
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21,NO. 2, FEBRUARY 2002 109

L azy T ransition S y stem s and A syn ch ron ou s C ircuit
S y n th esis W ith R ela tive T im in g A ssu m p tion s
Jordi Cortadella, Member, IEEE, Michael Kishinevsky, Senior Member, IEEE, Steven M. Burns,

Alex Kondratyev, Senior Member, IEEE, Luciano Lavagno, Member, IEEE, Kenneth S. Stevens, Senior Member, IEEE,
Alexander Taubin, Senior Member, IEEE, and Alexandre Yakovlev, Member, IEEE

Abstract—This paper presents a design flow for timed asyn
chronous circuits. It introduces lazy transitions systems as a new
computational model to represent the timing information required
for synthesis. The notion of laziness explicitly distinguishes
between the enabling and the firing of an event in a transition
system.

Lazy transition systems can be effectively used to model the be
havior of asynchronous circuits in which relative timing assump
tions can be made on the occurrence of events. These assumptions
can be derived from the information known a priori about the delay
of the environment and the timing characteristics of the gates that
will implement the circuit. The paper presents necessary condi
tions to generate circuits and a synthesis algorithm that exploits the
timing assumptions for optimization. It also proposes a method for
back-annotation that derives a set of sufficient timing constraints
that guarantee the correctness of the circuit.

Index Terms—Asynchronous circuits, lazy transition systems,
logic synthesis, relative timing.

I. INTRODUCTION

DURIN G the last decade, there has been significant
progress in developing m ethods and tools for asyn

chronous circuit synthesis [1]-[5]. The two chief directions in
this w ork have been the following two synthesis approaches,
one based on the H uffm an’s state m achine m odel [6], [7] and
the other deriving from M uller’s concept o f speed-independent
circuit [8]. The former, also known as fundam ental mode
circuit design, makes strong assumptions about the delay of
the environm ent com pared to that o f the circuit. It requires
the environm ent to be slow enough in applying the new input
values so as to allow the circuit to stabilize after responding to
the previous input. The m ost well-known m ethod associated
with this approach is the one called burst-mode (BM) circuit
design, developed in [9], [3], and [10]. The second approach,

Manuscript received October 2, 2000; revised April 23, 2001. This work
was supported by a grant from Intel Corporation to the University Politecnica
de Catalunya, by ESPRIT ACiD-WG Nr. 21949, and by Grant EPSRC
GR/M94366. This paper was recommended by Associate Editor L. Stok.

J. Cortadella is with the Department of Software, Universitat Politecnica de
Catalunya, Barcelona, Spain.

S. M. Burns, M. Kishinevsky and K. S. Stevens are with the Strategic CAD
Lab, Intel Corporation, Hillsboro, OR 79124 USA.

A. Kondratyev is with Cadence Berkeley Labs, Berkeley, CA 94704 USA.
A. Taubin is with Theseus Logic, Sunnyvale, CA 94086 USA.
L. Lavagno is with the Department of Electronics, Politecnico di Torino,

Torino, Italy.
A. Yakovlev is with the Department of Computing Science, University of

Newcastle Upon Tyne, U.K.
Publisher Item Identifier S 0278-0070(02)01050-3.

on the contrary, makes no assum ptions about the delays of
the environm ent, perm itting some o f the inputs to switch in
response to changes in some o f the circuit’s outputs, w ithout
waiting for their com plete stabilization. This m odel is called
input-output (IO) mode. The recently developed design
m ethods and software based on signal transition graphs (STGs)
[5], [11] exemplify this approach and produce speed-indepen
dent circuits, w hose behavior is invariant to delays in gates but
m ay be sensitive to wire delays.

The synthesis techniques described in this paper are an at
tem pt to com bine the expressive power o f STGs (that allow a de
signer to finely tune concurrency, sequencing and choice) with
the optim ization power o f BM FSM s and m anual tim ing-driven
design [12] (that allow a designer to avoid waiting for signals
that are known to be stable). By doing so, high optim ization
levels are achieved, while keeping the flexibility of our CA D
framework. O f course, this power comes at a price: our syn
thesis algorithms are radically m ore com plex than their BM
counterparts (but only m oderately m ore so than speed-indepen
dent synthesis). Exploration of efficient heuristics to cope with
large specifications are left to future work.

A. Incorporation o f Timing Information

W hen trying to incorporate timing inform ation in the syn
thesis o f asynchronous circuits, ach icken-egg problem is posed.
On one hand, an efficient synthesis requires knowledge of the
tem poral behavior a priori. However, the actual tem poral be
havior can only be determ ined after synthesis, e.g., once the cir
cuit netlist has been defined. This cyclic dependency is typically
solved by iterating and converging toward a solution that meets
the assum ed tim ing behavior.

The com putational m odel used in this paper is the one of
timed transition systems [13]. Besides the causal relation among
events, a lower (<5min) and upper (6max) bound on the delay of
each event is defined. An event can only fire S tim e units after
it has been enabled, where <5min < 6 < <5max. Thus, an explicit
distinction between the enabling and the fir ing o f an event is
made.

Fig. 1(a) depicts an event structure that determines a partial
order in the firing o f a set o f events. D elay intervals for each
event are also defined. Fig. 1(b) depicts a transition system in
which timing inform ation is not considered. Each path repre
sents one possible run o f the system. W hen m oving to the model
o f tim ed transition systems, each event is associated w ith a time
stamp (the firing time) and each state is associated with a time

0278-0070/02$17.00 © 2002 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276286324?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

110 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21,NO. 2, FEBRUARY 2002

Fig. 1. (a) Event structure with timing information, (b) transition system, (c) timed transition system, and (d) lazy transition system.

interval. Fig. 1(c) is a graphical representation o f the state space
o f the system, starting from tim e zero. Each vertical edge repre
sents the reachable tim e stamps that can be associated with any
discrete state. For example, in the reachable state space one m ay
find tim e stamps for s 4 in the interval [4], [11], Shadowed faces
represent state transitions in tim e-consistent runs o f the system.
For example

^ o @ 2 ^ 6 @ 4 ^ c @ 5 ^ d@8 ^ e@ 10^

is a tim e-consistent run, in which each event is associated with
the tim e stamp of its firing time. However, the run

o@ 2 c@4 d@7 b @8 e@10

is tim e inconsistent. This can easily be proved by realizing that
event b is enabled in the state s i at time 2 and fires in state s 5 at
tim e 8, thus being enabled for six tim e units. However, the delay
o f event b in the specification is within the interval [1], [3]. The
proof that there is no valid run that visits state s 5 can also easily
be made, since event b will always fire before event d.

In [14] and [2], tim ed circuits were introduced, also exploiting
the fact that tim ing inform ation can be used to reduce the reach
able state space. This helps to elim inate undesired states that do
not fulfill im plem entability properties (e.g., state encoding or
persistency) and increase the don’t care space during logic m in
imization. However, it requires the definition o f absolute timing
inform ation on the delays o f the com ponents o f the system.
W hile this is possible and useful after at least one design itera
tion has been com pleted, it is m uch m ore difficult to use at the
beginning o f the synthesis flow for a variety of reasons.

• Asynchronous specifications are often incom plete and re
quire the addition of state signals, for which no absolute
tim ing inform ation is available.

• Even after state encoding, no absolute timing inform ation
about noninput signals o f the circuit is known before both
technology independent (logic synthesis) and technology
dependent (technology mapping) optim izations have been
perform ed. This leads to a chicken and egg problem in
any m ethod based on absolute tim ing information: for ef
ficiency synthesis needs delay bounds, but delay bounds
are unknown before synthesis is completed. In tim ed syn
thesis this is solved by iterating delay guessing and syn
thesis.

• A ll m odern synthesis flows both for custom and ASIC de
sign include transistor or gate sizing, buffer insertion, and
selection o f param eters (e.g., threshold voltage Vt) with
the goal o f m eeting tim ing constraints and optim izing dif
ferent design aspects (power, area, delay, etc.) A netlist
can be sized differently depending on a given set o f con
straints, and the resulting gate delays m ay differ by an
order o f m agnitude depending on the sizes o f devices and
other selected parameters.

• P lacem ent and routing m ay further change absolute delay
inform ation associated with circuit elements.

M oreover, the form al verification problem with absolute timing
becomes drastically m ore com plex due to the need to keep ab
solute tim e inform ation, e.g., in the form of regions, in addition
to untim ed system states [15]. Instead o f using absolute delay
bounds for the purpose of synthesis, we use relative delay infor
m ation between circuit events, following the established engi
neering practice o f m any high-speed circuit design groups (see
e.g., design o f pulse-dom ino logic in [16]). A verification flow
following the synthesis flow requires absolute delay inform a
tion. D ifferent techniques for tim ing verification can be used,
e.g., [2] and [17]-[20] to nam e a few. U se of relative tim ing in
form ation can be beneficial for verification as well, as shown in
[19] and [20].

CORTADELLA et al.: LAZY TRANSITION SYSTEMS AND ASYNCHRONOUS CIRCUIT SYNTHESIS 111

Fig. 2. Design flow for relative timing circuits.

B. Abstraction o f Time

Rather than calculating the exact tim e intervals in which each
state can be visited by any valid run, it is sufficient for synthesis
to know whether each state is visited by some tim e-consistent
run and w hat the enabling conditions for every visited state are.
In other words, only the set o f reachable states in the timed do
main and the values o f next-state function for every signal in
every reachable state are needed. This inform ation can be rep
resented by abstracting absolute timing out o f the m odel. This
abstraction leads to the definition o f a new com putational model
called a lazy transition system [21], in which tim ing inform a
tion is only represented by making a distinction between the en
abling and the firing o f an event.

W hile absolute timing requires com plex techniques to rep
resent the space o f reachable tim ed regions or states (e.g., dif
ference bound matrices, polyhedra, etc.), the generation o f the
reachable state space for relative tim ing is o f the same com
plexity as for untim ed systems.

Fig. 1(d) represents the lazy transition system associated to
Fig. 1(c). The dashed arc with event d from state s 2 indicates
that d is enabled in that state, but it cannot actually fire due to
its delay. Therefore, state s 5 is unreachable.

This paper proposes a synthesis flow in which tim ing infor
mation is specified as a set o f assumptions that relate the firing
order o f concurrently enabled events, such as event b w ill always
fire before event d. Lazy transition systems are used as the com
putational model for synthesis.

C. Synthesis Flow

The synthesis flow proposed in this paper follows the par
adigm “assume and, i f useful, guarantee.” Similar principles
have been used in recent asynchronous designs [12], [22]-[24].
Given an untim ed com putational m odel, e.g., a transition
system, synthesis o f an asynchronous circuit is perform ed as
follows.

1) Derive a set T o f timing assumptions on the behavior o f
the system.

2) Synthesize the circuit by using a subset T ' C T o f useful
tim ing assumptions.

3) Derive a set C o f sufficient tim ing constraints that guar
antee the correctness o f the circuit’s behavior.

4) Transistor sizing and param eter selection for a set o f con
straints C (and possibly some other design constraints).

5) If the set C cannot be guaranteed, calculate a less strin
gent set T and go to Step 2).

In Step 1), timing assumptions can be either provided by the
designer or generated autom atically [25]. In the first case, the as
sumptions typically com e from the knowledge o f the temporal
behavior o f the environment, e.g., some of the input events are
slow. In the second case, realistic assumptions on the im plem en
tation o f a circuit can be considered, e.g., the delay of one gate
is typically shorter than the delay o f two gates.

N ot all the tim ing assumptions in T m ay be needed to im
prove the quality o f the circuits. During synthesis, only a subset
of T ' C T is used for optimization.

The goal o f Step 3) is to find a less restrictive set o f constraints
that guarantees the circuit’s correctness. These constraints m ay
not necessarily m atch the timing assumptions in T .

Once the circuit and the set C have been derived, the designer
m ust guarantee that the required tim ing constraints are met. This
can be achieved, if necessary, by modifying the actual delays
of the com ponents, for example, by delay padding or transistor
sizing.

Finally, Step 5) is required to converge in the chicken and egg
problem when the initial set T o f assumptions results in a circuit
that cannot m eet the set C o f constraints. This design flow is
graphically represented in Fig. 2.

The main contributions of this design flow are the following.

• Lazy transition systems are used as a com putational
model, thus allowing the designer to reason in terms of
a partial order of events (relative tim ing [22]), which is
much more intuitive than defining absolute delays when
the actual im plem entation o f some com ponents o f the
system is unknown.

