are left to future work.

A. Incorporation o f  Timing Information

W hen trying to incorporate timing inform ation in the syn
thesis o f asynchronous circuits, ach icken-egg  problem  is posed. 
On one hand, an efficient synthesis requires knowledge of the 
tem poral behavior a priori. However, the actual tem poral be
havior can only be determ ined after synthesis, e.g., once the cir
cuit netlist has been defined. This cyclic dependency is typically 
solved by iterating and converging toward a solution that meets 
the assum ed tim ing behavior.

The com putational m odel used in this paper is the one of 
timed transition systems [13]. Besides the causal relation among 
events, a  lower (<5min) and upper (6max) bound on the delay of 
each event is defined. An event can only fire  S tim e units after 
it has been enabled, where <5min <  6 <  <5max. Thus, an explicit 
distinction between the enabling  and the fir ing  o f an event is 
made.

Fig. 1(a) depicts an event structure that determines a partial 
order in the firing o f a  set o f events. D elay intervals for each 
event are also defined. Fig. 1(b) depicts a transition system  in 
which timing inform ation is not considered. Each path repre
sents one possible run o f the system. W hen m oving to the model 
o f tim ed transition systems, each event is associated w ith a time 
stamp (the firing time) and each state is associated with a  time
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Fig. 1. (a) Event structure with timing information, (b) transition system, (c) timed transition system, and (d) lazy transition system.

interval. Fig. 1(c) is a  graphical representation o f the state space 
o f the system, starting from  tim e zero. Each vertical edge repre
sents the reachable tim e stamps that can be associated with any 
discrete state. For example, in the reachable state space one m ay 
find tim e stamps for s 4 in the interval [4], [11], Shadowed faces 
represent state transitions in tim e-consistent runs o f the system. 
For example

^  o @ 2  ^  6 @ 4  ^  c @ 5  ^  d@8 ^  e@ 10^

is a tim e-consistent run, in which each event is associated with 
the tim e stamp of its firing time. However, the run

o@ 2 c@4 d@7 b @8 e@10

is tim e inconsistent. This can easily be proved by realizing that 
event b is enabled in the state s i  at time 2 and fires in state s 5 at 
tim e 8, thus being enabled for six tim e units. However, the delay 
o f event b in the specification is within the interval [1], [3]. The 
proof that there is no valid run that visits state s 5 can also easily 
be made, since event b will always fire before event d.

In [14] and [2], tim ed circuits were introduced, also exploiting 
the fact that tim ing inform ation can be used to reduce the reach
able state space. This helps to elim inate undesired states that do 
not fulfill im plem entability properties (e.g., state encoding or 
persistency) and increase the don’t care space during logic m in
imization. However, it requires the definition o f absolute timing 
inform ation on the delays o f the com ponents o f the system. 
W hile this is possible and useful after at least one design itera
tion has been com pleted, it is m uch m ore difficult to use at the 
beginning o f the synthesis flow for a variety of reasons.

• Asynchronous specifications are often incom plete and re
quire the addition of state signals, for which no absolute 
tim ing inform ation is available.

• Even after state encoding, no absolute timing inform ation 
about noninput signals o f the circuit is known before both 
technology independent (logic synthesis) and technology 
dependent (technology mapping) optim izations have been 
perform ed. This leads to a  chicken and egg problem  in 
any m ethod based on absolute tim ing information: for ef
ficiency synthesis needs delay bounds, but delay bounds 
are unknown before synthesis is completed. In tim ed syn
thesis this is solved by iterating delay guessing and syn
thesis.

• A ll m odern synthesis flows both for custom  and ASIC de
sign include transistor or gate sizing, buffer insertion, and 
selection o f param eters (e.g., threshold voltage Vt) with 
the goal o f m eeting tim ing constraints and optim izing dif
ferent design aspects (power, area, delay, etc.) A netlist 
can be sized differently depending on a given set o f con
straints, and the resulting gate delays m ay differ by an 
order o f m agnitude depending on the sizes o f devices and 
other selected parameters.

• P lacem ent and routing m ay further change absolute delay 
inform ation associated with circuit elements.

M oreover, the form al verification problem  with absolute timing 
becomes drastically m ore com plex due to the need to keep ab
solute tim e inform ation, e.g., in the form  of regions, in addition 
to untim ed system  states [15]. Instead o f using absolute delay 
bounds for the purpose of synthesis, we use relative delay infor
m ation between circuit events, following the established engi
neering practice o f m any high-speed circuit design groups (see 
e.g., design o f pulse-dom ino logic in [16]). A verification flow 
following the synthesis flow requires absolute delay inform a
tion. D ifferent techniques for tim ing verification can be used, 
e.g., [2] and [17]-[20] to nam e a few. U se of relative tim ing in
form ation can be beneficial for verification as well, as shown in 
[19] and [20].
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Fig. 2. Design flow for relative timing circuits.

B. Abstraction o f  Time

Rather than calculating the exact tim e intervals in which each 
state can be visited by any valid run, it is sufficient for synthesis 
to know whether each state is visited by some tim e-consistent 
run and w hat the enabling conditions for every visited state are. 
In other words, only the set o f  reachable states in the timed do
main  and the values o f next-state function for every signal in 
every reachable state are needed. This inform ation can be rep
resented by abstracting absolute timing out o f the m odel. This 
abstraction leads to the definition o f a new com putational model 
called a  lazy transition system  [21], in which tim ing inform a
tion is only represented by making a distinction between the en
abling and the firing o f an event.

W hile absolute timing requires com plex techniques to rep
resent the space o f reachable tim ed regions or states (e.g., dif
ference bound matrices, polyhedra, etc.), the generation o f the 
reachable state space for relative tim ing is o f the same com 
plexity as for untim ed systems.

Fig. 1(d) represents the lazy transition system  associated to 
Fig. 1(c). The dashed arc with event d  from  state s 2 indicates 
that d  is enabled in that state, but it cannot actually fire due to 
its delay. Therefore, state s 5 is unreachable.

This paper proposes a synthesis flow in which tim ing infor
mation is specified as a set o f assumptions that relate the firing 
order o f concurrently enabled events, such as event b w ill always 
fire before event d. Lazy transition systems are used as the com 
putational model for synthesis.

C. Synthesis Flow

The synthesis flow proposed in this paper follows the par
adigm  “assume and, i f  useful, guarantee.” Similar principles 
have been used in recent asynchronous designs [12], [22]-[24]. 
Given an untim ed com putational m odel, e.g., a  transition 
system, synthesis o f an asynchronous circuit is perform ed as 
follows.

1) Derive a set T  o f timing assumptions on the behavior o f 
the system.

2) Synthesize the circuit by using a subset T ' C T  o f useful 
tim ing assumptions.

3) Derive a  set C  o f sufficient tim ing constraints that guar
antee the correctness o f the circuit’s behavior.

4) Transistor sizing and param eter selection for a  set o f con
straints C  (and possibly some other design constraints).

5) If  the set C  cannot be guaranteed, calculate a  less strin
gent set T  and go to Step 2).

In Step 1), timing assumptions can be either provided by the 
designer or generated autom atically [25]. In the first case, the as
sumptions typically com e from  the knowledge o f the temporal 
behavior o f the environment, e.g., some of the input events are 
slow. In the second case, realistic assumptions on the im plem en
tation o f a  circuit can be considered, e.g., the delay of one gate 
is typically shorter than the delay o f two gates.

N ot all the tim ing assumptions in T  m ay be needed to im 
prove the quality o f the circuits. During synthesis, only a subset 
of T '  C T  is used for optimization.

The goal o f Step 3) is to find a less restrictive set o f constraints 
that guarantees the circuit’s correctness. These constraints m ay 
not necessarily m atch the timing assumptions in T .

Once the circuit and the set C  have been derived, the designer 
m ust guarantee that the required tim ing constraints are met. This 
can be achieved, if  necessary, by modifying the actual delays 
of the com ponents, for example, by delay padding or transistor 
sizing.

Finally, Step 5) is required to converge in the chicken and egg 
problem  when the initial set T  o f assumptions results in a circuit 
that cannot m eet the set C  o f constraints. This design flow is 
graphically represented in Fig. 2.

The main contributions of this design flow are the following.

• Lazy transition systems are used as a  com putational 
model, thus allowing the designer to reason in terms of 
a  partial order of events (relative tim ing [22]), which is 
much more intuitive than defining absolute delays when 
the actual im plem entation o f some com ponents o f the 
system  is unknown.

• Timing assumptions can be either provided by the designer 
or autom atically derived from  the untim ed specification 
to capture realistic tem poral behavior o f all “reasonable” 
implementations.
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(a) (b)

Fig. 3. (a) STG, (b) SG, (c) next-state functions, and (d) complex-gate implementation.

(c) (d)

• Each circuit is back-annotated w ith a  set o f relative timing 
constraints that guarantee a correct behavior.

• Relative timing allows novel tim ing optim izations, such as 
the speculative (early) enabling o f events.

It is known [2], [12], [14], [21], [25] that using tim ing infor
m ation can significantly improve the quality o f synthesized cir
cuits. This paper provides a  global form al fram ework to model, 
derive, and exploit this inform ation. The synthesis algorithms 
presented in this paper have been im plem ented and incorporated 
in the tool petrify [5].

The paper is organized as follows. Section II presents the 
com putational models used in the paper. Section III presents an 
overview o f the design flow, illustrated with an example. Section
IV  describes the tim ing assumptions proposed for circuit opti
m ization in the design flow. The synthesis o f circuits from  lazy 
transition systems is discussed in Section V. Next, the strategy 
used for the autom atic generation o f tim ing assumptions is p re
sented in Section VI. The derivation of sufficient tim ing con
straints for correctness is covered in Section VII. Experim ental 
results and conclusions are presented in Sections VIII and IX.

II. BASIC NOTIONS

This section presents basic definitions used in the paper. For 
brevity, the reader is assum ed to be fam iliar with Petri nets, a 
form alism  used to specify concurrent systems. The reader is re
ferred to [26] for a general tutorial on Petri nets.

A. Transition Systems

A transition system  (TS) is a quadruple [27] A  =  
(S,E,T,Sin), where S' is a nonempty set o f states, E is 
an alphabet o f events, T c S x E x S  is a transition  relation, 
and Sin is an initial state.

The elements o f T  are called the transitions o f the TS and are 
often denoted by s ^>s' instead o f (s, e, s ') .  The notation s 
and — is used when only one o f the states o f the transition is 
relevant. Only finite TSs are considered in this paper, i.e., both 
sets S  and T  are finite.

The following two definitions are used later in the paper. 
Given a transition system  A  =  (S , E , T . s in ), the set o f reach
able states from  state s  is recursively defined as

Henceforth, it is assum ed that S =  Reach( .s,„. T )  for any TS.
Given a transition system  A  = (S, E , T . s in ), and two sub

sets o f states Y  c  X  c  S ,  the set o f states backw ard reachable 
within X  from  Y  is defined as

BackReach(AT, Y )  =  Y v j [ J  B ackkeachfA .
s^ s 'e T ,s e x ,s 'e Y

In other words, BackkeachfA '. Y )  are the states in X  that have 
a path within X  to some state in Y .