• Timing assumptions can be either provided by the designer
or autom atically derived from the untim ed specification
to capture realistic tem poral behavior o f all “reasonable”
implementations.

112 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21,NO. 2, FEBRUARY 2002

(a) (b)

Fig. 3. (a) STG, (b) SG, (c) next-state functions, and (d) complex-gate implementation.

(c) (d)

• Each circuit is back-annotated w ith a set o f relative timing
constraints that guarantee a correct behavior.

• Relative timing allows novel tim ing optim izations, such as
the speculative (early) enabling o f events.

It is known [2], [12], [14], [21], [25] that using tim ing infor
m ation can significantly improve the quality o f synthesized cir
cuits. This paper provides a global form al fram ework to model,
derive, and exploit this inform ation. The synthesis algorithms
presented in this paper have been im plem ented and incorporated
in the tool petrify [5].

The paper is organized as follows. Section II presents the
com putational models used in the paper. Section III presents an
overview o f the design flow, illustrated with an example. Section
IV describes the tim ing assumptions proposed for circuit opti
m ization in the design flow. The synthesis o f circuits from lazy
transition systems is discussed in Section V. Next, the strategy
used for the autom atic generation o f tim ing assumptions is p re
sented in Section VI. The derivation of sufficient tim ing con
straints for correctness is covered in Section VII. Experim ental
results and conclusions are presented in Sections VIII and IX.

II. BASIC NOTIONS

This section presents basic definitions used in the paper. For
brevity, the reader is assum ed to be fam iliar with Petri nets, a
form alism used to specify concurrent systems. The reader is re
ferred to [26] for a general tutorial on Petri nets.

A. Transition Systems

A transition system (TS) is a quadruple [27] A =
(S,E,T,Sin), where S' is a nonempty set o f states, E is
an alphabet o f events, T c S x E x S is a transition relation,
and Sin is an initial state.

The elements o f T are called the transitions o f the TS and are
often denoted by s ^>s' instead o f (s, e, s ') . The notation s
and — is used when only one o f the states o f the transition is
relevant. Only finite TSs are considered in this paper, i.e., both
sets S and T are finite.

The following two definitions are used later in the paper.
Given a transition system A = (S , E , T . s in), the set o f reach
able states from state s is recursively defined as

Henceforth, it is assum ed that S = Reach(.s,„. T) for any TS.
Given a transition system A = (S, E , T . s in), and two sub

sets o f states Y c X c S , the set o f states backw ard reachable
within X from Y is defined as

BackReach(AT, Y) = Y v j [J B ackkeachfA .
s^ s 'e T ,s e x ,s 'e Y

In other words, BackkeachfA '. Y) are the states in X that have
a path within X to some state in Y .

B. State Graphs

In this paper, TSs are used to m odel asynchronous circuits.
For logic synthesis, a binary interpretation o f the states and
events is required. This interpretation is captured with the no
tion of a state graph.

A state graph (SG) is a tuple G = (A , X , A), where A =
(S, E , T . s in) is a transition system, X = I IJ () is a set o f input
and output signals and A is an encoding function. I is the set
o f signals w hose behavior is determ ined by the environm ent,
whereas O is the set o f signals whose behavior is im plem ented
by the system. Therefore, only the signals in O m ust be syn
thesized. The set o f events E corresponds to rising and falling
transitions o f the signals, i.e., E = X x { + , - } . The symbols
a+ and a - denote a rising and falling transition of signal a, re
spectively. The encoding function A : S —> { 0 ,1 } ” assigns a
binary vector to each state (n = A '|). The code o f state s and
the value o f signal a in s are denoted by A(s) and A0(s), respec
tively.

The notation a* is used to denote a transition o f signal a in
which the fact o f rising or falling is not relevant.

An SG is consistent if

s Q~)rj

>A0(s) = 0 A A0(s /) = 1

>Aa(s) = 1 A A0(V) = 0

>A0(s) = A a (s ') .

R each(s, T) = {s} U [J R each(i
+s'C T

An exam ple o f an SG is depicted in Fig. 3(b). The symbol
0* (1*) indicates that a rising (falling) transition o f the corre
sponding signal is enabled in that state.

In general, m ore than one state can be assigned the same code.
For sim plicity and when no am biguity is possible, states are
often nam ed by their code.

CORTADELLA et al.: LAZY TRANSITION SYSTEMS AND ASYNCHRONOUS CIRCUIT SYNTHESIS 113

C. Signal Transition Graph

An STG is a Petri net in which transitions are labeled with
the same type o f events defined for SGs, i.e., rising and falling
signal transitions [28], [29].

An STG has an associated SG in which each reachable
marking corresponds to a state, and each transition between a
pair o f markings corresponds to an arc labeled with the same
event as the transition.

Although STGs with bounded reachability space and SGs
have the same descriptive power, STGs can usually express the
same behavior (especially, when it is highly concurrent) more
succinctly. In this paper, STGs help to illustrate timing assum p
tions in a m ore intuitive way.

Fig. 3(a) depicts an STG with three signals. For simplicity,
places with only one input and one output transitions are
omitted. Fig. 3(b) shows the corresponding SG with encoded
states. The SG is consistent.

D. Circuit Implementation

Given a transition system in which S is the set o f states, the
fir ing region o f an event e, denoted by FR (e), is the set o f states

The concept o f firing region can be trivially extended to SGs.
Q uiescent regions are defined as com plem ents to firing regions

F R (a +) = { s | s ° 4 } ; Q R (a+) = {s | A0(s) = 1} \ F R (a —)

F R (a -) = { s | s “4 } ; Q R (a -) = {s \ Aa (s) = 0} \F R (a +)

where “ \ ” stands for the set difference.
In Fig. 3(b), F R (x —) = {101,111} and Q R (x —) =

The im plem entation o f an SG as a logic circuit is done by
deriving a next-state function , f a (z) , for each output signal, a,
and binary vector, z. It is defined as follows:

{1, if 3 s € F R (a +) U Q R (a +) s.t. A(s) = z
0, if 3 s £ F R (a —) U Q R (a—) s.t. A(s) = z

otherwise.

(1)

E. Im plem entability Properties

The next-state function f a o f each output signal a is correctly
defined when the SG has the complete state coding (CSC) prop
erty, i.e., when there is no pair o f states (s, s ') such that A(s) =
A (s') and s £ F R (a +) U Q R (a+) and s' £ F R (a —) U Q R (a—).
N ote that f a is an incom pletely specified function with a d o n ’t
care (DC) set corresponding to those binary vectors w ithout any
associated state in the SG.

In the SG o f Fig. 3(b), the DC set is em pty since all binary
vectors have a corresponding state in the SG. As an example,
/(1 0 1) = O il since signals x and y are enabled in that state.
The K arnaugh m aps for the next-state functions o f signals, x , y,
and are depicted in Fig. 3(c).

Besides consistency and CSC, another property is required
for an SG to be im plem entable as a speed-independent circuit:
output persistency [30]. A pair o f events (a, b) is persistent if
for any transition s - ^ s ' such that a ^ b, s e F R (a) => s ' £

F R (a), i.e., a is not disabled by the firing o f another event. State
s is called nonpersistent if the above condition is violated, i.e.,
s £ F R (a) A s ' ^ F R (a)

An SG is called output persistent if for any pair (a, b) o f non-
persistent events, both a and b are events on input signals. In
Fig. 3(b), the pair o f events (y+ , z+) is persistent in the state
100, since the firing o f ;;+ leads to the state 101 in which y + is
still enabled, and vice versa.

In summary, an SG is im plem entable as a speed-independent
circuit if the following three properties hold: consistency, com
plete state coding, and output persistency. In the SG o f Fig. 3(b),
all the im plem entability properties for a speed-independent cir
cuit hold.

F. Logic Synthesis

From the next-state functions, a speed-independent circuit
can be derived by im plem enting the Boolean equation o f each
output signal as an atom ic com plex gate [8], as shown in
Fig. 3(d).

In general, the Boolean equations m ay be too com plex to
be im plem ented as an atom ic gate in a specific technology.
M ethods for logic decom position and technology m apping that
overcome this lim itation have been proposed [31], [32]. This
paper does not address the problem o f technology m apping.
However, the proposed optim ization m ethods can be easily
com bined w ith existing m ethods for logic decom position that
can be targeted to technology mapping into given gate libraries.

G. M onotonic Covers

The following definition is related to hazards in the behavior
of asynchronous circuits.

Given two sets o f states S i and S 2 o f an SG, S i is a monotonic
cover o f S 2 if S 2 C S i and for any transition s — s '

(s e S i \ s 2 => s ' e S i) a (s e s 2 => s ' ^ S i \ s 2).

Intuitively, once S i is entered, the only way to leave it is via a
state in its subset (“exit border”) S 2.

In the SG of Fig. 3(b), the set {101,110,111} is a m onotonic
cover o f F R (x —). However, the set {100,101,111} is not,
since the transition 100 —̂ -1 1 0 violates the conditions for
monotonicity.

H. Lazy Transition Systems

A lazy transition system (LzTS) is a pair A = (A ',E R),
where A! = (S , E , T , s,„ j is a transition system and ER : E —
2s is a function that defines the enabling region o f each event,
in such a way that FR (e) C ER (e) for any e e E . An event e is
said to be lazy if ER (e) 7 ̂ FR (e).

The distinction between enabling and firing regions is the ab
straction that represents the delay between the enabling o f an
event and its firing. ER (e) \ FR (e) is the set o f states in which e
is enabled but cannot fire. N ote that a TS can be considered as a
particular case o f LzTS in which E R (e) = FR (e) for any event.

The binary interpretation of an LzTS is a lazy state graph
(LzSG) G = (A ,X , A), w here A is an LzTS and X and A
have the same interpretation as in the previous definition o f SG.

114 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2002

(a) (b) (c) (d)
Fig. 4. xyz example. Optimization by timed unreachable states.

Fig. 5. xyz example. Optimization by lazy behavior.

The concept o f lazy quiescent region (LzQR) is useful for the
synthesis o f circuits. It is defined as follows:

L zQ R (a+) = Q R (a +) \ E R (a —)

L z Q R (a -) = Q R (a -) \E R (a +) .

Synthesis o f asynchronous circuits from LzSGs is discussed
in Section V.

III. M otivating E xam ple

This section gives an intuitive picture o f the optim izations
based on tim ing assumptions. It is illustrated by an im plem enta
tion o f the xyz specification shown in Fig. 3(a). This specifica
tion describes an autonomous circuit and therefore every signal
in the corresponding STG is treated as output. The starting point
for optim izations is given by the speed-independent im plem en
tation shown in Fig. 3(d).

Speed-independence gives a rather conservative view on
gate delays: they are finite but arbitrary. However, m ore precise
tim ing relationships, considering the tim e required by a signal
to propagate through different stages of logic, can be expressed.
For exam ple, one can assum e that a signal propagates through
a single gate faster than through k gates (k > 1), where k is
an im plem entation and/or technology dependent param eter.1
Sim ilar assumptions were successfully exploited in [33] for

area and perform ance optim ization.
Let us assume that the delay o f two gates is always longer

than the delay o f one gate in the circuit for the xyz example,
using a given technology. U nder this assumption, even though
the transitions y + and a ; - are potentially concurrent in the STG,
y + would always occur before x - in a circuit. In the STG,
this tim ing assum ption can be expressed by a special timing
arc going from y + to x — [34] [denoted by a dashed line in

1This can be formalized in terms of delay range for gates. If a delay range is
[imin, then the assumption can be posed as k * Amin > Amax.

Fig. 4(a)]. Timing restricts possible behaviors o f the im plem en
tation. In particular, state 001 becomes unreachable because it
can only be entered when x — fires before y+ . In unreachable
states, the next state logic functions for all signals can be de
fined arbitrarily [see (1)]. Therefore, the use of timing assum p
tions increases the D C space for output functions, thus giving
extra room for optimization.

For the xyz example, m oving the state 001 into the DC set of
z simplifies its function from z = x + y z to a buffer (z = x),
as shown in Fig. 4(c) and (d). S tate 101 can be included into
the enabling region o f x —. The selected im plem entation for
signal x , x = z (x + y) is the same as for the untim ed spec
ification and corresponds to the E R (x —) = F R (x —) = 111.
Signal x in this im plem entation is not lazy and no tim ing con
straints are required. A n alternative im plem entation could have
been taken with x = y + x z corresponding to E R (x —) =
101,111, F R (x -) = 111. It m ight have shorter latency for re
but requires timing constraint y + before x — for correct opera
tion of signal x .