B. State Graphs

In this paper, TSs are used to m odel asynchronous circuits. 
For logic synthesis, a binary interpretation o f the states and 
events is required. This interpretation is captured with the no
tion of a state graph.

A state graph  (SG) is a tuple G  =  (A , X ,  A), where A  =  
(S, E , T . s in ) is a transition system, X  = I IJ ()  is a set o f input 
and output signals and A is an encoding function. I  is the set 
o f signals w hose behavior is determ ined by the environm ent, 
whereas O  is the set o f signals whose behavior is im plem ented 
by the system. Therefore, only the signals in O  m ust be syn
thesized. The set o f events E  corresponds to rising and falling 
transitions o f the signals, i.e., E  =  X  x  { + , - } .  The symbols 
a+  and a -  denote a rising and falling transition of signal a, re
spectively. The encoding function A : S —> { 0 ,1 } ” assigns a 
binary vector to each state (n  =  A '|). The code o f state s  and 
the value o f signal a in s  are denoted by A(s) and A0(s), respec
tively.

The notation a* is used to denote a transition o f signal a in 
which the fact o f rising or falling is not relevant.

An SG is consistent if

s  Q~ )rj

>A0(s) =  0 A A0(s /) =  1 

>Aa(s) =  1 A A0(V) =  0 

>A0(s) =  A a (s ') .

R each(s, T )  =  {s} U [ J  R each(i
+s'C T

An exam ple o f an SG is depicted in Fig. 3(b). The symbol 
0* ( 1*) indicates that a rising (falling) transition o f the corre
sponding signal is enabled in that state.

In general, m ore than one state can be assigned the same code. 
For sim plicity and when no am biguity is possible, states are 
often nam ed by their code.
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C. Signal Transition Graph

An STG is a Petri net in which transitions are labeled with 
the same type o f events defined for SGs, i.e., rising and falling 
signal transitions [28], [29].

An STG has an associated SG in which each reachable 
marking corresponds to a state, and each transition between a 
pair o f markings corresponds to an arc labeled with the same 
event as the transition.

Although STGs with bounded reachability space and SGs 
have the same descriptive power, STGs can usually express the 
same behavior (especially, when it is highly concurrent) more 
succinctly. In this paper, STGs help to illustrate timing assum p
tions in a m ore intuitive way.

Fig. 3(a) depicts an STG with three signals. For simplicity, 
places with only one input and one output transitions are 
omitted. Fig. 3(b) shows the corresponding SG with encoded 
states. The SG is consistent.

D. Circuit Implementation

Given a transition system  in which S  is the set o f states, the 
fir ing  region o f an event e, denoted by FR (e), is the set o f states

The concept o f firing region can be trivially extended to SGs. 
Q uiescent regions are defined as com plem ents to firing regions

F R (a + )  = { s  | s ° 4 } ; Q R (a+ ) =  {s  | A0(s) =  1} \ F R ( a —) 

F R ( a - )  = { s  | s “4 } ; Q R ( a - )  =  {s  \ Aa (s) =  0} \F R ( a + )

where “ \ ” stands for the set difference.
In Fig. 3(b), F R (x —) =  {101,111} and Q R (x —) =

The im plem entation o f an SG as a logic circuit is done by 
deriving a next-state function , f a (z) , for each output signal, a, 
and binary vector, z. It is defined as follows:

{1, if  3 s  €  F R (a + )  U Q R (a + )  s.t. A(s) =  z
0, if  3 s  £  F R (a —) U Q R (a—) s.t. A(s) =  z  

otherwise.

( 1)

E. Im plem entability Properties

The next-state function f a o f each output signal a is correctly 
defined when the SG has the complete state coding  (CSC) prop
erty, i.e., when there is no pair o f states (s, s ')  such that A(s) =  
A (s') and s £  F R (a + )  U Q R (a+ ) and s' £  F R (a —) U Q R (a—). 
N ote that f a is an incom pletely specified function with a d o n ’t 
care (DC) set corresponding to those binary vectors w ithout any 
associated state in the SG.

In the SG o f Fig. 3(b), the DC set is em pty since all binary 
vectors have a corresponding state in the SG. As an example, 
/(1 0 1 )  =  O il since signals x  and y  are enabled in that state. 
The K arnaugh m aps for the next-state functions o f signals, x , y, 
and are depicted in Fig. 3(c).

Besides consistency and CSC, another property is required 
for an SG to be im plem entable as a speed-independent circuit: 
output persistency [30]. A pair o f events (a, b) is persistent if 
for any transition s  - ^ s ' such that a  ^  b, s  e  F R (a) => s ' £

F R (a), i.e., a is not disabled by the firing o f another event. State 
s  is called nonpersistent if  the above condition is violated, i.e., 
s  £  F R (a) A s ' ^  F R (a)

An SG is called output persistent if  for any pair (a, b) o f non- 
persistent events, both a and b are events on input signals. In 
Fig. 3(b), the pair o f events (y+ , z+ )  is persistent in the state
100, since the firing o f ;;+  leads to the state 101 in which y +  is 
still enabled, and vice versa.

In summary, an SG is im plem entable as a speed-independent 
circuit if  the following three properties hold: consistency, com
plete state coding, and output persistency. In the SG o f Fig. 3(b), 
all the im plem entability properties for a speed-independent cir
cuit hold.

F. Logic Synthesis

From  the next-state functions, a speed-independent circuit 
can be derived by im plem enting the Boolean equation o f each 
output signal as an atom ic com plex gate [8], as shown in 
Fig. 3(d).

In general, the Boolean equations m ay be too com plex to 
be im plem ented as an atom ic gate in a specific technology. 
M ethods for logic decom position and technology m apping that 
overcome this lim itation have been proposed [31], [32]. This 
paper does not address the problem  o f technology m apping. 
However, the proposed optim ization m ethods can be easily 
com bined w ith existing m ethods for logic decom position that 
can be targeted to technology mapping into given gate libraries.

G. M onotonic Covers

The following definition is related to hazards in the behavior 
of asynchronous circuits.

Given two sets o f states S i and S 2 o f an SG, S i is a monotonic 
cover o f S 2 if  S 2 C S i and for any transition s  — s '

(s  e  S i \  s 2 => s ' e  S i)  a  (s e  s 2 => s ' ^  S i \  s 2).

Intuitively, once S i is entered, the only way to leave it is via a 
state in its subset (“exit border”) S 2.

In the SG of Fig. 3(b), the set {101,110,111} is a m onotonic 
cover o f F R (x —). However, the set {100,101,111} is not, 
since the transition 100 —̂ -1 1 0  violates the conditions for 
monotonicity.

H. Lazy Transition Systems

A lazy transition system  (LzTS) is a  pair A  =  (A ',E R ), 
where A! =  (S , E , T , s,„ j is a transition system  and ER : E  — 
2s  is a function that defines the enabling region o f each event, 
in such a way that FR (e) C ER (e) for any e e  E .  An event e is 
said to be lazy if  ER (e) 7  ̂ FR (e).

The distinction between enabling and firing regions is the ab
straction that represents the delay between the enabling o f an 
event and its firing. ER (e) \  FR (e) is the set o f states in which e 
is enabled but cannot fire. N ote that a  TS can be considered as a 
particular case o f LzTS in which E R (e) =  FR (e) for any event.

The binary interpretation of an LzTS is a  lazy state graph  
(LzSG) G  =  ( A ,X ,  A), w here A  is an LzTS and X  and A 
have the same interpretation as in the previous definition o f SG.
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(a) (b) (c) (d)
Fig. 4. xyz example. Optimization by timed unreachable states.

Fig. 5. xyz example. Optimization by lazy behavior.

The concept o f lazy quiescent region (LzQR) is useful for the 
synthesis o f circuits. It is defined as follows:

L zQ R (a+ ) = Q R (a + )  \ E R ( a —)

L z Q R (a -)  = Q R ( a - )  \E R ( a + ) .

Synthesis o f asynchronous circuits from  LzSGs is discussed 
in Section V.

III. M otivating E xam ple

This section gives an intuitive picture o f the optim izations 
based on tim ing assumptions. It is illustrated by an im plem enta
tion o f the xyz  specification shown in Fig. 3(a). This specifica
tion describes an autonomous circuit and therefore every signal 
in the corresponding STG  is treated as output. The starting point 
for optim izations is given by the speed-independent im plem en
tation shown in Fig. 3(d).

Speed-independence gives a rather conservative view on 
gate delays: they are finite but arbitrary. However, m ore precise 
tim ing relationships, considering the tim e required by a signal 
to propagate through different stages of logic, can be expressed. 
For exam ple, one can assum e that a signal propagates through 
a single gate faster than through k  gates (k  >  1), where k  is 
an im plem entation and/or technology dependent param eter.1
Sim ilar assumptions were successfully exploited in [33] for 

area and perform ance optim ization.
Let us assume that the delay o f two gates is always longer 

than the delay o f one gate in the circuit for the xyz  example, 
using a  given technology. U nder this assumption, even though 
the transitions y +  and a ; -  are potentially concurrent in the STG, 
y +  would always occur before x -  in a  circuit. In the STG, 
this tim ing assum ption can be expressed by a special timing 
arc going from  y +  to x — [34] [denoted by a dashed line in

1This can be formalized in terms of delay range for gates. If a delay range is 
[imin, then the assumption can be posed as k * Amin > Amax.

Fig. 4(a)]. Timing restricts possible behaviors o f the im plem en
tation. In particular, state 001 becomes unreachable because it 
can only be entered when x — fires before y+ . In unreachable 
states, the next state logic functions for all signals can be de
fined arbitrarily [see (1)]. Therefore, the use of timing assum p
tions increases the D C  space for output functions, thus giving 
extra room  for optimization.

For the xyz  example, m oving the state 001 into the DC set of 
z  simplifies its function from  z  =  x  +  y z  to a buffer (z  =  x), 
as shown in Fig. 4(c) and (d). S tate 101 can be included into 
the enabling region o f x —. The selected im plem entation for 
signal x , x  =  z ( x  +  y) is the same as for the untim ed spec
ification and corresponds to the E R (x —) =  F R (x —) =  111. 
Signal x  in this im plem entation is not lazy and no tim ing con
straints are required. A n alternative im plem entation could have 
been taken with x  =  y  +  x z  corresponding to E R (x —) =  
101,111, F R ( x - )  =  111. It m ight have shorter latency for re
but requires timing constraint y +  before x — for correct opera
tion of signal x .