For m ore aggressive optim izations, let us consider the concur
rent transitions;;+ and y+ . They are triggered by the same event
x + and, because of the tim ing assum ption 2 * <5min > <5max, no
gate can fire until both outputs y and z are set to 1. Therefore,
for all other signals o f the circuit, the difference in firing times
o f y + and ;;+ is negligible. This means that, for the rest o f the
circuit, the firings of y + and z + are simultaneous and indistin
guishable, and they can replace each other in the causal relations
with other events.

In the xyz example, x — is the only transition that is affected
by ;;+ or y + . The dashed hyper-arc from y+) to x — [see

to x —. Formally, it means that for the triggering o f x —, any
nonem pty subset o f the set o f events {y + , z + } can be chosen.
This gives a set o f states in which x — can be enabled, E R (x —),
which is shadowed in Fig. 5(b).

CORTADELLA et al.: LAZY TRANSITION SYSTEMS AND ASYNCHRONOUS CIRCUIT SYNTHESIS 115

It is im portant to note the following.

• Even though a ; - m ight be enabled in any state o f ER(a;—),
its firing (due to tim ing assumptions) can occur only after
y + and ;;+ have fired. This defines I;R (./■—) = {111}.
This behavior is called lazy because a signal is not eager
to fire im m ediately after its enabling, but waits until some
other events have fired.

• Perform ance can be slightly affected, either positively or
negatively, by the fact that the arrival tim e of the new
trigger signals m ay be different from the ones in the spec
ification.

• The specified ER gives an upper bound for the set o f states
in which a signal can be enabled. In a particular im ple
m entation, the actual enabling region can be a subset o f
the specified enabling region. By exploring different sub
sets, several implem entations can be obtained and evalu
ated according to som e given cost criteria (e.g., area and
perform ance).

The ER o f a signal im plicitly results in a set o f vertices in the
DC space o f the corresponding logic function. For the enabling
of x — in the xyz example, different subsets of {101 ,110 ,111}
can be chosen. Transition x — fires at state 111, i.e., I;R (./■—) =
{111} and, therefore, any definition o f E R (x —) should cover
the state 111, since F R (x —) C E R (x —). Enabling x - in the
other two states 101 and 110 can be chosen arbitrarily, i.e., these
states can be m oved into the DC set o f the function for x [see
Fig. 5(c)]. After logic minimization, the function for x , which
simply becom es an inverter, is defined to be 0 in state 110 and
1 in 101, i.e., the enabling region corresponding to the im ple
mentation is E R (x —) = {110,111}. The back-annotation of
this im plem entation is shown in the STG of Fig. 5(e) in which
x — is triggered by y + instead o f z + . This change o f causal de
pendencies is valid under the assum ption that y + and ;;+ are
sim ultaneous w ith respect to x — and results i n ;;+ firing before
x —. This is indicated by a timing (dashed) arc.

The tim ed circuit in Fig. 5(d) is m uch sim pler than the speed-
independent one in Fig. 3(d). M oreover, if ju st a single timing
constraint “the delay o f z + is less than sum o f the delays o f
y + and x - ” is satisfied, then the optim ized circuit is a correct
im plem entation of the original specification. Section VII dis
cusses how to derive, from the untim ed specification and logic
implem entation, a reduced set o f constraints that are sufficient
to guarantee its correctness.

Two potential sources o f optim izations based on timing as
sumptions can now be applied:

1) unreachability o f some states due to tim ing (timed un
reachable states).

2) freedom in choosing enabling regions for signals due
to early enabling or sim ultaneity o f transitions (lazy
behavior).

In both cases, the DC space for the logic functions increases,
thus leading to sim pler implementations. U nreachable states
provide global don’t cares (DC for all next state functions),
while lazy enabling provides additional local don’t cares (DC
for the corresponding lazy signal only).

The idea o f using the DC space com ing from the tim ed un
reachable states is due to [14] and [2] and was successfully ex
ploited in the ATACS tool for the design o f tim ed circuits. To
our knowledge, the observation about the additional DC space
com ing from the lazy behavior appears for the first tim e in [21]
and is the m ain theoretical contribution of this work. This con
cept is developed in m ore detail in the next section.

IV. TIMING ASSUMPTIONS

Timing assumptions could be defined in the form o f a partial
order in the firing o f sets o f events, e.g., event a fires before
event b. However, this form is am biguous for cyclic specifica
tions because their transitions can be instantiated m any times
and different instances m ay have different ordering relations.
M ore rigor can be achieved at the unfolding level [35], i.e.,
when the original specification is unfolded into an equivalent
acyclic description. The theory o f tim ed unfoldings is however
restricted to sim ple structural classes o f STGs and the timing
analysis algorithms are com putationally expensive [36], [17].
This w ork relies on a m ore conservative approxim ation of
timing assumptions in LzTSs.

On the other hand, some specifications explicitly have m ul
tiple instances o f the same event, e.g., a + / I and a + / 2, with
different causality and concurrency relations. For sim plicity in
the nom enclature, this paper considers that the same timing as
sumptions are applied to all instances of the same event. E x
tending the approach to different assum ptions for different in
stances is quite straightforward .2

Some ordering relations between events are first introduced.
Definition 1: (Conflict) An event e\ £ E disables another

event e2 £ E if 3 s i % s 2 such that s i £ E R (e2) and s2 &
E R (e2). Two events e i , e2 e E are in conflict if e\ disables e2
or e2 disables e \.

Definition 2: (Concurrency) Two events e i , e2 £ E are con
current (denoted by e i || e2) if:

1) E R (e i) n E R (e2) ^ 0 and they are not in conflict;
2) Vs £ F R (e i) P lFR(e2) : (s i) £ T A (s * ^ s2) £ T =>

>s3) e T A £ T.
The second condition is the analogue o f the nonconflict require
m ent but is applied to the FR rather than the ER . It also requires
a “diam ond” shaped organization o f the FR (sometimes called
local confluence).

D efinition 3: (Trigger) An event e \ £ E triggers another
event e2 £ E (denoted by e \ e2) if ^ s 2 such that s i ^

This section proposes three types o f tim ing assum p
tions. Each assum ption enables transform ation o f an
LzTS A = ((S,E,T,sin),ER) into another LzTS
A' = ((S',E,T',sin),E R ') in which the set o f events
and the initial state rem ain the same, but there is typically
m ore freedom for logic optim ization. In A' enabling regions
are defined by ER ' as upper bounds o f enabling regions in all

2The tool petrify allows us to derive and specify relative timing assumptions
for individual instances of the same event.

116 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21,NO. 2, FEBRUARY 2002

abed

(a) (b)

abedi—»- - a+
/ \

------- 0*000 ***&+) 0*000 CD/. , 1 ER(d+)
b+ c+I | {7o*o*5y 10*0*0 5^

I*l0*0/l0*10^I »a- d+
i*io w io *iqK

\ < \ i +

\ 1 oio*o A m o \ io*i*i\
\ t - yc x' \ \

<0110* i*n*Xio*oi\ / \ > C / ((0110j^f*ll*l
b— 011*1 1*101 S ' 011*1 1*101
I ER(d+) \ / \ /

___ d- 01*01i FR(d+) 01*01
--------------0001* 1

0001*

(c)

abed
—* 0*000

I ER(a-)
10*0*0 ^

1*10*0 1*0*10*/
,fi*iio*} .

^ FR(a-)
0110* 1*11*1

\ / \
011*1 1*101

X01*01*
I—

iOOOl
_ER(d-)

FR(d-)

(d)

a+

b+ c+

7 \a- d

-c-d-'

(e)
Fig. 6. (a) STG, (b) transition system, (c) LzTS after difference assumption, (d) LzTS after simultaneity and early enabling assumptions, and (e) STG with timing
assumptions.

possible implementations according to the considered timing
assumption.

A. Difference Assum ptions

Given two concurrent events a and b, a difference assumption
b < a assumes that b fires earlier than a. Formally, it can be
defined through the maximum separation S e p max(b, a) between
both events [17], [37]. The m axim um separation gives an upper
bound on the difference between the firing times o f b and a. If
S e p m3bX(b, a) < 0 then b always fires earlier than a.

In an LzTS, this assum ption can be represented by the con
currency reduction o f a w ith respect to b. The new LzTS A! is
obtained from A as follows.

• L et C = E R (a) fl ER(6).
• T ' = T \ { s —̂ s '15 e B ackR each (F R (a),C)} .
• S ' = R each(sin , T ') .
• For any e e E : EFV(e) = ER (e) fl S '.

C is the set o f states in which a and b are both enabled (con
current). The transform ation removes the arcs labeled with event
a that start in states from C or states from E R (a) preceding C .

A ll tim ing assum ptions can be form alized by using the no
tion o f event separation. However, intuition on local tim ing be
havior is enough to reason about the assumptions presented in
this paper.

Let us illustrate the application of a difference assumption
6+ < d+ in the exam ple o f Fig. 6(a) and (b). C = {1010} and

B ackR each(FR ((i+), C) = {1010}. Thus, the arc 1010 ̂ >1011
is rem oved from T . A fter that, the set of states {1011,1001} be
comes unreachable. The resulting LzSG is depicted in Fig. 6(c)
w ith a lazy event d+ in w hich F R (d +) = {1110,0110} and
E R (d +) = F R (d +) U {1010}.

D ifference assum ptions are the m ain source for the elimina
tion o f tim ed unreachable states [14], [2], but they cannot fully
express the lazy behavior o f signals.

B. Sim ultaneity Assum ptions

Sim ultaneity am ong a set o f events is another kind o f timing
assum ption that has not been exploited explicitly in previous
work.3 It is relative notion which is defined on a set o f events

3Multiple input change in fundamental mode, as defined by Huffman [6],
required inputs to change “simultaneously,” i.e., within a small time window A.
However, this was not really exploited for optimization, and it did not result in
a clean design methodology.

E ' = j f ' i > i. \ w ith respect to a reference event a, trig
gered by some o f the events in E '. From the point o f view of
a, the skew in firing times o f events in E ' is negligible. For
m ally this can be defined by the following separation inequali-
ties: Ve*, e,- € E ' ,
is a lower bound for the delay o f event a.

The assum ptions are only applicable under the following con
ditions:

• Be £ E ' : e a.

Informally, the sim ultaneity conditions only hold when the
events in E ' are concurrent and at least one o f them triggers a.

The new LzTS A ' is obtained from A as follows.

• L et C = \J e .eE , E R (ej) n { s |3 s ' : e j € E '} .
• T ' = T \ { s —̂ s '15 e B ackR each(FR (a), C)} .
• S' = R each(sin , T ') .
• E R '(a) = (ER (a) U C) n S' .
• For any e e E ,e ^ a : E R '(e) = ER (e) fl S'

C is the set o f states in which some event in E ' has already
fired but som e other events in E ' are still enabled. Let us con
sider the simultaneity assum ption between transitions 6+ and
c + with respect to a - , a being an output signal, in the LzSG
from Fig. 6(c). In this case, C = {1100,1010}. This assum p
tion influences the LzSG in two ways.

1) State 0100, which is entered when a - fires before
c+ , becom es unreachable. From |S'epmax(c + , b+)\ <
S m in (a -) (coming from the sim ultaneity assumption)
and 5 e p max(6+ , a -) < 0 (coming from the causality
between b+ and a -) , the difference assumption
S e p maji(c+ , a —) < 0 can be inferred as well.

2) E R (a -) is extended to the state 1010 [see Fig. 6(d)].

The second point implies that sim ultaneity constraints, and
hence the possibility o f optim ization based on them, are
inherently m ore powerful than difference constraints only (that
capture only the first point).

C. Early Enabling Assum ptions

The sim ultaneity assum ptions exploit “laziness” between
concurrent transitions. This idea can be generalized for ordered
transitions as well. Assum e that event a triggers event b and
that the im plem entation of a is “faster” than that o f b (or
m ore formally: <5max(a) < Snun(b)). Then, the enabling o f b

CORTADELLA et al.: LAZY TRANSITION SYSTEMS AND ASYNCHRONOUS CIRCUIT SYNTHESIS 117

could be started sim ultaneously with the enabling o f a, and the
proper ordering o f a before b w ould be ensured by the timing
properties o f the implem entation. In the LzTS this would result
in the expansion o f ER(6) into E R (a).

Formally, the early enabling o f event b with respect to a can
be applied when a b. The new LzTS A ' is obtained from A
as follows.

• T = T. ^ ^ ^ ^

• E R '(6) = ER(6) U C .
• For any e e E ,e ^ b : E R '(e) = ER (e).

The early enabling o f d - w ith respect to b - is illustrated in
Fig. 6(d). A ll o f the introduced tim ing assum ptions are shown
in the STG o f Fig. 6(e), where the dashed arc (b + , d+) cor
responds to the difference constraint 6 + < d+ , the hyper-arc
(b + c + , a -) corresponds to the sim ultaneity o f b + . c + with re
spect to a - , and the triggering o f d - by a - and c - (instead o f
b—) shows the early enabling o f d — (the tim ing arc (b—, d —) is
needed to keep the inform ation about the original ordering be
tween b— and d -) . The transform ation for early enabling has
been defined only in the case o f one backw ard step, i.e., the im
plem entation o f one signal a that triggers b is faster than that o f
b, and hence b can be enabled at the same tim e as a and still fire
after a purely due to timing. This definition can be generalized
for m ultiple backw ard steps, i.e., the total delay o f the im ple
m entations o f two signals a and b such that a triggers b and b
triggers c is faster than the implem entation o f c, that can thus
be enabled together w ith a and still fire after b. O f course as
sumptions going beyond one step are often m uch less realistic
and harder to satisfy.

The above three types of tim ing assum ptions are the corner
stone for tim ing optim ization. N ote that difference constraints
are m ainly used for rem oval of the tim ed unreachable states,
while sim ultaneity and early enabling open a new way for sim
plifying logic by choosing a particularly useful lazy behavior of
the signals.

V. Synthesis W ith Relative T im ing

This section presents the theory for the synthesis o f
hazard-free asynchronous circuits w ith relative timing assum p
tions. Lazy transition systems are used as the specification
m odel that incorporates timing.

A. Im plem entability Properties

The next-state function defined for each output signal for the
im plem entation o f an LzSG as a circuit is as follows:

1, if 3s 6 F R (a+) U L zQ R (a+) s .t. A(s) = z
f a (z) = ^ 0, if 3s £ FR (a—) U L zQ R (a—) s .t. A(s) = z

otherwise
(2)

N ote that this definition generally gives m ore don’t cares than
the (1) for SGs due to two reasons.

• M ore states are unreachable, since timing assum ptions can
reduce concurrency.

• States in ER \ FR do not belong to either FR, or LzQ R ,
and hence are included into the DC-set.

For an LzSG to be im plem entable as a hazard-free circuit, the
properties o f CSC and output persistency m ust be extended.

The CSC property holds in an LzSG when f a is well defined,
that is if {but not only if) there exists no pair o f states (s, s ')
such that A (s) = A (s ') and s e E R (a +) U L zQ R (a +) and
s' e E R (a —) U L zQ R (a—). The condition can be relaxed be
cause CSC conflicts that involve states from E R \ FR could be
elim inated by treating ER \ FR as a D C-set for f a. However,
in order to sim plify things, we treat CSC conflicts only in the
fram ework o f the above sufficient condition.

The notion o f output persistency (see Section II) can also be
extended to LzTSs. If an LzTS is output persistent, then all sig
nals are hazard-free both for the pure and inertial bounded gate
delay models [38] when the bounds satisfy the timing assum p
tions im plied by the LzTS.

Definition 4: (Persistency) Given an LzTS A = (A ',E R)
with A' = (S , E . I . s in), an event e e E is persistent if e is
persistent in A! and E R (e) is a m onotonic cover o f FR (e).

Intuitively, persistency in LzTS indicates that once ER (e) has
been entered, it can only be exited by firing e. M oreover, persis
tency in A' indicates that no transition can switch an event from
fireable (in F R (e)) to only enabled (in ER (e) \ FR (e)).

Thus, an LzSG is im plem entable as a hazard-free circuit with
pure and bounded delays o f its gates if the following properties,
extended to LzSGs, hold: consistency, com plete state coding,
and output persistency. These conditions are an extension to
circuits w ith inputs and relative timing o f the semimodularity
conditions used by M uller to guarantee hazard-freedom for au
tonomous circuits with unbounded delays [8], [39], [40].

B. Synthesis F low With Relative Timing

The flow for logic synthesis with relative tim ing assumptions
is the following.

1) D efine a set o f timing assumptions on a TS A and derive
a specification LzTS A T = (A ',E R T) according to the
defined assumptions.

These assumptions m ust be provided by the designer
or generated autom atically (e.g., for inserted state sig
nals, as described below). They allow the transform ation
o f the TS in Fig. 3(b) to the LzTS in Fig. 5(b). This paper
proposes three types o f timing assumptions. They are de
scribed in Section IV.

2) The second step o f synthesis is state encoding, that is in
serting state signals for resolving CSC conflicts and thus
m aking an LzSG implementable. State encoding in our
logic synthesis fram ework is autom atically solved using
an extension o f the m ethod presented in [41].

• Only those encoding conflicts reachable in the
tim ed dom ain are considered in the cost function
(no effort is invested in solving unreachable con
flicts).

• Timing assumptions can be generated for inserted
state signals using the rules from Section VI, im
plying that the events o f state signals can also be
lazy.

118 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2002

It is im portant to notice that the autom atic generation of
timing assumptions is crucial to optim ize the behavior of
the circuit when signals not observable in the specifica
tion, e.g., signals for state encoding, are considered.

3) Derive another im plem entation LzTS A j = (A ',E R j)
in which the im plem entability conditions hold and
E R j(e) C E R T (e) for any event e.

A t is the LzTS that defines the upper bounds on the
ERs o f the events, i.e., how early each event can be en
abled w ithout firing. A / defines a particular im plem enta
tion in which the enabling of each event cannot be earlier
than the one defined by A T . The m ethod for defining A j
from A t is done through logic m inim ization and is ex
plained in detail in Section V-C.

4) Derive a circuit im plem entation for the corresponding
LzSG according to the logic functions defined by (2).

5) Back-annotate tim ing constraints sufficient to the correct
ness o f the implementation.

Steps 3) and 4) are discussed in Section V. Steps 1) and
5) are presented in Sections VI and 7, respectively. Step
2) is not discussed in m ore detail, since the basic theory
is sim ilar to that for speed-independent circuit synthesis
presented in [41].

In the exam ple o f Fig. 5(b), the only lazy event is x —. For
signal x , the following regions are defined:

For the circuit in Fig. 5(e), the corresponding A j fulfills the
properties for im plem entability and has the following regions
for signal x:

C. Synthesis Algorithm

The m ethod presented in the previous sections has been im
plem ented in the tool petrify that can synthesize asynchronous
circuits from STG specifications.

The tim ing assumptions on the behavior o f the circuit and
the environm ent can be specified by the designer or generated
autom atically (see Section VI). Two types o f assum ptions are
accepted.

• r (a) < t(6) , indicating that event a w ill occur before
event b. In case both events are concurrent, it corresponds
to a different assum ption. In case a triggers b, it corre
sponds to the early enabling o f b w ith respect to a.

• r (a) ~ r (6) w r t c, indicating that the firing o f a and b can
be considered sim ultaneous with regard to c (simultaneity
assumption).

In the exam ple of Fig. 5, the following assumptions have been
specified for optimization:

Fig. 7. Algorithm for logic synthesis of output signal .

The algorithm for the synthesis of each output signal x is shown
in Fig. 7, in which the definition o f A has been extended to sets
o f states and boolean vectors as follows:

A

—(A (s) | s e X }

= { s e S | A(s) e

The algorithm takes an LzTS, A T , as input and generates an
other LzTS, A j , and a logic function C (x) for each output
signal, according to the design flow described in Section V-B.
In case each function C(x) is im plem ented as a com plex gate,
the circuit is guaranteed to be hazard-free under the given timing
assumptions.

This heuristic algorithm calculates E R / iteratively until a
m onotonic cover is found. Initially, ON and OFF are defined
in such a way that the states in E R T (a:+) \ I;k (•'■+) and
ER t (:e—) \ I;R (./■—) are not covered, i.e., their binary codes
are in the DC set. Boolean m inim ization is invoked by defining
the ON- and the OFF-set, and a com pletely specified function
is obtained. Next, m onotonicity o f C (x) is checked. H on is
the set o f states in E R /(:r+) covered by C(x) that lead to
another state in E R /(:r+) not covered by C(x) . These states
are rem oved from KR/(./■+) for the next iteration. The loop
converges m onotonically to a valid solution bounded by the
case E R /(x +) = F R (x +) . A sim ilar procedure is perform ed
on the com plem ent o f C i x) for KR/(./■—). Thus, the DC set
is reduced at each iteration o f the algorithm to enforce the
m onotonicity o f the cover. This reduction is illustrated in Fig. 8.

In practice, m ost covers C (x) are m onotonic after the first
Boolean m inim ization and no iteration is required. Only in some
rare cases, m ore than two iterations are executed.

Petrify includes a Boolean m inim izer that delivers several
covers with sim ilar cost. One is selected am ong them by using
a prioritized cost function that takes into account monotonicity,
literal count, and concurrency. Those covers that include a larger
num ber o f states from E R T are considered to be m ore concur
rent and hence potentially exhibit better global perform ance.

The algorithm in Fig. 7 generates a netlist o f com plex gates
based on the functions C (x) obtained by the m inim ization pro
cedure. This algorithm can be easily extended to the synthesis o f
asynchronous circuits w ith C elements and Set/Reset functions,
S (x) and R(x) , corresponding to the enabling o f ./■+ and x —,

CORTADELLA et al.: LAZY TRANSITION SYSTEMS AND ASYNCHRONOUS CIRCUIT SYNTHESIS 119

LzQRj(x-) LzQRj(x-)

- ' 'v - V ' - ' ~ ' -
" * > t

FR(x+)
ERj(x+)

FR(x+)

LzQR,(x+) LzQRj(x+)

:>
>ER!(x-)

FR(x-) FR(x-)

LzQRj(x-) LzQRj(x-)

Fig. 8. Iteration to reduce ERj for nonmonotonic covers.

respectively. The m onotonicity conditions for S (x) and R (x)
have also been studied in [42] and [43].

VI. Automatic Generation of Relative T im ing
Assum ptions

The tim ing assumptions described in the previous section can
be provided by the designer based on the knowledge the she or
he m ay have o f the circuit and its environment. However, m any
assumptions can be derived autom atically by considering some
sim ple delay m odel, e.g., a unit gate delay m odel, that m ay ap
proached to the reality by allowing delay padding or transistor
sizing on the synthesized circuit. Here are two typical assum p
tions that illustrate w hat can be assum ed by the synthesis tool
and what m ust be provided by the designer.

• Synthesis assumption: when two internal signals are
enabled simultaneously, one o f them can fire before the
other. This assum ption can be ensured after synthesis by
padding some delay to the signal that has been assum ed
to be slower.

• User-defined assumption: when two inputs are enabled,
one will fire before the other. This assum ption requires
some knowledge about the environment. N o assumption
can be m ade a priori about the firing order o f the events
w ithout that knowledge.

The tool petrify enables the designer to provide tim ing as
sumptions. These assumptions are checked to be consistently
defined according to the behavior o f the system, e.g., no differ
ence constraints can be specified between a pair o f events that
are not concurrent. M oreover, the tool is also capable o f gen
erating synthesis assumptions based on a sim ple delay m odel.
This autom atic generation leverages the task of the designer in
providing timing inform ation and allows the tool to m ake as
sumptions on signals inserted during synthesis and not observ
able in the specification (e.g., state encoding signals). These as
sumptions are checked not to contradict any o f the user-defined
assumptions.

This section presents a m ethod for autom atic generation of
relative timing assumptions. First, ordering relations between
events are defined. Then, the intuition behind this m ethod is

explained using a sim ple delay m odel for input and noninput
events and rules for deriving tim ing assumptions are given.

A. Ordering Relations

L et A = ((S , T , E , s in), ER) be a lazy transition system.
D efinition 5: (Enabled Before) Let e i, e2 £ E hc two con

current events. e \ca n be enabled before4 e2 (denoted by e i< e 2)
if 3 s i —> s 2 such that s i € E R (e i) \E R (e 2) and s 2 e E R (e i) n

D efinition 6: (Enabled Simultaneously) Let e i , e2 £ E hc
two concurrent events, ei and e2 can be enabled simultaneously
(denoted by ei<)e2) if 3 s i —> s 2 such that s i ^ E R (e i) U

The following definition is an extension o f definition 5 to sets
of events. For ap roper understanding, some intuition is required.
It is helpful to m odel the situation in which an event e is m uch
slower than another set o f events X and e is never enabled be
fore any o f the events in X (see Section VI-C.3). This situation
occurs in systems in which the input events (environment) are
m uch slower than the output events. The expected behavior is,
thus, that the input event fires after all the output events. The
definition itself, however, is concerned with the opposite case,
in which an event can be enabled before a set o f events X ,
and hence it describes the conditions when tim ing optim ization
cannot be applied.