For m ore aggressive optim izations, let us consider the concur
rent transitions;;+  and y+ .  They are triggered by the same event 
x +  and, because of the tim ing assum ption 2 * <5min >  <5max, no 
gate can fire until both outputs y  and z  are set to 1. Therefore, 
for all other signals o f the circuit, the difference in firing times 
o f y +  and ;;+  is negligible. This means that, for the rest o f the 
circuit, the firings of y +  and z +  are simultaneous and indistin
guishable, and they can replace each other in the causal relations 
with other events.

In the xyz  example, x — is the only transition that is affected 
by ;;+  or y + . The dashed hyper-arc from  y+ )  to x — [see

to x —. Formally, it means that for the triggering o f x —, any 
nonem pty subset o f the set o f events {y + , z + }  can be chosen. 
This gives a set o f states in which x — can be enabled, E R (x —), 
which is shadowed in Fig. 5(b).
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It is im portant to note the following.

• Even though a ; -  m ight be enabled in any state o f ER(a;—), 
its firing (due to tim ing assumptions) can occur only after 
y +  and ;;+  have fired. This defines I;R (./■—) =  {111}. 
This behavior is called lazy because a signal is not eager 
to fire im m ediately after its enabling, but waits until some 
other events have fired.

• Perform ance can be slightly affected, either positively or 
negatively, by the fact that the arrival tim e of the new 
trigger signals m ay be different from  the ones in the spec
ification.

• The specified ER gives an upper bound  for the set o f states 
in which a signal can be enabled. In a particular im ple
m entation, the actual enabling region can be a subset o f 
the specified enabling region. By exploring different sub
sets, several implem entations can be obtained and evalu
ated according to som e given cost criteria (e.g., area and 
perform ance).

The ER  o f a signal im plicitly results in a  set o f vertices in the 
DC space o f the corresponding logic function. For the enabling 
of x — in the xyz  example, different subsets of {101 ,110 ,111} 
can be chosen. Transition x — fires at state 111, i.e., I;R (./■—) =  
{111} and, therefore, any definition o f E R (x —) should cover 
the state 111, since F R (x —) C E R (x —). Enabling x -  in the 
other two states 101 and 110 can be chosen arbitrarily, i.e., these 
states can be m oved into the DC set o f the function for x  [see 
Fig. 5(c)]. After logic minimization, the function for x ,  which 
simply becom es an inverter, is defined to be 0 in state 110 and
1 in 101, i.e., the enabling region corresponding to the im ple
mentation is E R (x —) =  {110,111}. The back-annotation of 
this im plem entation is shown in the STG of Fig. 5(e) in which 
x — is triggered by y +  instead o f z + .  This change o f causal de
pendencies is valid under the assum ption that y +  and ;;+  are 
sim ultaneous w ith respect to x — and results i n ;;+  firing before 
x —. This is indicated by a timing (dashed) arc.

The tim ed circuit in Fig. 5(d) is m uch sim pler than the speed- 
independent one in Fig. 3(d). M oreover, if  ju st a single timing 
constraint “the delay o f  z +  is less than sum o f  the delays o f  
y +  and x -  ” is satisfied, then the optim ized circuit is a correct 
im plem entation of the original specification. Section VII dis
cusses how to derive, from  the untim ed specification and logic 
implem entation, a  reduced  set o f constraints that are sufficient 
to guarantee its correctness.

Two potential sources o f optim izations based on timing as
sumptions can now be applied:

1) unreachability o f some states due to tim ing (timed un
reachable states).

2) freedom  in choosing enabling regions for signals due 
to early enabling or sim ultaneity o f transitions (lazy 
behavior).

In both cases, the DC space for the logic functions increases, 
thus leading to sim pler implementations. U nreachable states 
provide global don’t cares (DC for all next state functions), 
while lazy enabling provides additional local don’t cares (DC 
for the corresponding lazy signal only).

The idea o f using the DC space com ing from  the tim ed un
reachable states is due to [14] and [2] and was successfully ex
ploited in the ATACS tool for the design o f tim ed circuits. To 
our knowledge, the observation about the additional DC space 
com ing from  the lazy behavior appears for the first tim e in [21] 
and is the m ain theoretical contribution of this work. This con
cept is developed in m ore detail in the next section.

IV. TIMING ASSUMPTIONS

Timing assumptions could be defined in the form  o f a partial 
order in the firing o f sets o f events, e.g., event a fires before 
event b. However, this form  is am biguous for cyclic specifica
tions because their transitions can be instantiated m any times 
and different instances m ay have different ordering relations. 
M ore rigor can be achieved at the unfolding level [35], i.e., 
when the original specification is unfolded into an equivalent 
acyclic description. The theory o f tim ed unfoldings is however 
restricted to sim ple structural classes o f STGs and the timing 
analysis algorithms are com putationally expensive [36], [17]. 
This w ork relies on a m ore conservative approxim ation of 
timing assumptions in LzTSs.

On the other hand, some specifications explicitly have m ul
tiple instances o f the same event, e.g., a +  / I  and a +  / 2, with 
different causality and concurrency relations. For sim plicity in 
the nom enclature, this paper considers that the same timing as
sumptions are applied to all instances of the same event. E x
tending the approach to different assum ptions for different in
stances is quite straightforward .2

Some ordering relations between events are first introduced.
Definition 1: (Conflict) An event e\ £  E  disables another 

event e2 £  E  if  3 s i  % s 2 such that s i  £  E R (e2) and s2 & 
E R (e2). Two events e i , e2 e  E  are in conflict if  e\ disables e2 
or e2 disables e \.

Definition 2: (Concurrency) Two events e i , e2 £  E  are con
current (denoted by e i || e2) if:

1) E R (e i)  n E R (e2) ^  0 and they are not in conflict;
2) Vs £  F R (e i)  P lFR(e2) : (s  i )  £  T A (s  * ^ s2) £  T =>

>s3) e T A £ T.
The second condition is the analogue o f the nonconflict require
m ent but is applied to the FR rather than the ER  . It also requires 
a “diam ond” shaped organization o f the FR (sometimes called 
local confluence).

D efinition 3: (Trigger) An event e \ £  E triggers another 
event e2 £  E (denoted by e \  e2) if ^ s 2 such that s i  ^

This section proposes three types o f tim ing assum p
tions. Each assum ption enables transform ation o f an 
LzTS A = ((S,E,T,sin),ER) into another LzTS 
A' = ((S',E,T',sin),E R ') in which the set o f events 
and the initial state rem ain the same, but there is typically 
m ore freedom  for logic optim ization. In A' enabling regions 
are defined by ER ' as upper bounds o f enabling regions in all

2The tool petrify allows us to derive and specify relative timing assumptions 
for individual instances of the same event.
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Fig. 6. (a) STG, (b) transition system, (c) LzTS after difference assumption, (d) LzTS after simultaneity and early enabling assumptions, and (e) STG with timing 
assumptions.

possible implementations according to the considered timing 
assumption.

A. Difference Assum ptions

Given two concurrent events a and b, a  difference assumption  
b < a assumes that b fires earlier than a. Formally, it can be 
defined through the maximum separation S e p max(b, a) between 
both events [17], [37]. The m axim um  separation gives an upper 
bound on the difference between the firing times o f b and a. If 
S e p m3bX(b, a) <  0 then b always fires earlier than a.

In an LzTS, this assum ption can be represented by the con
currency reduction  o f a w ith respect to b. The new LzTS A! is 
obtained from  A  as follows.

• L et C  =  E R (a) fl ER(6).
• T ' = T \ { s  —̂ s '15 e  B ackR each (F R (a),C )} .
• S ' =  R each(sin , T ')  .
• For any e e E : EFV(e) =  ER (e) fl S '.

C  is the set o f states in which a and b are both enabled (con
current). The transform ation removes the arcs labeled with event 
a that start in states from  C  or states from  E R (a) preceding C .

A ll tim ing assum ptions can be form alized by using the no
tion o f event separation. However, intuition on local tim ing be
havior is enough to reason about the assumptions presented in 
this paper.

Let us illustrate the application of a difference assumption 
6+  <  d+  in the exam ple o f Fig. 6(a) and (b). C  =  {1010} and 

B ackR each(FR ((i+ ), C )  =  {1010}. Thus, the arc 1010 ̂ >1011 
is rem oved from  T .  A fter that, the set of states {1011,1001} be
comes unreachable. The resulting LzSG  is depicted in Fig. 6(c) 
w ith a lazy event d+  in w hich F R (d + ) =  {1110,0110} and 
E R (d + ) =  F R (d + )  U {1010}.

D ifference assum ptions are the m ain source for the elimina
tion o f tim ed unreachable states [14], [2], but they cannot fully 
express the lazy behavior o f signals.

B. Sim ultaneity Assum ptions

Sim ultaneity am ong a set o f events is another kind o f timing 
assum ption that has not been exploited explicitly in previous 
work.3 It is relative notion  which is defined on a set o f events

3Multiple input change in fundamental mode, as defined by Huffman [6], 
required inputs to change “simultaneously,” i.e., within a small time window A. 
However, this was not really exploited for optimization, and it did not result in 
a clean design methodology.

E ' =  j f ' i ........ > i. \ w ith respect to a reference event a, trig
gered by some o f the events in E '.  From  the point o f view of 
a, the skew in firing times o f events in E '  is negligible. For
m ally this can be defined by the following separation inequali-
ties: Ve*, e,- €  E ' ,
is a lower bound for the delay o f event a.

The assum ptions are only applicable under the following con
ditions:

• Be £  E ' : e a.

Informally, the sim ultaneity conditions only hold  when the 
events in E '  are concurrent and at least one o f them  triggers a.

The new LzTS A ' is obtained from  A  as follows.

• L et C  =  \J e .eE , E R (ej) n { s |3  s ' : e j €  E '} .
• T ' = T \ { s  —̂ s '15 e B ackR each(FR (a), C )} .
• S' =  R each(sin , T ')  .
• E R '(a )  =  (ER (a) U C )  n S' .
• For any e e E ,e  ^  a : E R '(e ) =  ER (e) fl S'

C  is the set o f states in which some event in E '  has already 
fired but som e other events in E ' are still enabled. Let us con
sider the simultaneity assum ption between transitions 6+  and 
c +  with respect to a - ,  a being an output signal, in the LzSG 
from  Fig. 6(c). In this case, C  =  {1100,1010}. This assum p
tion influences the LzSG  in two ways.

1) State 0100, which is entered when a -  fires before 
c+ , becom es unreachable. From  |S'epmax( c + , b+)\ < 
S m in (a -)  (coming from  the sim ultaneity assumption) 
and 5 e p max(6+ , a - )  <  0 (coming from  the causality 
between b+  and a - ) ,  the difference assumption 
S e p maji(c+ , a —) <  0 can be inferred as well.

2) E R ( a - )  is extended to the state 1010 [see Fig. 6(d)].

The second point implies that sim ultaneity constraints, and 
hence the possibility o f optim ization based on them, are 
inherently m ore powerful than difference constraints only (that 
capture only the first point).