D efinition 7: (Enabled Before a Set o f Events) L et e £ E
be an event pairw ise concurrent with all the events in the set
X = { e i , . . . , en } C E .e can be enabled before X (denoted by/
e < X) if —"*s2 such that s i £ ER (e) \E R (X) , s 2 £ ER (e) PI
E R (X) and e' ^ X , where E R (X) = E R (e i) U • • • U E R (e„).

In the above definition, e is an event pairw ise concurrent with
all the events in X . L et us call E R (X) the union o f all excitation
regions o f the events in X . Since e is concurrent w ith all events
in X , then ER (e) fl E R (X) is not empty.

Now assum e that e is a slow event (e.g., from the environ
ment). Assum e that internal/output events are very fast (this is a
sim ilar situation as in fundam ental m ode asynchronous circuits

4We say “can be” because different occurrences of can be both before and
after e2. This definition is concerned only with the existence of the former.

120 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21,NO. 2, FEBRUARY 2002

(a)

Fig. 9. (a) Petri net and (b) transition system.

(b)

[7]). If we know that e is never enabled before entering E R (X),
then we know that all events in X will fire before e. This even
considers the possibility that the events in X have causality re
lations among them.

Fig. 9(b) depicts the transition system derived from the
Petri net o f Fig. 9(a). Events a and b are not concurrent, since
E R (a) = { s0} and ER(6) = { s i , s n } are disjoint. Events c
and / are concurrent. M oreover, c can be enabled before / since
there is a transition s 2 —> s 5 such that s 2 £ ER(c) \ E R (/) and
s 5 € ER (c) n E R (/) . However, / cannot be enabled before
c. Events d and / are also concurrent and they can be enabled
before each other (see transitions s 3 — s 6 and s 5 — s 6).
Events c and e are also concurrent but none can be enabled
before each other, i.e., they are always enabled simultaneously.

Let us now analyze the enabling relation o f event d with
some sets o f events. Event d cannot be enabled before {e, / }
but can be enabled before {e, f , g } since there is a transition

sg —>si9 such that sg € ER(eQ \E R ({ e , f , g }) , S19 € ER(d) fl
ER ({e, f , g }) and h {e, f , g } . On the other hand, d cannot be
enabled before {e, / , g, h }.

B. D elay M odel

This section presents a very simple delay m odel for events of
a TS that gives an intuitive m otivation for the autom atic gener
ation o f tim ing assumptions. A sim ple delay m odel is needed,
sim ilar to the literal count in com binational logic synthesis that
can be com puted before deriving a logic im plem entation and
that allows us to bootstrap the tim ing optim ization process. The
m odel, although simple, generates reasonable tim ing assum p
tions that can be satisfied by gate selection or transistor sizing.
This fact will be shown by com parison with m anual designs in
Section VIII. This delay m odel can be changed depending on
the design requirem ents.

The delay o f an event is defined as the difference between
its enabling tim e and its firing time. Three types o f events are
considered5 :

N oninput events: their delay is in the interval [1 — e, 1 + e];
Fast input events: their delay is in the interval (1 + e, oo);
Slow input events: their delay is in the interval [A, oo).

In this context, e denotes the m axim um allowed delay variation
o f each event with regard to a unit delay. The synthesis approach
also assumes that:

• the delay o f a gate im plem enting a noninput event can be
increased to be larger than that o f another gate by delay
padding or transistor sizing;

• the delay o f two gates can always be m ade longer than the
delay o f one gate. Hence, this imposes the constraint that
e < 1 /3;

• the circuit will never take longer than A tim e units (m in
im um delay o f a slow input event) in becom ing stable from
any state o f the system assuming a quiescent environm ent
(no input events firing).

The previous assumptions on the timing behavior o f the cir
cuit can be translated into assumptions on the firing order o f the
events.

C. Rules fo r D eriving Timing Assum ptions

Rules for deriving tim ing assumptions are presented in the
following format.

Ordering relations: ordering relations that m ust be satis
fied in an LzTS for a rule to be applied.
Timing assumption: a timing assum ption that can be gen
erated automatically.

5“Very fast” input events that are not slower than some internal events can be
considered as well and treated more or less like noninput events. This consider
ation is omitted here for simplicity.

CORTADELLA et al.: LAZY TRANSITION SYSTEMS AND ASYNCHRONOUS CIRCUIT SYNTHESIS 121

Justifying delay assumptions: inform al justification o f a
rule based on the above delay m odel.

1) Assum ptions Between N oninput Events: Assum e that
e i , e 2, e 3 £ E are noninput events. The first three rules apply
when events e \ and e2 are concurrent. The fourth one applies
when e i triggers e2. The following rules can be applied for
deriving timing assumptions between noninput events:

I) Event enabled before another event.
Ordering relations: (e i || e2) A (e i < e2) A (e2

e i) A (ei<>e2).
Difference tim ing assumption: fires before e2
Justifying delay assumptions: the delay o f one gate

can be m ade shorter than the delay o f two gates.
II) Events sim ultaneously enabled.

Ordering relations: (e i || e2)A (ei<)e2)A (e2 e i) .
Difference tim ing assumption: fires before e2
Justifying delay assumptions: the delay of the gate

im plem enting e2 can be m ade longer than the delay of
the gate im plem enting e \ .

III) Event triggered by events simultaneously enabled.
Ordering relations: (e i || e2) A (e i e2) A (e2

Simultaneity timing assumption: e± and e2 are si
multaneous with respect to e3.

Justifying delay assumptions: the difference in delay
o f two gates can be m ade shorter than the delay of one
gate.

IV) Early enabling for ordered events.
Ordering relations: (e i e2).
Early enabling tim ing assumption: e i fires before e2

(but e2 can be enabled concurrently with e i).
Justifying delay assumptions: the delay o f the gate

im plem enting e \ can be m ade shorter than the delay o f
the gate im plem enting e2.

L et us illustrate the previous cases with the example o f Fig. 9.
Let us assum e that all events are noninput. Timing assumptions
of Type I can be derived for the pairs o f events (c, /) , (c,g)
and (e, d), where the first elem ent o f the pair is assum ed to fire
before the second.

Timing assumptions o f Type II can be applied to the pairs
(6, h) and (c, e). N ote that in both cases, the enabling condi
tions are symmetric, i.e., both events are always enabled sim ul
taneously. However, only one firing order can be chosen by as
suming that one o f the events can be delayed by increasing the
delay o f its corresponding gate. This choice can be done heuris-
tically by considering different im plem entation factors. For ex
ample, the choice o f one specific firing order m ay m ake some
states with encoding conflicts unreachable. A nother possible
heuristic would be to estim ate the com plexity o f the logic for
each event. If the gate corresponding to one event is m ore com
plex than the other, it can be assum ed that the form er will be
slower than the latter (thus avoiding delay padding to m eet the
timing assumption).

Timing assum ptions o f Type III can be applied to the events
triggered by the pairs (b, h) and (c, e). Let us analyze the pair
(6, h) that triggers the events c, e, and g. The timing assumption
inform ally m eans that the difference between the firing times

of b and h is indistinguishable from the point o f view o f c, e
and g. This opens new possibilities for optim ization by using
the sim ultaneity constraints m entioned in Section IV.

Timing assumptions o f Type IV can be applied, e.g.,
to the event d triggered by the event c. For this as
sumption, the enabling region for d includes the states
{«2j s 5 , s», « i2, s i 5, s is , s 2i} in addition to the states
{ s3, s 6, sg, s 13, S16, S19, s 22} already in the firing region.

2) Assum ptions Between N oninput and Input
Events: Assum e that e \ , e2 e E are a noninput and an input
event, respectively, and that they are concurrent.

V) Input not enabled before noninput event.
O rdering relations: (ei || e2) A e2 f5 ei.
D ifference tim ing assum ption: e \ fires before e2.
Justifying delay assumptions: the delay o f environ

m ent is longer than the delay o f one gate.

This assum ption is sim ilar to Types I and II for the case in
which e2 is an input event. The delay assum ption used in this
case states that the response tim e o f the environm ent (both slow
and fast) will always be longer than the delay of one gate.

3) Assum ptions Between N oninput Events and Slow
Input Events: Assum e that e e £ is a slow input event,
X = { e i , . . . , en } C ii’ is a set o f noninput events and e is
pairw ise concurrent w ith all the events in X .

V I) Slow input not enabled before noninput events.
O rdering relations: (Ve* £ X : e || e*) A e X .
D ifference tim ing assum ptions: X fires before e.
Justifying delay assumptions: the delay of the slow

input event is longer than A (the delay required by the
circuit to stabilize under a quiescent environment).

To illustrate the m eaning o f this timing assumption, the ex
am ple o f Fig. 9 is considered, where h is an input event and d
is a slow input event. The rest o f the events are noninput. After
firing the events a, b and c a state in which d, e and h are en
abled is reached (s3). A t this point it can be assum ed that e and
/ w ill fire before d (two gate delays versus slow environment).
However, no assumptions can be m ade about the firing order
between d and g since g is preceded by an input event (h) for
which no upper bound on the delay can be assumed. If h had
been a noninput event, d would be assum ed to fire after h and g
also.

VII. Ba c k -Annotation of T im ing Constraints

Logic synthesis w ith relative tim ing assumptions is able to
derive a hazard-free circuit that is correct in the tim ed domain,
i.e., in that subset o f states o f the untim ed dom ain that is reach
able by applying the timing assumptions. A fter the logic syn
thesis step the assumptions contributing to the synthesis results
are propagated to the back-end (e.g., sizing) tools as a set o f con
straints to be satisfied. A fter back-end design is com pleted the
validity o f the timing constraints m ust be verified or validated
to ensure the correct function of the circuit.

Some o f the timing assumptions provided by the user or au
tom atically generated do not contribute to restricting the set of
reachable states or the set o f transitions and hence are redun
dant. M oreover, the circuit netlist derived by logic synthesis m ay

122 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21,NO. 2, FEBRUARY 2002

Fig. 10. (a), (c) SGs with timed domains. (b) Circuit.

be correct for a set o f states larger than the one defined by the
tim ed domain, i.e., one which can be obtained by a set o f less
stringent timing assumptions. In other words, some o f the timing
assumptions are redundant for a particular logic synthesis solu
tion, while some other can be relaxed. This section attempts to
answ er the following question:

Can we derive a m inimal set o f timing assum ptions sufficient
fo r a circuit to be correct?

This set o f tim ing assumptions back-annotated for a given
logic synthesis solution is called tim ing constraints. Timing as
sumptions (both m anual and autom atic) are part o f the spec
ification and provide additional freedom for logic synthesis,
w hile tim ing constraints are a part o f the implem entation, since
they constitute sufficient requirem ents to be m et for a particular
netlist solution to be valid.

A. Example 1

Let us analyze the exam ple in Fig. 10. The shadowed states in
the SG o f Fig. 10(a) correspond to the tim ed dom ain determ ined
by the tim ing assumptions

z + < y + and y + < x — .

U nder these assumptions, logic synthesis can be perform ed by
considering the states 110 and 001 unreachable.

The circuits o f Figs. 4(d) and 10(b) have a correct behavior
under the stated assumptions. Looking at the circuit o f Fig. 4(d)
the following can be observed.

• The gates x = z + x y and y = x + z are correct im ple
m entations for the whole untim ed domain.

• The gate z = x is a correct im plem entation for all the
states except for 001. In this state, z —is enabled according
to the next state function o f the implem entation, but it is
not enabled according to the specification.

Thus, even though the circuit has been obtained using the DC
set im plied by both assumptions, only one relative tim ing con
straint y + < x — m ust be ensured for the circuit to be correct,
because only pa rt o f the enlarged D C set has been used in a

way that is inconsistent with the original specification. In gen
eral, each gate o f the circuit is correct for a subset o f the untim ed
dom ain which is also a superset o f the tim ed domain. The cir
cuit is correct for those states in which all gates are correct.