C. Early Enabling Assum ptions

The sim ultaneity assum ptions exploit “laziness” between 
concurrent transitions. This idea can be generalized for ordered 
transitions as well. Assum e that event a triggers event b and 
that the im plem entation of a is “faster” than that o f b (or 
m ore formally: <5max(a) < Snun(b)). Then, the enabling o f b
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could be started sim ultaneously with the enabling o f a, and the 
proper ordering o f a before b w ould be ensured by the timing 
properties o f the implem entation. In the LzTS this would result 
in the expansion o f ER(6) into E R (a).

Formally, the early  enabling  o f event b with respect to a  can 
be applied when a b. The new LzTS A ' is obtained from  A  
as follows.

• T  = T. ^  ^ ^  ^

• E R '(6) =  ER(6) U C  .
• For any e e E ,e  ^  b : E R '(e ) =  ER (e).

The early enabling o f d -  w ith respect to b -  is illustrated in 
Fig. 6(d). A ll o f the introduced tim ing assum ptions are shown 
in the STG o f Fig. 6(e), where the dashed arc (b + , d+ ) cor
responds to the difference constraint 6 +  <  d+ , the hyper-arc 
(b +  c + , a - )  corresponds to the sim ultaneity o f b + . c +  with re
spect to a - ,  and the triggering o f d -  by a -  and c -  (instead o f 
b—) shows the early enabling o f d — (the tim ing arc (b—, d — ) is 
needed to keep the inform ation about the original ordering be
tween b— and d - ) .  The transform ation for early enabling has 
been defined only in the case o f one backw ard step, i.e., the im 
plem entation o f one signal a that triggers b is faster than that o f
b, and hence b can be enabled at the same tim e as a and still fire 
after a purely due to timing. This definition can be generalized 
for m ultiple backw ard steps, i.e., the total delay o f the im ple
m entations o f two signals a and b such that a triggers b and b 
triggers c is faster than the implem entation o f c, that can thus 
be enabled together w ith a and still fire after b. O f course as
sumptions going beyond one step are often m uch less realistic 
and harder to satisfy.

The above three types of tim ing assum ptions are the corner
stone for tim ing optim ization. N ote that difference constraints 
are m ainly used for rem oval of the tim ed unreachable states, 
while sim ultaneity and early enabling open a new  way for sim 
plifying logic by choosing a particularly useful lazy behavior of 
the signals.

V. Synthesis  W ith  Relative  T im ing

This section presents the theory for the synthesis o f 
hazard-free asynchronous circuits w ith relative timing assum p
tions. Lazy transition systems are used as the specification 
m odel that incorporates timing.

A. Im plem entability Properties

The next-state function  defined for each output signal for the 
im plem entation o f an LzSG  as a circuit is as follows:

1, if 3s 6 F R (a+ ) U L zQ R (a+) s .t.  A(s) =  z  
f a ( z )  =  ^ 0, if 3s £ FR (a—) U L zQ R (a—) s .t.  A(s) =  z  

otherwise
(2)

N ote that this definition generally gives m ore don’t cares than 
the (1) for SGs due to two reasons.

• M ore states are unreachable, since timing assum ptions can 
reduce concurrency.

• States in ER \  FR do not belong to either FR, or LzQ R , 
and hence are included into the DC-set.

For an LzSG  to be im plem entable as a hazard-free circuit, the 
properties o f CSC and output persistency m ust be extended.

The CSC property holds in an LzSG  when f a is well defined, 
that is if  {but not only if) there exists no pair o f states (s, s ')  
such that A (s) =  A (s ')  and s  e  E R (a + )  U L zQ R (a + ) and 
s' e E R (a —) U L zQ R (a—). The condition can be relaxed be
cause CSC conflicts that involve states from  E R  \  FR could be 
elim inated by treating ER \  FR as a  D C-set for f a. However, 
in order to sim plify things, we treat CSC conflicts only in the 
fram ework o f the above sufficient condition.

The notion o f output persistency (see Section II) can also be 
extended to LzTSs. If  an LzTS is output persistent, then all sig
nals are hazard-free both for the pure and inertial bounded gate 
delay models [38] when the bounds satisfy the timing assum p
tions im plied by the LzTS.

Definition 4: (Persistency) Given an LzTS A  =  (A ',E R ) 
with A' =  (S , E . I  . s in ), an event e e E is persistent if  e is 
persistent in A! and E R (e) is a m onotonic cover o f FR (e).

Intuitively, persistency in LzTS indicates that once ER (e) has 
been entered, it can only be exited by firing e. M oreover, persis
tency in A' indicates that no transition can switch an event from  
fireable (in F R (e)) to only enabled (in ER (e) \  FR (e)).

Thus, an LzSG  is im plem entable as a  hazard-free circuit with 
pure and bounded delays o f its gates if  the following properties, 
extended to LzSGs, hold: consistency, com plete state coding, 
and output persistency. These conditions are an extension to 
circuits w ith inputs and relative timing o f the semimodularity 
conditions used by M uller to guarantee hazard-freedom  for au
tonomous circuits with unbounded delays [8], [39], [40].

B. Synthesis F low With Relative Timing

The flow for logic synthesis with relative tim ing assumptions 
is the following.

1) D efine a set o f timing assumptions on a TS A  and derive 
a specification LzTS A T =  (A ',E R T ) according to the 
defined assumptions.

These assumptions m ust be provided by the designer 
or generated autom atically (e.g., for inserted state sig
nals, as described below). They allow the transform ation 
o f the TS in Fig. 3(b) to the LzTS in Fig. 5(b). This paper 
proposes three types o f timing assumptions. They are de
scribed in Section IV.

2) The second step o f synthesis is state encoding, that is in
serting state signals for resolving CSC conflicts and thus 
m aking an LzSG  implementable. State encoding in our 
logic synthesis fram ework is autom atically solved using 
an extension o f the m ethod presented in [41].

• Only those encoding conflicts reachable in the 
tim ed dom ain are considered in the cost function 
(no effort is invested in solving unreachable con
flicts).

• Timing assumptions can be generated for inserted 
state signals using the rules from  Section VI, im 
plying that the events o f state signals can also be 
lazy.
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It is im portant to notice that the autom atic generation of 
timing assumptions is crucial to optim ize the behavior of 
the circuit when signals not observable in the specifica
tion, e.g., signals for state encoding, are considered.

3) Derive another im plem entation LzTS A j  =  (A ',E R j)  
in which the im plem entability conditions hold and 
E R j(e )  C E R T (e) for any event e.

A t  is the LzTS that defines the upper bounds on the 
ERs o f the events, i.e., how early each event can be en
abled w ithout firing. A / defines a particular im plem enta
tion in which the enabling of each event cannot be earlier 
than the one defined by A T . The m ethod for defining A j  
from  A t  is done through logic m inim ization and is ex
plained in detail in Section V-C.

4) Derive a circuit im plem entation for the corresponding 
LzSG  according to the logic functions defined by (2).

5) Back-annotate tim ing constraints sufficient to the correct
ness o f the implementation.

Steps 3) and 4) are discussed in Section V. Steps 1) and
5) are presented in Sections VI and 7, respectively. Step
2) is not discussed in m ore detail, since the basic theory 
is sim ilar to that for speed-independent circuit synthesis 
presented in [41].

In the exam ple o f Fig. 5(b), the only lazy event is x —. For 
signal x ,  the following regions are defined:

For the circuit in Fig. 5(e), the corresponding A j  fulfills the 
properties for im plem entability and has the following regions 
for signal x:

C. Synthesis Algorithm

The m ethod presented in the previous sections has been im 
plem ented in the tool petrify that can synthesize asynchronous 
circuits from  STG specifications.

The tim ing assumptions on the behavior o f the circuit and 
the environm ent can be specified by the designer or generated 
autom atically (see Section VI). Two types o f assum ptions are 
accepted.

• r ( a )  <  t(6 ) ,  indicating that event a  w ill occur before 
event b. In case both events are concurrent, it corresponds 
to a different assum ption. In case a triggers b, it corre
sponds to the early enabling o f b w ith respect to a.

• r  (a) ~  r (6 )  w r t  c, indicating that the firing o f a  and b can 
be considered sim ultaneous with regard to c (simultaneity 
assumption).

In the exam ple of Fig. 5, the following assumptions have been 
specified for optimization:

Fig. 7. Algorithm for logic synthesis of output signal .

The algorithm  for the synthesis of each output signal x  is shown 
in Fig. 7, in which the definition o f A has been extended to sets 
o f states and boolean vectors as follows:

A

—(A (s) | s  e X }  

= { s  e S | A(s) e

The algorithm  takes an LzTS, A T , as input and generates an
other LzTS, A j ,  and a logic function C ( x )  for each output 
signal, according to the design flow described in Section V-B. 
In case each function C( x )  is im plem ented as a com plex gate, 
the circuit is guaranteed to be hazard-free under the given timing 
assumptions.

This heuristic algorithm  calculates E R / iteratively until a 
m onotonic cover is found. Initially, ON and OFF are defined 
in such a way that the states in E R T (a:+) \  I;k (•'■+) and 
ER t (:e—) \  I;R (./■—) are not covered, i.e., their binary codes 
are in the DC set. Boolean m inim ization is invoked by defining 
the ON- and the OFF-set, and a com pletely specified function 
is obtained. Next, m onotonicity o f C ( x )  is checked. H on is 
the set o f states in E R /( :r+ )  covered by C( x )  that lead to 
another state in E R /( :r+ )  not covered by C( x ) .  These states 
are rem oved from  KR/(./■+) for the next iteration. The loop 
converges m onotonically to a valid solution bounded by the 
case E R /(x + )  =  F R (x + ) . A sim ilar procedure is perform ed 
on the com plem ent o f C i x )  for KR/(./■—). Thus, the DC set 
is reduced at each iteration o f the algorithm  to enforce the 
m onotonicity o f the cover. This reduction is illustrated in Fig. 8.

In practice, m ost covers C ( x )  are m onotonic after the first 
Boolean m inim ization and no iteration is required. Only in some 
rare cases, m ore than two iterations are executed.

Petrify includes a Boolean m inim izer that delivers several 
covers with sim ilar cost. One is selected am ong them  by using 
a prioritized cost function that takes into account monotonicity, 
literal count, and concurrency. Those covers that include a larger 
num ber o f states from  E R T are considered to be m ore concur
rent and hence potentially exhibit better global perform ance.

The algorithm  in Fig. 7 generates a  netlist o f com plex gates 
based on the functions C ( x )  obtained by the m inim ization pro
cedure. This algorithm  can be easily extended to the synthesis o f 
asynchronous circuits w ith C elements and Set/Reset functions, 
S ( x )  and R( x ) ,  corresponding to the enabling o f ./■+ and x —,
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Fig. 8. Iteration to reduce ERj for nonmonotonic covers.

respectively. The m onotonicity conditions for S ( x )  and R (x )  
have also been studied in [42] and [43].