B. Example 2

Let us now take the im plem entation o f Fig. 10(b) and ana
lyze the gate x = y, while ignoring the other gates for now.
W ith regard to the untim ed domain, the next-state function for
x disagrees with the gate x = y in three states: 001, 110, and
101. B ut the consequences are different in each state. In 110, x
should rem ain stable at 1. However, the gate x = y makes the
transition x - enabled in state 110. To preserve circuit correct
ness two options are possible.

1) The state 110 could be m ade unreachable by concurrency
reduction. This in turn could be achieved in two ways:

• by concurrency reduction in the untim ed domain,
based on changing logic (i.e., trigger) dependencies
between signals as described in [44], [45];

• by concurrency reduction in the tim ed domain, based
on relative tim ing constraints that would preserve
concurrency for enabling , but restrict concurrency for
fir ing o f signal transitions.

2) The state 110 could rem ain reachable, while a : - would be
enabled but not fireable, since another enabled transition
fires before x —. M ore formally: 110 e E R (x —) /F R (./■—).

Similar considerations can be m ade for state 001.
State 101 illustrates a different case. According to the orig

inal specification SG, x — is enabled in 101. In the im plem en
tation, however, signal x is stable in 101. This corresponds to a
concurrency reduction for signal x in the untim ed domain, and
this is generally considered to be a valid im plem entation o f the
original specification. Concurrency is reduced because state 101
becomes a don’t care vector for signal x when 001 is assum ed
to be unreachable (see Section IV). In summary, for the correct
ness o f the gate x = y, it is sufficient that the states 110 and
001 are unreachable. However, the gate x = y ensures that state
001 is unreachable. Hence only 110 m ust be m ade unreachable

CORTADELLA et al.: LAZY TRANSITION SYSTEMS AND ASYNCHRONOUS CIRCUIT SYNTHESIS 123

TABLE I
Correctness Requirements for the

Circuit of Fig. 10(b)

Gate
x = y
y = z
z = x

Unreachable states
required ensured by logic
110,001

110
001

001
110

by timing constraints or by further concurrency reduction at the
logic level.

A sim ilar analysis can be done for the gates y = z and z = x.
The sufficient requirem ents for the correctness o f all three gates
are sum m arized in Table I. Interestingly, it can be concluded
that the circuit is correct under any tim ing assum ption, i.e., it is
speed-independent, since all states required to be unreachable
are forced to be unreachable by the concurrency reduction due
to the chosen gate implem entation. In particular, state 001 needs
to be unreachable for gate z = x to be a correct implem entation
of signal z and it is m ade unreachable by im plem enting signal
x w ith a gate x = y

C. Example 3

L et us consider the same example under the assum ption “
z + and y + are sim ultaneous with respect to x - . ” U nder this
assumption, state 001 is unreachable. In addition, states 101
and 110 becom e don’t cares for signal x , since both belong to
HR!'./'—) according to the semantics o f the sim ultaneity assum p
tion.

Only one tim ing constraint, ,?+ < a;—, is sufficient for the
circuit in Fig. 5(d) to be correct. Gate x = y is not enabled
in 101, hence concurrency is reduced in this state with respect
to the original specification and state 001 becomes unreachable
under any gate delay. On the contrary, state 110 corresponds to
the expansion o f ER(a;—). This enabling is lazy since 110 e
E R (x -) /F R (x -) .

D. Correctness Conditions

The synthesis flow presented in this paper starts w ith an un
tim ed specification A = (S , E , T , s i n). A fter logic synthesis
with tim ing assumptions, a gate im plem entation is obtained.

L et us consider the circuit operation, ignoring tim ing assum p
tions. The untim ed behavior o f the gate im plem entation from a
given initial state s in can be represented by a transition system
A g = (SG . E G.T G. A g is obtained from A by substi
tuting T w ith the new transition relation T G, that coincides with
T for the input events and models the behavior o f the gates for
the output events. Finally, T c and S G are calculated by only
considering the reachability set from s in .6

In the rem ainder o f this section the following assumptions are
used entirely for the sake o f sim plicity o f exposition. They are
not the constraints o f the theory or the implementation.

• The set o f signals o f A and A G are assum ed to be the same
and the states are assum ed to be uniquely identified by
their encoding.

6Obviously, circuit operation within A G, may not be correct outside timing
domain, e.g., it may be hazardous.

• The set o f states S G reachable by circuit G in the untim ed
dom ain can be m uch bigger than the original set S due to
the possibility o f reaching incorrect corners o f behavior. It
is sufficient to calculate only a border o f incorrect behav
iors instead o f the entire S G.

• The original transition system A is not required to be
untimed. It can include some tim ing assumptions (e.g.,
user-defined tim ing assumptions regarding the behavior of
the environment). This helps to reduce the state space of
the original specification for large circuits.

Since A G is an untim ed behavior, T G m ay contain transi
tions not present in T , e.g., those transitions reachable when
the tim ing assumptions used for synthesis are not considered
for calculating the reachability space. On the other hand, some
transitions in T m ay not belong to T G due to the concurrency
reduction im posed by the im plementation.

The problem to be solved is to find a set o f timing constraints
such that, after being applied to A c , a new lazy (timed) transi
tion system A c = ((S c , E , T c , s i n), ER C) is obtained in such
a way that T c c T Hi TG and the gate netlist derived for A G is
still a valid im plem entation for A C P

Here, valid im plem entation should satisfy three conditions.

1) The sequences o f signal transitions produced by the cir
cuit, when operated within an originally specified envi
ronm ent and timing constraints, are a subset o f the se
quences allowed by the STG (no new transitions is al
lowed).

2) No new8 deadlocks (states in which no signal transition
is enabled) are created.

3) The im plem entation is hazard-free, i.e., A c is output per
sistent.

L et us define three predicates characterizing the above con
ditions:

new_ _ [ai*'J ^ rji

These are transitions that can fire in A G (untim ed circuit) but
cannot fire in the original specification.

D ue to the concurrency reduction that m ight have been ap
plied during logic synthesis, some states o f S m ay becom e un
reachable in S G. The concurrency reduction eliminates some
transitions in T G that m ight result in new deadlock states if all
outgoing transitions from a reachable state are removed. Such
deadlocks can be avoided by making them unreachable during
legal circuit operation. Thus, we define

to -dead lock(G) = { s0^ 6 T G \ s ' is a deadlock in A G

but not in A}.

N ew hazardous states are captured with the following predi
cate:

to-hazards(G) = {s“-4s' e T G |s' is output nonpersistent

in - V ;• but not in A}.

7The set of states is implicitly induced by the initial state and the transition
relation.

8One may argue that the original STG should not have contained any dead
locks any way, but we do not make such an assumption in the following, i.e.,
deadlocking specifications are considered legal, and we just do not introduce
new ones.

124 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21,NO. 2, FEBRUARY 2002

Fig. 11. Formulation of the back-annotation problem. {Ci, C2 } is a set of
timing constraints sufficient for the correctness of the circuit.

Finally, we define

valid(G) = T g \ (new_tr(

E. Problem Formulation

U to_deadlock(G)

U toJiazards(G)).

The problem to be solved consists o f finding a set C o f timing
constraints, not m ore stringent than the ones used for synthesis,
such that the set o f transitions T c obtained after applying the
constraints is a subset o f valid(G).

A trivial solution to this problem is to take the com plete set of
tim ing assumptions used for logic synthesis. Our goal, however,
is to find a less stringent set o f constraints sufficient to m ake the
circuit correct. In general, we should look for such a set o f con
straints that “m akes m ost sense” or that is easiest to satisfy. But
the solution o f this optim ization problem , unfortunately charac
terized by a very fuzzy cost function, is left to future work.

Instead, a state-based cost function is used to guide heuristics
aiming at finding the set C o f tim ing constraints. The cost func
tion is based on the following observation: large state spaces
generally require sim ple constraints.

A corner case of the back-annotation problem would be the
situation in which a speed-independent circuit is derived after
synthesis with timing assumptions. In that case, the solution to
the problem would be an em pty set o f timing constraints (see
Exam ple 2 in this section).

Fig. 11 illustrates the back-annotation problem . The arrows
denote the invalid transitions o f the circuit. The “tim ed dom ain”
represents that state space o f the circuit under all tim ing assum p
tions. S G n S represents the state space in which the circuit be
haves correctly. Similarly for the transitions not exiting S g n S .
The constraints C \ and C> are less stringent than the tim ed do
m ain defined by all timing assumptions and are enough to guar
antee the correctness o f the circuit. N ote that the states in S \ S G
are those elim inated by concurrency reduction. A lso note that
constraint C l cuts one o f the transitions from the timing do
m ain to the region o f incorrect behavior, which otherw ise m ight
occur due to early enabling.

F. Finding a Set o f Timing Constraints

Relative timing constraints are defined in terms o f firing order
o f events. Constraining the firing order between a pair o f events
only makes sense when they are concurrently enabled. Thus,
each tim ing constraint C, can be denoted by an ordered pair of

Fig. 12. Example for back-annotation.

TABLE II
Unreachable States fo r Each Pair of Ordered Events ex < e2

in the Example of Fig. 12. The Pairs in Bold Indicate Those
Constraints That Preserve the Timed Domain

concurrent events, e.g., C* = (e3 < ek). Given a constraint
Ci = (ej < ek), the set o f arcs disab led (C i) are defined as

^1; • • • ; Sn — 1 ^F R (e^) A S n

GFR(efc) n F R (e JI')}.

In particular, the path s i —> • • • —> s n can be em pty if s e
FR(e:)') fl FR(efc). d isab led (C i) is the set o f arcs w ith label ek
that m ust not fire in order for e j to fire before ek , i.e., those
arcs with source states in which both events are concurrent or
preceding FR(e3) n FR (efc) inside FR (efc).

Given a set o f constraints C = { C \ , . . . , Cp}, d isab led(C i)
can be used to com pute T c that is the set o f reachable transitions
after rem oving the ones in

|^J disab led (C i).
c i e c

Finding a set C that removes all transitions not in va lid (G)
can be posed as a covering problem in which all possible firing
order constraints o f pairs of events are the covering elements.

Currently, petrify uses a greedy approach to solve the cov
ering problem . It m erely consists o f choosing the constraint
that removes the m axim um num ber transitions not in va lid (G)
and that have not been rem oved by previous constraints. This
process is repeated until all reachable transitions becom e valid.

G. Example 4

Fig. 12 shows an exam ple with a sim plified version o f the
back-annotation problem , given that the rem oved objects are
states instead o f transitions. Assum e that the set o f states S G =

CORTADELLA et al.: LAZY TRANSITION SYSTEMS AND ASYNCHRONOUS CIRCUIT SYNTHESIS 125

table iii
Experimental Results: Specifications Without CSC (a) and With CSC (b)

circuit S I q

Area
Sit TI

Response time
SIa SI(TI

State signals
SIa SIt TI circuit

Area
SI TI

a d fa s t 18 31 13 2.17 1.00 1.00 2 2 0 c h u 133 15 14

a llo c -o u tb o u n d 20 23 22 1.50 1.11 1.00 2 2 2 c h u l 50 16 14

m a s te r - re a d 65 79 45 2.29 1.33 1.29 7 7 3 c o n v e r ta 19 14

m m uO 33 47 20 2.31 1.38 1.38 3 3 0 e b e rg e n 16 16

m m u l 25 32 15 1.60 1.12 1.12 2 2 1 h a lf 8 7

m rO 50 51 30 1.60 1.45 1.15 3 3 2 h a z a rd 8 8
m r l 36 39 20 2.25 1.19 1.19 4 3 0 m s la tc h 24 20
n a k -p a 24 35 24 1.25 1.00 1.00 1 1 1 t r im o s -s e n d 30 21
now ick 18 19 16 1.50 1.17 1.00 1 1 1 v a r l 18 8
r a m -re a d - s b u f 30 26 21 1.10 1.00 1.00 1 1 0 v b e 5 b 13 12
sb u f - ra m -w r ite 24 44 24 1.63 1.00 1.00 2 2 1 v b e5 c 10 10
s b u f - re a d -c tl 18 21 16 2.00 1.50 1.50 1 1 1 v b e 6 a 28 24

seq3 18 22 18 1.50 1.00 1.00 2 2 2 v b e lO b 32 26

se q -m ix 23 28 24 1.40 1.20 1.00 2 2 2 w r d a ta b 35 33

v m e b u s 22 33 17 2.29 1.57 1.57 1 1 0
Total 424 530 325 1.76 1.20 1.15 34 33 16 Total 272 227

(a) (b)

{ s0, . . . , sio} is reachable by the untim ed im plem entation o f the
circuit and that the set o f states { s0, s i , s 2, s 5, s 8, s9, .si(l \ is the
one reachable after considering the delays o f the circuit. How
ever, incorrect behavior is only m anifested in the states s 6 and
s 7. Table II contains the set o f states that becom e unreachable
by reducing the concurrency between each pair o f concurrent
events.9 For example, by imposing the order d < b, the states
s 2 and s 3 becom e unreachable.

The problem to be solved is the following: find a small set
o f ordering constraints between pairs o f events such that the
new set o f reachable states does not intersect the set o f incorrect
states { s6, 57}. Moreover, we w ant to maximize the set o f reach
able states, i.e., to find a set o f timing constraints that makes a
small num ber o f correct states unreachable and keeps the TS
strongly connected. Larger sets o f reachable states heuristically
result in less stringent sets o f constraints, thus sim plifying the
validation or verification o f the circuit. M oreover, they often
imply m ore concurrency and hence heuristically result in better
global perform ance.

The problem can be posed as a covering problem . The cells
o f Table II in bold correspond to those constraints that do not
rem ove any state from the tim ed domain. The covering problem
can be form ulated as follows:

(e < c) A (b < d V b < e).

The constraint e < c is the sim plest one removing the state s 6.
Any other one (e.g., e < b) is m ore stringent. The constraints
b < d and b < e are the ones that can rem ove the state s 7. The
m inim um -cost solution is

C = {e < c, b < e}

and

9For simplicity, unreachable states are reported in the table for this example.
In general, the analysis must be performed by calculating the removed disabled
arcs. In this particular case, the resulting analysis is the same.

VIII. Experim ental Results

The techniques for autom atic derivation o f relative tim ing as
sumptions and synthesis o f asynchronous circuits using lazy
transition systems have been im plem ented in the tool petrify
and applied to control circuits from RAPPID [12] and a set
o f other benchm arks. First, results for a standard set o f aca
dem ic benchm arks using conservative (unfavorable for RT) per
form ance estimates are shown. Then a detailed analysis o f a
FIFO exam ple is presented for estimating the real advantages
in perform ance offered by RT, with autom atic tim ing assum p
tions versus a speed-independent solution with concurrency re
duction. Finally, a com parison o f RT solutions derived autom at
ically versus m anual solutions is presented.

A. Academ ic Examples

The results for a well-known set o f academ ic benchm arks are
presented in Table III.Table III(a) and (b) present the results for
specifications w ithout and with state coding conflicts respec
tively.

The experiments have been perform ed as follows.

• Columns labeled with S I 0 report results for speed-inde
pendent circuits derived by inserting state signals with the
aim o f m inim izing area.

• Columns labeled with S I t are derived similarly, but with
the aim o f m inim izing delay. Petrify tries to increase
the concurrency o f the newly inserted signals until they
are outside the critical path o f the specification. In case
the original specification has no encoding conflicts
(Table 111(b)), there is no difference between S I 0 and S I t .

• Columns labeled w ith TI report results for RT circuits.
Relative tim ing assumptions are derived autom atically by
considering the environm ent to be slow . State signals are
inserted aiming at delay m inim ization.

For each experiment, area is estim ated as the num ber o f lit
erals o f the set and reset networks of generalized C-elements.

126 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21,NO. 2, FEBRUARY 2002

Fig. 13. (a) FIFO controller, (b) specification, (c) specification with state encoding signal, (d) RT implementation with gC elements, and (e) timing constraints
sufficient for correctness.

Delay (response time) is estim ated as the average num ber of
noninput events in the critical path between the firing o f two
input events. Given that the estim ated response tim e of the spec
ification does not change when no new signals are inserted, it is
not reported in Table III(b).

Relative tim ing assumptions have a crucial im pact on solving
state encoding, since petrify inserts new signals only to disam
biguate conflicts in the tim ed domain. Reducing the num ber of
signals also contributes to im proving the area and the perfor
m ance of the circuit.

Com paring the columns S I t and TI, a reduction o f about 40%
in area can be observed. The reduction in response tim e is less
than 5% if all events have a delay o f one tim e unit. However, the
perform ance im provem ent is m uch m ore significant if it is eval
uated with actual delays, given that the logic o f the tim ed im
plem entation is m uch simpler. This analysis is reported in Sec
tion VIII-B. The im provem ent obtained for specifications with
com plete state coding is about 17% in area. This reduction also
contributes to improving the perform ance o f the circuits. A ll the
obtained circuits and the corresponding tim ing constraints were
validated by simulation. Only in some cases, transistor sizing or
delay padding was required to m eet som e stringent constraints.

B. Example: A FIFO Controller

This section describes the development o f a first-in/first-out
(FIFO) cell [specified in Fig. 13(a) and (b)], a sim plified ab
straction o f a part o f the RAPPID design. The goal o f the speci
fication is to keep the left and right handshakes as decoupled as
possible. The modules at the left and right sides o f the controller
have a sim ilar speed to the controller itself. In fact, these events
are generated by twin m odules connected at each side. For this
reason, it is not w ise to assum e that the input events are slow.

Four FIFOs were sim ulated by using different im plem enta
tions. The cycle tim e o f the cell was m easured. The results, nor
m alized to the delay o f an inverter w ith fan-out o f four in a given
technology, are shown in Table IV.

The first relative timing FIFO (first row) is an RT circuit de
rived by petrify using only autom atic timing assumptions. It is
depicted in Fig. 13(d). A proper transistor sizing is required for
correct operation o f the circuit. N o user-defined assumptions on

table IV
Cycle Time Ccomparison of FIFOs Normalized to the Delay of

an Inverter With a Fan-Out of Four

Design FIFO cycle time

the environm ent are used. The tim ing analysis explained in Sec
tion VI has been applied to the specification, and state encoding
has been autom atically solved as described in Section V-B. With
this strategy, only one additional state signal, x , was required as
shown in Fig. 13(c).10 There are som e interesting aspects o f this
im plementation.

• The state signal x is concurrent w ith other activities in the
circuit. This is a result of the state encoding strategy of
petrify that attem pts to increase the concurrency o f new
state signals until they disappear from the critical paths.

• The response tim e o f the circuit w ith regard to the envi
ronm ent is only one event (two inverters), i.e., as soon as
an output event is enabled, it fires w ithout requiring the
firing o f any other internal event.

• Given that x is never triggering any output signal, the gates
o f l0 and r a can be designed by having input x near Vss,
thus improving their perform ance.

Finally, the im plem entation o f Fig. 13(d) requires some
tim ing constraints to be correct. Application o f the m ethod
proposed in Section VII derives five tim ing constraints between
pairs o f concurrent events that are sufficient for the circuit to be
correct. They are graphically represented in Fig. 13(e).

The constraints la+ < x - and r a+ < a : - are not indepen
dent. Since the im plem entation o f x is x = la + r a, it is always
guaranteed that one o f them will hold, whereas the other m ust be
ensured. Since la+ and r a+ are enabled simultaneously, these
constraints will always hold if the delay of two gates is longer

10This new specification is not strictly a Petri net, since the arcs from /„+
and rG + to the O R place indicate an or-causality relation: x — is triggered by
the first event to fire, whereas the token produced by the latest event is implicitly
consumed. An equivalent Petri net is a bit more cumbersome and is omitted for
simplicity.

CORTADELLA et al.: LAZY TRANSITION SYSTEMS AND ASYNCHRONOUS CIRCUIT SYNTHESIS 127

Fig. 14. Speed-independent specification and circuit.

than the delay o f one gate. The m ost stringent rem aining con
straint is x — < r , + . In the worst case, both r ,+ and x — will
be enabled simultaneously by r 0+ . In this case, the delay of x —
is required to be shorter than the delay o f r ,+ (from the envi
ronment). Since we assum e that the environm ent is an identical
circuit, it corresponds to requiring that the delay of x — to be
shorter than that o f r a+ , that is easy to satisfy. In case o f a very
fast environment, this constraint can still be satisfied by tran-
sis tor sizing or delay padding for gate x .

The second FIFO (second row) is a speed-independent cir
cuit derived by petrify with automatic concurrency reduction
[45], and w ithout constraining the concurrency of the input and
output signals o f the cell in order to preserve the perform ance as
m uch as possible. The result is shown in Fig. 14, where CSC was
obtained through state variable insertion and concurrency reduc
tion. In com parison with the RT circuit, notice the gC elements
with two p-transistors in series and the ordering between ro+ and
lo+. Because of concurrency reduction only one state signal is
required, like in the case o f the autom atic RT solution. However,
the state signal is on the critical cycle and the implementations
of lo and ro contain additional p-transistors, which m ake per
form ance o f the speed-independent circuit approxim ately 18%
worse than the RT one. N ote that, w ithout concurrency reduc
tion, three state signals would be required to solve all state en
coding conflicts and a m uch larger and slower circuit would re
sult.

TABLE V
COMPARISON FOR TWO GENERIC REPRESENTATIVE EXAMPLES (FIFO) AND

two Control Circuits From RAPPID (Byte-Control, Tag-Unit).
Response Time is Measured in Gate Delays, Area in Transistors. m:

Manual, a: Automatic, s: Speed-Independent

Design Area (# tr.) Worst case Average case
response time response time

m a s m a s m a s
FIFO-A 22 22 46 3.0 3.0 9.0 2.5 2.5 5.7
FIFO-B 16 15 46 2.0 2.0 9.0 2.0 2.0 5.7

Byte-cntr 32 27 71 4.0 3.0 5.0 3.0 2.5 4.1
Tag-unit 31 47 112 4.0 4.0 8.0 4.0 2.7 6.9
Summary 101 111 275 3.3 2.9 7.75 3.0 2.4 5.6

The third and the fourth rows o f Table IV report results for re l
ative tim ing and speed-independent circuits, further optim ized
for perform ance by applying D e M organ’s laws. It can be ob
served again that the optim ized RT circuit is approxim ately 25%
faster than the optim ized speed-independent design.

C. RAPPID Control Circuits

This section com pares m anually optim ized RT control
circuits used for RAPPID [22], [12] w ith those automatically
derived by petrify. For each example, Table V reports: manual
(obtained by applying relative tim ing manually), automatic
(obtained autom atically by petrify and applying relative
timing), and speed-independent (obtained autom atically by
petrify w ithout concurrency reduction).

Results in the table show that autom atic solutions are
quite com parable with m anually optim ized RT designs. The
im provem ent in response tim e by applying relative tim ing is
about a factor o f 2, substantially better than for the examples
o f Table III. This is because the designers o f these circuits had
a stronger interaction with the tool and provided aggressive
timing assumptions on the environm ent that could not be
derived automatically. M oreover, the optim ization goal for
these circuits was perform ance , and hence we claim that the
autom ated im plem entation was not worse than the manual
design in any case.

D. Impact of Early Enabling Assum ptions

The same experiments presented in Table III have been run
by not using early enabling assumptions. The overall results in
circuit com plexity (total num ber o f literals) are the following:

• specifications w ithout CSC (Table III(a)): 330 literals;
• specifications with CSC (Table III(b)): 248 literals.

Thus, early enabling assumptions still contribute to improve
the quality o f the circuits in about 10% for those specifications
with CSC. This im provem ent also affects the speed o f the cir
cuit.

For those specifications w ithout CSC, the im pact is very
modest. This is m ainly due to the fact that petrify does a good
job in inserting new state signals by trying to increase their
concurrency. This gives less m argin to take advantage o f the
potential concurrency o f early enabling assumptions.

128 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21,NO. 2, FEBRUARY 2002

Fig. 15. Optimization of a completion detector using simultaneity
assumptions.

E. Im pact o fS im ultaneity Assum ptions

The same experiments have also been run by not using sim ul
taneity assumptions. The results have shown that the im pact of
these assumptions is negligible for the benchm arks in Table III.
This is m ainly due to the fact that m ost benchm arks in the table
are o f reactive nature, where inputs m ostly trigger outputs, and
outputs m ostly trigger inputs. Hence direct causal relations be
tween outputs (a necessary condition for applying sim ultaneity
assumptions) are infrequent. In other words the considered con
trol circuits are quite shallow, and this constrains the applica
bility o f optim ization based on simultaneity. Nevertheless, we
do believe that the notion o f sim ultaneity is im portant for op
tim ization, as shown by the example in Fig. 5. A sim ilar situ
ation occurs with other benchmarks, such as hazard, when si
m ultaneity assumptions are applied to input events.11 It allows
the designer to change the dependencies between causally un
related events. This is a way to form ally justify delay matching,
a technique that is often used for design o f asynchronous data
paths, as shown in Fig. 15. The same result o f optim ization can
be obtained form ally by applying sim ultaneity assum ption to
all data bits w ith respect to the com pletion detector signal. A l
though design of data paths is not the m ain topic o f this paper,
such capability indicates potential power o f the sim ultaneity as
sumption for larger control circuits and especially control cir
cuits with sym m etries.