VI. Automatic Generation  of Relative T im ing  
Assum ptions

The tim ing assumptions described in the previous section can 
be provided by the designer based on the knowledge the she or 
he m ay have o f the circuit and its environment. However, m any 
assumptions can be derived autom atically by considering some 
sim ple delay m odel, e.g., a  unit gate delay m odel, that m ay ap
proached to the reality by allowing delay padding or transistor 
sizing on the synthesized circuit. Here are two typical assum p
tions that illustrate w hat can be assum ed by the synthesis tool 
and what m ust be provided by the designer.

• Synthesis assumption: when two internal signals are 
enabled simultaneously, one o f them can fire before the 
other. This assum ption can be ensured after synthesis by 
padding some delay to the signal that has been assum ed 
to be slower.

• User-defined assumption: when two inputs are enabled, 
one will fire before the other. This assum ption requires 
some knowledge about the environment. N o assumption 
can be m ade a priori about the firing order o f the events 
w ithout that knowledge.

The tool petrify enables the designer to provide tim ing as
sumptions. These assumptions are checked to be consistently 
defined according to the behavior o f the system, e.g., no differ
ence constraints can be specified between a pair o f events that 
are not concurrent. M oreover, the tool is also capable o f gen
erating synthesis assumptions based on a sim ple delay m odel. 
This autom atic generation leverages the task of the designer in 
providing timing inform ation and allows the tool to m ake as
sumptions on signals inserted during synthesis and not observ
able in the specification (e.g., state encoding signals). These as
sumptions are checked not to contradict any o f the user-defined 
assumptions.

This section presents a m ethod for autom atic generation of 
relative timing assumptions. First, ordering relations between 
events are defined. Then, the intuition behind this m ethod is

explained using a sim ple delay m odel for input and noninput 
events and rules for deriving tim ing assumptions are given.

A. Ordering Relations

L et A  =  ( ( S , T , E , s in), ER) be a lazy transition system.
D efinition 5: (Enabled Before) Let e i, e2 £  E  hc two con

current events. e \ca n  be enabled before4 e2 (denoted by e i< e 2) 
if 3 s i  —> s 2 such that s i  € E R (e i) \E R (e 2) and s 2 e E R (e i) n

D efinition 6: (Enabled Simultaneously) Let e i ,  e2 £  E  hc 
two concurrent events, ei and e2 can be enabled simultaneously 
(denoted by ei< )e2) if 3 s i  —> s 2 such that s i  ^  E R (e i)  U

The following definition is an extension o f definition 5 to sets 
of events. For ap roper understanding, some intuition is required. 
It is helpful to m odel the situation in which an event e is m uch 
slower than another set o f events X  and e is never enabled be
fore any o f the events in X  (see Section VI-C.3). This situation 
occurs in systems in which the input events (environment) are 
m uch slower than the output events. The expected behavior is, 
thus, that the input event fires after all the output events. The 
definition itself, however, is concerned with the opposite case, 
in which an event can be enabled  before a set o f events X ,  
and hence it describes the conditions when tim ing optim ization 
cannot be applied.

D efinition 7: (Enabled Before a  Set o f Events) L et e £  E  
be an event pairw ise concurrent with all the events in the set
X  =  { e i , . . . ,  en } C E .e  can be enabled before X  (denoted by/
e < X )  if  —"*s2 such that s i  £  ER (e) \E R ( X ) ,  s 2 £  ER (e) PI 
E R (X ) and e' ^  X ,  where E R (X ) =  E R (e i)  U • • • U E R (e„).

In the above definition, e is an event pairw ise concurrent with 
all the events in X .  L et us call E R (X ) the union o f all excitation 
regions o f the events in X .  Since e is concurrent w ith all events 
in X ,  then ER (e) fl E R (X ) is not empty.

Now assum e that e is a slow event (e.g., from  the environ
ment). Assum e that internal/output events are very fast (this is a 
sim ilar situation as in fundam ental m ode asynchronous circuits

4We say “can be” because different occurrences of can be both before and 
after e2. This definition is concerned only with the existence of the former.
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(a)

Fig. 9. (a) Petri net and (b) transition system.

(b)

[7]). If  we know that e is never enabled before entering E R (X ), 
then we know that all events in X  will fire before e. This even 
considers the possibility that the events in X  have causality re
lations among them.

Fig. 9(b) depicts the transition system  derived from  the 
Petri net o f Fig. 9(a). Events a and b are not concurrent, since 
E R (a) =  { s0} and ER(6) =  { s i , s n }  are disjoint. Events c 
and /  are concurrent. M oreover, c can be enabled before /  since 
there is a transition s 2 —> s 5 such that s 2 £  ER(c) \  E R ( /)  and 
s 5 €  ER (c) n E R ( /) .  However, /  cannot be enabled before
c. Events d and /  are also concurrent and they can be enabled 
before each other (see transitions s 3 — s 6 and s 5 — s 6). 
Events c and e are also concurrent but none can be enabled 
before each other, i.e., they are always enabled simultaneously.

Let us now analyze the enabling relation o f event d with 
some sets o f events. Event d cannot be enabled before {e, / }  
but can be enabled before {e, f ,  g }  since there is a transition 

sg —>si9 such that sg €  ER(eQ \E R ({ e ,  f , g } ) ,  S19 €  ER(d) fl 
ER ({e, f ,  g } )  and h {e, f ,  g } .  On the other hand, d  cannot be 
enabled before {e, / ,  g, h }.

B. D elay M odel

This section presents a very simple delay m odel for events of 
a  TS that gives an intuitive m otivation for the autom atic gener
ation o f tim ing assumptions. A sim ple delay m odel is needed, 
sim ilar to the literal count in com binational logic synthesis that 
can be com puted before deriving a logic im plem entation and 
that allows us to bootstrap the tim ing optim ization process. The 
m odel, although simple, generates reasonable tim ing assum p
tions that can be satisfied by gate selection or transistor sizing. 
This fact will be shown by com parison with m anual designs in 
Section VIII. This delay m odel can be changed depending on 
the design requirem ents.

The delay o f an event is defined as the difference between 
its enabling tim e and its firing time. Three types o f events are 
considered5 :

N oninput events: their delay is in the interval [1 — e, 1 +  e]; 
Fast input events: their delay is in the interval (1 +  e, oo); 
Slow input events: their delay is in the interval [A, oo).

In this context, e denotes the m axim um  allowed delay variation 
o f each event with regard to a unit delay. The synthesis approach 
also assumes that:

• the delay o f a  gate im plem enting a noninput event can be 
increased to be larger than that o f another gate by delay 
padding or transistor sizing;

• the delay o f two gates can always be m ade longer than the 
delay o f one gate. Hence, this imposes the constraint that 
e <  1 /3;

• the circuit will never take longer than A  tim e units (m in
im um  delay o f a slow input event) in becom ing stable from  
any state o f the system  assuming a quiescent environm ent 
(no input events firing).

The previous assumptions on the timing behavior o f the cir
cuit can be translated into assumptions on the firing order o f the 
events.

C. Rules fo r  D eriving Timing Assum ptions

Rules for deriving tim ing assumptions are presented in the 
following format.

Ordering relations: ordering relations that m ust be satis
fied in an LzTS for a rule to be applied.
Timing assumption: a  timing assum ption that can be gen
erated automatically.

5“Very fast” input events that are not slower than some internal events can be 
considered as well and treated more or less like noninput events. This consider
ation is omitted here for simplicity.
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Justifying delay assumptions: inform al justification o f a 
rule based on the above delay m odel.

1) Assum ptions Between N oninput Events: Assum e that 
e i , e 2, e 3 £  E  are noninput events. The first three rules apply 
when events e \ and e2 are concurrent. The fourth one applies 
when e i triggers e2. The following rules can be applied for 
deriving timing assumptions between noninput events:

I) Event enabled before another event.
Ordering relations: (e i || e2) A (e i < e2) A (e2 

e i)  A (ei<>e2).
Difference tim ing assumption: fires before e2
Justifying delay assumptions: the delay o f one gate 

can be m ade shorter than the delay o f two gates.
II) Events sim ultaneously enabled.

Ordering relations: (e i || e2)A (ei< )e2)A (e2 e i) .
Difference tim ing assumption: fires before e2
Justifying delay assumptions: the delay of the gate 

im plem enting e2 can be m ade longer than the delay of 
the gate im plem enting e \ .

III) Event triggered by events simultaneously enabled.
Ordering relations: (e i || e2) A (e i e2) A (e2

Simultaneity timing assumption: e± and e2 are si
multaneous with respect to e3.

Justifying delay assumptions: the difference in delay 
o f two gates can be m ade shorter than the delay of one 
gate.

IV) Early enabling for ordered events.
Ordering relations: (e i e2).
Early enabling tim ing assumption: e i fires before e2 

(but e2 can be enabled concurrently with e i).
Justifying delay assumptions: the delay o f the gate 

im plem enting e \ can be m ade shorter than the delay o f 
the gate im plem enting e2.

L et us illustrate the previous cases with the example o f Fig. 9. 
Let us assum e that all events are noninput. Timing assumptions 
of Type I can be derived for the pairs o f events (c, / ) ,  (c,g)  
and (e, d),  where the first elem ent o f the pair is assum ed to fire 
before the second.

Timing assumptions o f Type II can be applied to the pairs 
(6, h)  and (c, e). N ote that in both cases, the enabling condi
tions are symmetric, i.e., both events are always enabled sim ul
taneously. However, only one firing order can be chosen by as
suming that one o f the events can be delayed by increasing the 
delay o f its corresponding gate. This choice can be done heuris- 
tically by considering different im plem entation factors. For ex
ample, the choice o f one specific firing order m ay m ake some 
states with encoding conflicts unreachable. A nother possible 
heuristic would be to estim ate the com plexity o f the logic for 
each event. If  the gate corresponding to one event is m ore com 
plex than the other, it can be assum ed that the form er will be 
slower than the latter (thus avoiding delay padding to m eet the 
timing assumption).

Timing assum ptions o f Type III can be applied to the events 
triggered by the pairs (b, h)  and (c, e). Let us analyze the pair 
(6, h ) that triggers the events c, e, and g.  The timing assumption 
inform ally m eans that the difference between the firing times

of b and h is indistinguishable from  the point o f view o f c, e 
and g. This opens new possibilities for optim ization by using 
the sim ultaneity constraints m entioned in Section IV.

Timing assumptions o f Type IV can be applied, e.g., 
to the event d  triggered by the event c. For this as
sumption, the enabling region for d  includes the states 
{«2j s 5 , s», « i2, s i 5, s is ,  s 2i}  in addition to the states 
{ s3, s 6, sg, s  13, S16, S19, s 22} already in the firing region.

2) Assum ptions Between N oninput and Input 
Events: Assum e that e \ , e2 e  E  are a  noninput and an input 
event, respectively, and that they are concurrent.

V ) Input not enabled before noninput event.
O rdering relations: (ei || e2) A e2 f5 ei.
D ifference tim ing assum ption: e \  fires before e2.
Justifying delay assumptions: the delay o f environ

m ent is longer than the delay o f one gate.

This assum ption is sim ilar to Types I and II for the case in 
which e2 is an input event. The delay assum ption used in this 
case states that the response tim e o f the environm ent (both slow 
and fast) will always be longer than the delay of one gate.

3) Assum ptions Between N oninput Events and Slow  
Input Events: Assum e that e e £  is a  slow  input event, 
X  =  { e i , . . . ,  en } C ii’ is a set o f noninput events and e is 
pairw ise concurrent w ith all the events in X .

V I ) Slow input not enabled before noninput events.
O rdering relations: (Ve* £ X  : e || e*) A e X .
D ifference tim ing assum ptions: X  fires before e.
Justifying delay assumptions: the delay of the slow 

input event is longer than A  (the delay required by the 
circuit to stabilize under a  quiescent environment).

To illustrate the m eaning o f this timing assumption, the ex
am ple o f Fig. 9 is considered, where h is an input event and d  
is a slow input event. The rest o f the events are noninput. After 
firing the events a, b and c a state in which d, e and h are en
abled is reached (s3). A t this point it can be assum ed that e and 
/  w ill fire before d  (two gate delays versus slow environment). 
However, no assumptions can be m ade about the firing order 
between d  and g  since g  is preceded by an input event (h) for 
which no upper bound on the delay can be assumed. If  h  had 
been a noninput event, d  would be assum ed to fire after h and g  
also.

VII. Ba c k -Annotation of T im ing  Constraints

Logic synthesis w ith relative tim ing assumptions is able to 
derive a hazard-free circuit that is correct in the tim ed domain,
i.e., in that subset o f states o f the untim ed dom ain that is reach
able by applying the timing assumptions. A fter the logic syn
thesis step the assumptions contributing to the synthesis results 
are propagated to the back-end (e.g., sizing) tools as a set o f con
straints to be satisfied. A fter back-end design is com pleted the 
validity o f the timing constraints m ust be verified or validated 
to ensure the correct function of the circuit.

Some o f the timing assumptions provided by the user or au
tom atically generated do not contribute to restricting the set of 
reachable states or the set o f transitions and hence are redun
dant. M oreover, the circuit netlist derived by logic synthesis m ay
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Fig. 10. (a), (c) SGs with timed domains. (b) Circuit.

be correct for a set o f states larger than the one defined by the 
tim ed domain, i.e., one which can be obtained by a set o f less 
stringent timing assumptions. In other words, some o f the timing 
assumptions are redundant for a particular logic synthesis solu
tion, while some other can be relaxed. This section attempts to 
answ er the following question:

Can we derive a m inimal set o f  timing assum ptions sufficient 
fo r  a circuit to be correct?

This set o f tim ing assumptions back-annotated for a  given 
logic synthesis solution is called tim ing constraints. Timing as
sumptions (both m anual and autom atic) are part o f the spec
ification and provide additional freedom  for logic synthesis, 
w hile tim ing constraints are a part o f the implem entation, since 
they constitute sufficient requirem ents to be m et for a particular 
netlist solution to be valid.

A. Example 1

Let us analyze the exam ple in  Fig. 10. The shadowed states in 
the SG o f Fig. 10(a) correspond to the tim ed dom ain determ ined 
by the tim ing assumptions

z +  < y  +  and y +  < x  — .

U nder these assumptions, logic synthesis can be perform ed by 
considering the states 110 and 001 unreachable.

The circuits o f Figs. 4(d) and 10(b) have a correct behavior 
under the stated assumptions. Looking at the circuit o f Fig. 4(d) 
the following can be observed.

• The gates x  =  z  +  x y  and y  =  x  +  z  are correct im ple
m entations for the whole untim ed domain.

• The gate z  =  x  is a correct im plem entation for all the 
states except for 001. In this state, z —is enabled according 
to the next state function o f the implem entation, but it is 
not enabled according to the specification.

Thus, even though the circuit has been obtained using the DC 
set im plied by both assumptions, only one relative tim ing con
straint y +  < x — m ust be ensured for the circuit to be correct, 
because only pa rt o f  the enlarged D C  set has been used in a

way that is inconsistent with the original specification. In gen
eral, each gate o f the circuit is correct for a  subset o f the untim ed 
dom ain which is also a superset o f the tim ed domain. The cir
cuit is correct for those states in which all gates are correct.

B. Example 2

Let us now take the im plem entation o f Fig. 10(b) and ana
lyze the gate x  =  y, while ignoring the other gates for now. 
W ith regard to the untim ed domain, the next-state function for 
x  disagrees with the gate x  =  y  in three states: 001, 110, and
101. B ut the consequences are different in each state. In 110, x  
should rem ain stable at 1. However, the gate x  =  y  makes the 
transition x -  enabled in state 110. To preserve circuit correct
ness two options are possible.

1) The state 110 could be m ade unreachable by concurrency 
reduction. This in turn could be achieved in two ways:

• by concurrency reduction in the untim ed domain, 
based on changing logic (i.e., trigger) dependencies 
between signals as described in [44], [45];

• by concurrency reduction in the tim ed domain, based 
on relative tim ing constraints that would preserve 
concurrency for enabling , but restrict concurrency for 
fir ing  o f signal transitions.

2) The state 110 could rem ain reachable, while a : -  would be 
enabled but not fireable, since another enabled transition 
fires before x —. M ore formally: 110 e  E R ( x —) /F R (./■—).

Similar considerations can be m ade for state 001.
State 101 illustrates a different case. According to the orig

inal specification SG, x — is enabled in 101. In the im plem en
tation, however, signal x  is stable in 101. This corresponds to a 
concurrency reduction for signal x  in the untim ed domain, and 
this is generally considered to be a valid im plem entation o f the 
original specification. Concurrency is reduced because state 101 
becomes a don’t care vector for signal x  when 001 is assum ed 
to be unreachable (see Section IV). In summary, for the correct
ness o f the gate x  =  y,  it is sufficient that the states 110 and 
001 are unreachable. However, the gate x  =  y  ensures that state 
001 is unreachable. Hence only 110 m ust be m ade unreachable
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TABLE I
Correctness Requirements for the 

Circuit of Fig. 10(b)

Gate
x = y 
y = z 
z =  x

Unreachable states 
required ensured by logic
110,001

110
001

001
110

by timing constraints or by further concurrency reduction at the 
logic level.

A sim ilar analysis can be done for the gates y  =  z  and z  =  x.  
The sufficient requirem ents for the correctness o f all three gates 
are sum m arized in Table I. Interestingly, it can be concluded 
that the circuit is correct under any tim ing assum ption, i.e., it is 
speed-independent, since all states required to be unreachable 
are forced to be unreachable by the concurrency reduction due 
to the chosen gate implem entation. In particular, state 001 needs 
to be unreachable for gate z  =  x  to be a correct implem entation 
of signal z  and it is m ade unreachable by im plem enting signal 
x  w ith a gate x  =  y

C. Example 3

L et us consider the same example under the assum ption “ 
z +  and y +  are sim ultaneous with respect to x - . ” U nder this 
assumption, state 001 is unreachable. In addition, states 101 
and 110 becom e don’t cares for signal x ,  since both belong to 
HR!'./'—) according to the semantics o f the sim ultaneity assum p
tion.

Only one tim ing constraint, ,?+ <  a;—, is sufficient for the 
circuit in Fig. 5(d) to be correct. Gate x  =  y  is not enabled 
in 101, hence concurrency is reduced in this state with respect 
to the original specification and state 001 becomes unreachable 
under any gate delay. On the contrary, state 110 corresponds to 
the expansion o f ER(a;—). This enabling is lazy since 110 e  
E R ( x - ) /F R ( x - ) .

D. Correctness Conditions

The synthesis flow presented in this paper starts w ith an un
tim ed specification A  =  ( S , E , T , s i n). A fter logic synthesis 
with tim ing assumptions, a gate im plem entation is obtained.

L et us consider the circuit operation, ignoring tim ing assum p
tions. The untim ed behavior o f the gate im plem entation from  a 
given initial state s in can be represented by a transition system 
A g  =  ( SG . E G.T G. A g  is obtained from  A  by substi
tuting T  w ith the new transition relation T G, that coincides with 
T  for the input events and models the behavior o f the gates for 
the output events. Finally, T c  and S G are calculated by only 
considering the reachability set from  s in .6

In the rem ainder o f this section the following assumptions are 
used entirely for the sake o f sim plicity o f exposition. They are 
not the constraints o f the theory or the implementation.

• The set o f signals o f A  and A G are assum ed to be the same 
and the states are assum ed to be uniquely identified by 
their encoding.

6Obviously, circuit operation within A G, may not be correct outside timing
domain, e.g., it may be hazardous.

• The set o f states S G reachable by circuit G  in the untim ed 
dom ain can be m uch bigger than the original set S  due to 
the possibility o f reaching incorrect corners o f behavior. It 
is sufficient to calculate only a  border o f incorrect behav
iors instead o f the entire S G.

• The original transition system  A  is not required to be 
untimed. It can include some tim ing assumptions (e.g., 
user-defined tim ing assumptions regarding the behavior of 
the environment). This helps to reduce the state space of 
the original specification for large circuits.

Since A G is an untim ed behavior, T G m ay contain transi
tions not present in T ,  e.g., those transitions reachable when 
the tim ing assumptions used for synthesis are not considered 
for calculating the reachability space. On the other hand, some 
transitions in T  m ay not belong to T G due to the concurrency 
reduction im posed by the im plementation.

The problem  to be solved is to find a  set o f timing constraints 
such that, after being applied to A c , a  new lazy (timed) transi
tion system  A c  =  ( ( S c ,  E ,  T c , s i n ), ER C ) is obtained in such 
a way that T c  c  T  Hi TG and the gate netlist derived for A G is 
still a  valid im plem entation for A C P

Here, valid  im plem entation should satisfy three conditions.

1) The sequences o f signal transitions produced by the cir
cuit, when operated within an originally specified envi
ronm ent and timing constraints, are a subset o f the se
quences allowed by the STG (no new transitions is al
lowed).

2) No new8 deadlocks (states in which no signal transition 
is enabled) are created.

3) The im plem entation is hazard-free, i.e., A c  is output per
sistent.

L et us define three predicates characterizing the above con
ditions:

new_ _ [ ai*'J ^  rji

These are transitions that can fire in A G (untim ed circuit) but 
cannot fire in the original specification.

D ue to the concurrency reduction that m ight have been ap
plied during logic synthesis, some states o f S  m ay becom e un
reachable in S G. The concurrency reduction eliminates some 
transitions in T G that m ight result in new deadlock states if  all 
outgoing transitions from  a reachable state are removed. Such 
deadlocks can be avoided by making them  unreachable during 
legal circuit operation. Thus, we define

to -dead lock(G )  =  { s0^  6  T G \ s ' is a deadlock in A G

but not in A}.

N ew hazardous states are captured with the following predi
cate:

to-hazards(G ) =  {s“-4s' e T G |s' is output nonpersistent

in - V ;• but not in A}.

7The set of states is implicitly induced by the initial state and the transition 
relation.

8One may argue that the original STG should not have contained any dead
locks any way, but we do not make such an assumption in the following, i.e., 
deadlocking specifications are considered legal, and we just do not introduce 
new ones.
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Fig. 11. Formulation of the back-annotation problem. {Ci, C2 } is a set of 
timing constraints sufficient for the correctness of the circuit.

Finally, we define 

valid(G ) = T g \  (new_tr(

E. Problem Formulation

U to_deadlock(G)

U toJiazards(G )).

The problem  to be solved consists o f finding a set C  o f timing 
constraints, not m ore stringent than the ones used for synthesis, 
such that the set o f transitions T c  obtained after applying the 
constraints is a subset o f valid(G ).

A trivial solution to this problem  is to take the com plete set of 
tim ing assumptions used for logic synthesis. Our goal, however, 
is to find a less stringent set o f constraints sufficient to m ake the 
circuit correct. In general, we should look for such a set o f con
straints that “m akes m ost sense” or that is easiest to satisfy. But 
the solution o f this optim ization problem , unfortunately charac
terized by a very fuzzy cost function, is left to future work.

Instead, a state-based cost function is used to guide heuristics 
aiming at finding the set C  o f tim ing constraints. The cost func
tion is based on the following observation: large state spaces 
generally require sim ple constraints.

A corner case of the back-annotation problem  would be the 
situation in  which a speed-independent circuit is derived after 
synthesis with timing assumptions. In that case, the solution to 
the problem  would be an em pty set o f timing constraints (see 
Exam ple 2  in  this section).

Fig. 11 illustrates the back-annotation problem . The arrows 
denote the invalid transitions o f the circuit. The “tim ed dom ain” 
represents that state space o f the circuit under all tim ing assum p
tions. S G n S  represents the state space in which the circuit be
haves correctly. Similarly for the transitions not exiting S g  n S . 
The constraints C \ and C> are less stringent than the tim ed do
m ain defined by all timing assumptions and are enough to guar
antee the correctness o f the circuit. N ote that the states in S  \  S G 
are those elim inated by concurrency reduction. A lso note that 
constraint C l  cuts one o f the transitions from  the timing do
m ain to the region o f incorrect behavior, which otherw ise m ight 
occur due to early enabling.

F. Finding a Set o f  Timing Constraints

Relative timing constraints are defined in terms o f firing order 
o f events. Constraining the firing order between a  pair o f events 
only makes sense when they are concurrently enabled. Thus, 
each tim ing constraint C, can be denoted by an ordered pair of

Fig. 12. Example for back-annotation.

TABLE II
Unreachable States fo r Each Pair of Ordered Events ex < e2 

in the Example of Fig. 12. The Pairs in Bold Indicate Those 
Constraints That Preserve the Timed Domain

concurrent events, e.g., C* =  (e3 <  ek ). Given a constraint 
Ci  =  (ej  < ek ), the set o f arcs disab led (C i)  are defined as

^1; • • • ; Sn — 1 ^F R (e^) A S n

GFR(efc) n F R (e JI')}.

In particular, the path s i  —> • • • —> s n can be em pty if  s e  
FR(e:)') fl FR(efc). d isab led (C i)  is the set o f arcs w ith label ek 
that m ust not fire in order for e j to fire before ek , i.e., those 
arcs with source states in which both events are concurrent or 
preceding FR(e3) n FR (efc) inside FR (efc).

Given a set o f constraints C  =  { C \ , . . . ,  Cp}, d isab led(C i)  
can be used to com pute T c  that is the set o f reachable transitions 
after rem oving the ones in

|^J disab led (C i).
c i e c

Finding a set C  that removes all transitions not in va lid (G )  
can be posed as a covering problem  in which all possible firing 
order constraints o f pairs of events are the covering elements.

Currently, petrify uses a greedy approach to solve the cov
ering problem . It m erely consists o f choosing the constraint 
that removes the m axim um  num ber transitions not in va lid (G )  
and that have not been rem oved by previous constraints. This 
process is repeated until all reachable transitions becom e valid.

G. Example 4

Fig. 12 shows an exam ple with a sim plified version o f the 
back-annotation problem , given that the rem oved objects are 
states instead o f transitions. Assum e that the set o f states S G =
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table iii
Experimental Results: Specifications Without CSC (a) and With CSC (b)

circuit S I q

Area
Sit TI

Response time 
SIa SI( TI

State signals 
SIa SIt TI circuit

Area 
SI TI

a d fa s t 18 31 13 2.17 1.00 1.00 2 2 0 c h u 133 15 14

a llo c -o u tb o u n d 20 23 22 1.50 1.11 1.00 2 2 2 c h u l 50 16 14

m a s te r - re a d 65 79 45 2.29 1.33 1.29 7 7 3 c o n v e r ta 19 14

m m uO 33 47 20 2.31 1.38 1.38 3 3 0 e b e rg e n 16 16

m m u l 25 32 15 1.60 1.12 1.12 2 2 1 h a lf 8 7

m rO 50 51 30 1.60 1.45 1.15 3 3 2 h a z a rd 8 8
m r l 36 39 20 2.25 1.19 1.19 4 3 0 m s la tc h 24 20
n a k -p a 24 35 24 1.25 1.00 1.00 1 1 1 t r im o s -s e n d 30 21
now ick 18 19 16 1.50 1.17 1.00 1 1 1 v a r l 18 8
r a m -re a d - s b u f 30 26 21 1.10 1.00 1.00 1 1 0 v b e 5 b 13 12
sb u f - ra m -w r ite 24 44 24 1.63 1.00 1.00 2 2 1 v b e5 c 10 10
s b u f - re a d -c tl 18 21 16 2.00 1.50 1.50 1 1 1 v b e 6 a 28 24

seq3 18 22 18 1.50 1.00 1.00 2 2 2 v b e lO b 32 26

se q -m ix 23 28 24 1.40 1.20 1.00 2 2 2 w r d a ta b 35 33

v m e b u s 22 33 17 2.29 1.57 1.57 1 1 0
Total 424 530 325 1.76 1.20 1.15 34 33 16 Total 272 227

(a ) (b )

{ s0, . . . ,  sio}  is reachable by the untim ed im plem entation o f the 
circuit and that the set o f states { s0, s i ,  s 2, s 5, s 8, s9, .si(l \ is the 
one reachable after considering the delays o f the circuit. How
ever, incorrect behavior is only m anifested in the states s 6 and 
s 7. Table II contains the set o f states that becom e unreachable 
by reducing the concurrency between each pair o f concurrent 
events.9 For example, by imposing the order d < b, the states 
s 2 and s 3 becom e unreachable.

The problem  to be solved is the following: find a small set 
o f ordering constraints between pairs o f events such that the 
new set o f reachable states does not intersect the set o f incorrect 
states { s6, 57}. Moreover, we w ant to maximize the set o f  reach
able states, i.e., to find a set o f timing constraints that makes a 
small num ber o f correct states unreachable and keeps the TS 
strongly connected. Larger sets o f reachable states heuristically 
result in less stringent sets o f constraints, thus sim plifying the 
validation or verification o f the circuit. M oreover, they often 
imply m ore concurrency and hence heuristically result in better 
global perform ance.

The problem  can be posed as a covering problem . The cells 
o f Table II in bold correspond to those constraints that do not 
rem ove any state from the tim ed domain. The covering problem 
can be form ulated as follows:

(e <  c) A (b < d  V b <  e).

The constraint e <  c is the sim plest one removing the state s 6. 
Any other one (e.g., e < b) is m ore stringent. The constraints 
b < d  and b < e are the ones that can rem ove the state s 7. The 
m inim um -cost solution is

C  =  {e <  c, b <  e}

and

9For simplicity, unreachable states are reported in the table for this example. 
In general, the analysis must be performed by calculating the removed disabled 
arcs. In this particular case, the resulting analysis is the same.

VIII. Experim ental  Results

The techniques for autom atic derivation o f relative tim ing as
sumptions and synthesis o f asynchronous circuits using lazy 
transition systems have been im plem ented in the tool petrify 
and applied to control circuits from  RAPPID [12] and a set 
o f other benchm arks. First, results for a  standard set o f aca
dem ic benchm arks using conservative (unfavorable for RT) per
form ance estimates are shown. Then a detailed analysis o f a 
FIFO exam ple is presented for estimating the real advantages 
in perform ance offered by RT, with autom atic tim ing assum p
tions versus a speed-independent solution with concurrency re
duction. Finally, a  com parison o f RT solutions derived autom at
ically versus m anual solutions is presented.

A. Academ ic Examples

The results for a well-known set o f academ ic benchm arks are 
presented in Table III.Table III(a) and (b) present the results for 
specifications w ithout and with state coding conflicts respec
tively.

The experiments have been perform ed as follows.

• Columns labeled with S I 0 report results for speed-inde
pendent circuits derived by inserting state signals with the 
aim o f m inim izing area.

• Columns labeled with S I t are derived similarly, but with 
the aim  o f m inim izing delay. Petrify tries to increase 
the concurrency o f the newly inserted signals until they 
are outside the critical path o f the specification. In case 
the original specification has no encoding conflicts 
(Table 111(b)), there is no difference between S I 0 and S I t .

• Columns labeled w ith TI report results for RT circuits. 
Relative tim ing assumptions are derived autom atically by 
considering the environm ent to be slow . State signals are 
inserted aiming at delay m inim ization.

For each experiment, area is estim ated as the num ber o f lit
erals o f the set and reset networks of generalized C-elements.
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Fig. 13. (a) FIFO controller, (b) specification, (c) specification with state encoding signal, (d) RT implementation with gC elements, and (e) timing constraints 
sufficient for correctness.

Delay (response time) is estim ated as the average num ber of 
noninput events in the critical path between the firing o f two 
input events. Given that the estim ated response tim e of the spec
ification does not change when no new signals are inserted, it is 
not reported in Table III(b).

Relative tim ing assumptions have a crucial im pact on solving 
state encoding, since petrify inserts new signals only to disam 
biguate conflicts in the tim ed domain. Reducing the num ber of 
signals also contributes to im proving the area and the perfor
m ance of the circuit.

Com paring the columns S I t and TI, a reduction o f about 40% 
in area can be observed. The reduction in response tim e is less 
than 5% if all events have a  delay o f one tim e unit. However, the 
perform ance im provem ent is m uch m ore significant if  it is eval
uated with actual delays, given that the logic o f the tim ed im 
plem entation is m uch simpler. This analysis is reported in Sec
tion VIII-B. The im provem ent obtained for specifications with 
com plete state coding is about 17% in area. This reduction also 
contributes to improving the perform ance o f the circuits. A ll the 
obtained circuits and the corresponding tim ing constraints were 
validated by simulation. Only in some cases, transistor sizing or 
delay padding was required to m eet som e stringent constraints.

B. Example: A  FIFO  Controller

This section describes the development o f a first-in/first-out 
(FIFO) cell [specified in Fig. 13(a) and (b)], a  sim plified ab
straction o f a  part o f the RAPPID design. The goal o f the speci
fication is to keep the left and right handshakes as decoupled as 
possible. The modules at the left and right sides o f the controller 
have a  sim ilar speed to the controller itself. In fact, these events 
are generated by twin m odules connected at each side. For this 
reason, it is not w ise to assum e that the input events are slow.

Four FIFOs were sim ulated by using different im plem enta
tions. The cycle tim e o f the cell was m easured. The results, nor
m alized to the delay o f an inverter w ith fan-out o f four in a given 
technology, are shown in Table IV.

The first relative timing FIFO (first row) is an RT circuit de
rived by petrify using only autom atic timing assumptions. It is 
depicted in Fig. 13(d). A proper transistor sizing is required for 
correct operation o f the circuit. N o user-defined assumptions on

table IV
Cycle Time Ccomparison of FIFOs Normalized to the Delay of 

an Inverter With a Fan-Out of Four

Design FIFO cycle time

the environm ent are used. The tim ing analysis explained in Sec
tion VI has been applied to the specification, and state encoding 
has been autom atically solved as described in Section V-B. With 
this strategy, only one additional state signal, x , was required as 
shown in Fig. 13(c).10 There are som e interesting aspects o f this 
im plementation.

• The state signal x  is concurrent w ith other activities in the 
circuit. This is a result of the state encoding strategy of 
petrify that attem pts to increase the concurrency o f new 
state signals until they disappear from  the critical paths.

• The response tim e o f the circuit w ith regard to the envi
ronm ent is only one event (two inverters), i.e., as soon as 
an output event is enabled, it fires w ithout requiring the 
firing o f any other internal event.

• Given that x  is never triggering any output signal, the gates 
o f l0 and r a can be designed by having input x  near Vss, 
thus improving their perform ance.

Finally, the im plem entation o f Fig. 13(d) requires some 
tim ing constraints to be correct. Application o f the m ethod 
proposed in Section VII derives five tim ing constraints between 
pairs o f concurrent events that are sufficient for the circuit to be 
correct. They are graphically represented in Fig. 13(e).

The constraints la+  < x -  and r a+  < a : -  are not indepen
dent. Since the im plem entation o f x  is x  =  la +  r a, it is always 
guaranteed that one o f them  will hold, whereas the other m ust be 
ensured. Since la+  and r a+  are enabled simultaneously, these 
constraints will always hold if the delay of two gates is longer

10This new specification is not strictly a Petri net, since the arcs from /„+ 
and rG +  to the O R  place indicate an or-causality relation: x — is triggered by 
the first event to fire, whereas the token produced by the latest event is implicitly 
consumed. An equivalent Petri net is a bit more cumbersome and is omitted for 
simplicity.
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Fig. 14. Speed-independent specification and circuit.

than the delay o f one gate. The m ost stringent rem aining con
straint is x — <  r , + .  In the worst case, both r ,+  and x — will 
be enabled simultaneously by r 0+ . In this case, the delay of x — 
is required to be shorter than the delay o f r ,+  (from  the envi
ronment). Since we assum e that the environm ent is an identical 
circuit, it corresponds to requiring that the delay of x — to be 
shorter than that o f r a+ , that is easy to satisfy. In case o f a very 
fast environment, this constraint can still be satisfied by tran- 
sis tor sizing or delay padding for gate x .

The second FIFO (second row) is a speed-independent cir
cuit derived by petrify with automatic concurrency reduction  
[45], and w ithout constraining the concurrency of the input and 
output signals o f the cell in order to preserve the perform ance as 
m uch as possible. The result is shown in Fig. 14, where CSC was 
obtained through state variable insertion and concurrency reduc
tion. In com parison with the RT circuit, notice the gC elements 
with two p-transistors in series and the ordering between ro+ and 
lo+. Because of concurrency reduction only one state signal is 
required, like in the case o f the autom atic RT solution. However, 
the state signal is on the critical cycle and the implementations 
of lo  and ro  contain additional p-transistors, which m ake per
form ance o f the speed-independent circuit approxim ately 18% 
worse than the RT one. N ote that, w ithout concurrency reduc
tion, three state signals would be required to solve all state en
coding conflicts and a m uch larger and slower circuit would re
sult.

TABLE V
COMPARISON FOR TWO GENERIC REPRESENTATIVE EXAMPLES (FIFO) AND

two Control Circuits From RAPPID (Byte-Control, Tag-Unit). 
Response Time is Measured in Gate Delays, Area in Transistors. m: 

Manual, a: Automatic, s: Speed-Independent

Design Area (#  tr.) Worst case Average case
response time response time

m a s m a s m a s
FIFO-A 22 22 46 3.0 3.0 9.0 2.5 2.5 5.7
FIFO-B 16 15 46 2.0 2.0 9.0 2.0 2.0 5.7

Byte-cntr 32 27 71 4.0 3.0 5.0 3.0 2.5 4.1
Tag-unit 31 47 112 4.0 4.0 8.0 4.0 2.7 6.9
Summary 101 111 275 3.3 2.9 7.75 3.0 2.4 5.6

The third and the fourth rows o f Table IV report results for re l
ative tim ing and speed-independent circuits, further optim ized 
for perform ance by applying D e M organ’s laws. It can be ob
served again that the optim ized RT circuit is approxim ately 25% 
faster than the optim ized speed-independent design.

C. RAPPID  Control Circuits

This section com pares m anually optim ized RT control 
circuits used for RAPPID [22], [12] w ith those automatically 
derived by petrify. For each example, Table V reports: manual 
(obtained by applying relative tim ing manually), automatic 
(obtained autom atically by petrify and applying relative 
timing), and speed-independent (obtained autom atically by 
petrify w ithout concurrency reduction).

Results in the table show that autom atic solutions are 
quite com parable with m anually optim ized RT designs. The 
im provem ent in response tim e by applying relative tim ing is 
about a factor o f 2, substantially better than for the examples 
o f Table III. This is because the designers o f these circuits had 
a stronger interaction with the tool and provided aggressive 
timing assumptions on the environm ent that could not be 
derived automatically. M oreover, the optim ization goal for 
these circuits was perform ance , and hence we claim  that the 
autom ated im plem entation was not worse than the manual 
design in any case.

D. Impact of Early Enabling Assum ptions

The same experiments presented in Table III have been run 
by not using early enabling assumptions. The overall results in 
circuit com plexity (total num ber o f literals) are the following:

• specifications w ithout CSC (Table III(a)): 330 literals;
• specifications with CSC (Table III(b)): 248 literals.

Thus, early enabling assumptions still contribute to improve
the quality o f the circuits in about 10% for those specifications 
with CSC. This im provem ent also affects the speed o f the cir
cuit.

For those specifications w ithout CSC, the im pact is very 
modest. This is m ainly due to the fact that petrify does a  good 
job  in inserting new  state signals by trying to increase their 
concurrency. This gives less m argin to take advantage o f the 
potential concurrency o f early enabling assumptions.
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Fig. 15. Optimization of a completion detector using simultaneity 
assumptions.

E. Im pact o fS im ultaneity  Assum ptions

The same experiments have also been run by not using sim ul
taneity assumptions. The results have shown that the im pact of 
these assumptions is negligible for the benchm arks in Table III. 
This is m ainly due to the fact that m ost benchm arks in the table 
are o f reactive nature, where inputs m ostly trigger outputs, and 
outputs m ostly trigger inputs. Hence direct causal relations be
tween outputs (a necessary condition for applying sim ultaneity 
assumptions) are infrequent. In other words the considered con
trol circuits are quite shallow, and this constrains the applica
bility o f optim ization based on simultaneity. Nevertheless, we 
do believe that the notion o f sim ultaneity is im portant for op
tim ization, as shown by the example in  Fig. 5. A sim ilar situ
ation occurs with other benchmarks, such as hazard, when si
m ultaneity assumptions are applied to input events.11 It allows 
the designer to change the dependencies between causally un
related events. This is a  way to form ally justify  delay matching, 
a  technique that is often used for design o f asynchronous data 
paths, as shown in Fig. 15. The same result o f optim ization can 
be obtained form ally by applying sim ultaneity assum ption to 
all data bits w ith respect to the com pletion detector signal. A l
though design of data paths is not the m ain topic o f this paper, 
such capability indicates potential power o f the sim ultaneity as
sumption for larger control circuits and especially control cir
cuits with sym m etries.

IX. Conclusion

Lazy transition systems have been proposed as a com puta
tional m odel for tim ed circuit synthesis, where the notions o f en
abling and firing are distinguished for a  signal switching event. 
In this design flow, necessary synthesis conditions, a synthesis 
algorithm, and a m ethod to derive a sufficient set o f timing con
straints for correctness have also been proposed.

The m ain results o f this w ork can be sum m arized as follows.
• Two types of relative tim ing assumptions, difference (one

sided) and simultaneity (two-sided), are used.
• Timing inform ation is defined in terms o f relations among 

events rather than absolute delays o f individual events. In 
this way, reasoning about the observable behavior o f the 
system  is m uch m ore efficient.

Conservatively, petrify never assumes simultaneity for input events. These 
assumptions must be provided by the designer when it is known that the envi
ronment behaves according to the assumption.

• The don’t care space used for optim ization is determ ined 
either by unreachability, i.e., reduction o f the state space, 
or by laziness, i.e., expansion o f the enabling region.

• The m ethod allows the timing assumptions to be either 
provided by the designer or derived autom atically by syn
thesis or analysis tools. The second feature is especially 
interesting for its applicability to those events that are not 
observable in the original specification, e.g., events o f in
ternal signals used for state encoding or logic decom posi
tion.

• Satisfaction and verification of tim ing constraints (i.e., 
tim ing assumptions actually used by optim ization) is left 
to the designer’s responsibility. Some existing tools can 
assist in solving such task [46], [20].

This approach helps bridging two critical gaps in the syn
thesis o f control circuits. The first gap is between the two main 
approaches for autom ated asynchronous controller synthesis, 
those based on fundam ental m ode (global tim ing constraints) 
and those based on IO mode. It also allows asynchronous 
circuits to exploit available timing inform ation, rather than 
always m aking w orst case assumptions about the relative delays 
o f gates (e.g., assuming that one gate m ay be slower than a se
quence o f three gates m ay be excessive in several technologies). 
M oreover, the exploitation o f the idea of early enabling allows 
the synthesis process to m axim ize perform ance by increasing 
the effective am ount o f concurrency in  the system.
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