IX. Conclusion

Lazy transition systems have been proposed as a com puta
tional m odel for tim ed circuit synthesis, where the notions o f en
abling and firing are distinguished for a signal switching event.
In this design flow, necessary synthesis conditions, a synthesis
algorithm, and a m ethod to derive a sufficient set o f timing con
straints for correctness have also been proposed.

The m ain results o f this w ork can be sum m arized as follows.
• Two types of relative tim ing assumptions, difference (one

sided) and simultaneity (two-sided), are used.
• Timing inform ation is defined in terms o f relations among

events rather than absolute delays o f individual events. In
this way, reasoning about the observable behavior o f the
system is m uch m ore efficient.

Conservatively, petrify never assumes simultaneity for input events. These
assumptions must be provided by the designer when it is known that the envi
ronment behaves according to the assumption.

• The don’t care space used for optim ization is determ ined
either by unreachability, i.e., reduction o f the state space,
or by laziness, i.e., expansion o f the enabling region.

• The m ethod allows the timing assumptions to be either
provided by the designer or derived autom atically by syn
thesis or analysis tools. The second feature is especially
interesting for its applicability to those events that are not
observable in the original specification, e.g., events o f in
ternal signals used for state encoding or logic decom posi
tion.

• Satisfaction and verification of tim ing constraints (i.e.,
tim ing assumptions actually used by optim ization) is left
to the designer’s responsibility. Some existing tools can
assist in solving such task [46], [20].

This approach helps bridging two critical gaps in the syn
thesis o f control circuits. The first gap is between the two main
approaches for autom ated asynchronous controller synthesis,
those based on fundam ental m ode (global tim ing constraints)
and those based on IO mode. It also allows asynchronous
circuits to exploit available timing inform ation, rather than
always m aking w orst case assumptions about the relative delays
o f gates (e.g., assuming that one gate m ay be slower than a se
quence o f three gates m ay be excessive in several technologies).
M oreover, the exploitation o f the idea of early enabling allows
the synthesis process to m axim ize perform ance by increasing
the effective am ount o f concurrency in the system.

Acknow ledgm ent

The authors would like to thank S. Rotem for initiating this
research.

REFERENCES

[1] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal-
danha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-Vin-
centelli, “SIS: A system for sequential circuit synthesis,”, tech. Rep.
UCB/ERL M92/41, U.C. Berkeley, Ed., 1992.

[2] J. M. Chris, “Computer-Aided Synthesis and Verification of Gate-Level
Timed Circuits ,” Ph.D. dissertation, Dept. Elec. Eng., Stanford Univ.,
1995.

[3] M. N. Steven, “Automatic Synthesis of Burst-Mode Asynchronous Con
trollers ,” Ph.D. dissertation, Stanford Univ., Department of Computer
Science, 1993.

[4] Y.-C. Chantal, L. Bill, and M.d. Hugo, “ASSASSIN: A synthesis system
for asynchronous control circuits,”, Tech. Rep., IMEC, 1994.

[5] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A.
Yakovlev, “Petrify: A tool for manipulating concurrent specifications
and synthesis of asynchronous controllers,” IEICE Trans. Information
Syst., vol. E80-D, pp. 315-325, Mar. 1997.

[6] D. A. Huffman, “The synthesis of sequential switching circuits,” J.
Franklin Inst., vol. 257, pp. 161-190, Mar. 1954.

[7] S. H. Unger, Asynchronous Sequential Switching Circuits. New York:
Wiley, 1969.

[8] E. M. David and W. S. Bartky, “A theory of asynchronous circuits,” in
Proc. Int. Symp. Theory ofSwitching. Cambridge, MA: Harvard Univ.
Press, 1959, pp. 204-243.

[9] B. Coates, A. Davis, and K. Stevens, “The post office experience: De
signing a large asynchronous chip,” Integration, VLSI J., vol. 15, no. 3,
pp. 341-366, Oct. 1993.

[10] K. Y. Yun, “Synthesis of Asynchronous Controllers for Heterogeneous
Systems ,” Ph.D. dissertation, Stanford Univ., 1994.

[11] C. W. Moon, P. R. Stephan, and R. K. Brayton, “Synthesis of hazard-free
asynchronous circuits from graphical specifications,” in Proc. Int. Conf.
Computer-Aided Design (ICCAD), Nov. 1991, pp. 322-325.

CORTADELLA et al.: LAZY TRANSITION SYSTEMS AND ASYNCHRONOUS CIRCUIT SYNTHESIS 129

[12] K. S. Stevens, S. Rotem, R. Ginosar, P. Beerel, C. J. Myers, K. Y. Yun,
R. Kol, C. Dike, and M. Roncken, “An asynchronous instruction length
decoder,” IEEEJ. Solid-State Circuits, vol. 36, pp. 217-228, Feb. 2001.

[13] T. Henzinger, Z. Manna, and A. Pnueli, “Timed transition systems,” in
Proc. REX Workshop Real-Time: Theory in Practice, vol. 600, LNCS.
New York, 1992, pp. 226-251.

[14] C. J. Myers and T. H.-Y. Meng, “Synthesis of timed asynchronous cir
cuits,” IEEE Trans. VLSI Syst., vol. 1, pp. 106-119, June 1993.

[15] R. Alur, “Timed automata,” in NATO-ASI1998 Summer School Verifi
cation of Digital and Hybrid Syst., 1998.

[16] D. Sager, M. Hinton, M. Upton, T. Chappell, T. Fletcher, S. Samaan,
and R. Murray, “A 0.18 /.tm CMOS IA32 microprocessor with a 4 GHz
integer execution unit,” in ISSCC’2001: IEEE Press, 2001, pp. 324-325.

[17] H. Henrik and M. B. Steven, “Bounded delay timing analysis of a class
of CSP programs with choice,” in Proc. Int. Symp. Advanced Research
in Asynchronous Circuits and Systems, Nov. 1994, pp. 2-11.

[18] M. Bozga, O. Maler, and S. Tripakis, “Efficient verification of timed
automata using dense and discrete time semantics,” in CHARME’99,
vol. 1703, Lecture Notes in Computer Science, L. Pierre and T. Kropf,
Eds., 1999, pp. 125-141.

[19] N. Radu and P. Ad, “Verification of speed-dependences in single-rail
handshake circuits,” in Proc. Int. Symp. Advanced Research in Asyn
chronous Circuits Syst., 1998, pp. 159-170.

[20] M. A. Pena, J. Cortadella, A. Kondratyev, and E. Pastor, “Formal ver
ification of safety properties in timed circuits,” in Proc. Int. Symp. Ad
vanced Res. Asynchronous Circuits and Syst., Apr 2000.

[21] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, A. Taubin,
and A. Yakovlev, “Lazy transition systems: Application to timing opti
mization of asynchronous circuits,” in Proc. Int. Conf. Computer-Aided
Design (ICCAD), Nov. 1998, pp. 324-331.

[22] S. Ken, G. Ran, and R. Shai, “Relative timing,” in Proc. Int. Symp.
Advanced Research in Asynchronous Circuits Syst., Apr. 1999, pp.
208-218.

[23] W. Coates, J. Lexau, I. Jones, I. Sutherland, and S. Fairbanks, “Fleetzero:
An asynchronous switching experiment,” in Proc. Int. Symp. Advanced
Research in Asynchronous Circuits Syst.. New York: IEEE Computer
Soc. Press, 2001.

[24] S. Ivan and F. Scott, “Gasp: A minimal fifo control,” in Proc. Int. Symp.
Advanced Res. Asynchronous Circuits Syst., Mar. 2001.

[25] C. Jordi, K. Michael, M. B. Steven, and K. Stevens, “Synthesis of asyn
chronous control circuits with automatically generated timing assump
tions,” in Proc. Int. Conf. Computer-Aided Design (ICCAD), Nov. 1999,
pp. 324-331.

[26] T. Murata, “Petri Nets: Properties, analysis and applications,” Proc.
IEEE, pp. 541-580, Apr. 1989.

[27] A. Arnold, Finite Transition Systems. Englewood Cliffs, NJ: Prentice
Hall, 1994.

[28] T.-A Chu, C. K. C. Leung, and T. S. Wanuga, “A design methodology for
concurrent VLSI systems,” in Proc.Int. Conf. Computer Design(ICCD),
1985, pp. 407-410.

[29] L. Y. Rosenblum and A. V. Yakovlev, “Signal graphs: from self-timed to
timed ones,” in Proc. Int. Workshop Timed Petri Nets, Torino, Italy, July
1985, pp. 199-207.

[30] M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Varshavsky,
Concurrent Hardware: The Theory and Practice of Self-Timed De
sign. London, U.K.: Wiley, 1993.

[31] S. M. Burns, “General condition for the decomposition of state holding
elements,” in Proc. Int. Symp. Advanced Research in Asynchronous Cir
cuits Syst., Mar 1996.

[32] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, E. Pastor,
and A. Yakovlev, “Decomposition and technology mapping of speed-
independent circuits using Boolean relations,” IEEE Trans. Computer-
Aided Design, vol. 18, Sept. 1999.

[33] T. Nanya, A. Takamura, M. Kuwako, M. Imai, M. Ozawa, M. Ozcan,
R. Morizawa, and H. Nakamura, “Scalable-delay-insensitive design: A
high-performance approach to dependable asynchronous systems,” in
Proc. Int. Symp. Future Intellectual Integrated Electron. , Mar. 1999.

[34] P. Vanbekbergen, G. Goossens, and B. Lin, “Modeling and synthesis
of timed asynchronous circuits,” in Proc. European Design Automation
Conf. (EURO-DAC), Sept. 1994, pp. 460-465.

[35] K. McMillan, “Using unfoldings to avoid the state explosion problem in
the verification of asynchronous circuits,” in Proc. Int. Workshop Com
puter Aided Verification, vol. 663 of Lecture Notes in Computer Science,
G. v. Bochman and D. K. Probst, Eds., 1992, pp. 164-177.

[36] S. M. Burns, “Performance Analysis and Optimization of Asynchronous
Circuits,” Ph.D. dissertation, California Inst. Technol., 1991.

[37] K. McMillan and D. Dill, “Algorithms for interface timing verification,”
in Proc. Int. Conf. Computer Design (ICCD), Oct. 1992.

[38] L. Luciano and S.-V. Alberto, Algorithms for Synthesis and Testing of
Asynchronous Circuits: Kluwer, 1993.

[39] K. Michael and S. J0rgen, “Characterizing speed-independence of high-
level designs,” in Proc. Int. Symp. Advanced Res. Asynchronous Circuits
Syst., Nov. 1994, pp. 44-53.

[40] A. Kondratyev, J. Cortadella, M. Kishinevsky, E. Pastor, O. Roig, and A.
Yakovlev, “Checking signal transition graph implementability by sym
bolic BDD traversal,” in Proc. European Design and Test Conf., Paris,
France, Mar. 1995, pp. 325-332.

[41] C. Jordi, K. Michael, K. Alex, L. Luciano, and Y. Alexandre, “A region-
baded theory for state assignment in speed-independent circuits,” IEEE
Trans. Computer-Aided Design, vol. 16, pp. 793-812, Aug. 1997.

[42] P. A. Beerel, C. J. Myers, and T. H.-Y Meng, “Covering conditions and
algorithms for the synthesis of speed-independent circuits,” IEEE Trans.
Computer-Aided Design, Mar. 1998.

[43] K. Alex, K. Michael, and Y. Alex, “Hazard-free implementation of
speed-independent circuits,” IEEE Trans. Computer-Aided Design, vol.
17, pp. 749-771, Sept. 1998.

[44] L. Bill, Y.-C. Chantal, and V. Peter, “A general state graph transforma
tion framework for asynchronous synthesis,” in Proc. European Design
Automation Conf. (EURO-DAC) ., Sept. 1994, pp. 448-453.

[45] A. Kondratyev, J. Cortadella, M. Kishinevsky, L. Lavagno, and A.
Yakovlev, “Automatic synthesis and optimization of partially specified
asynchronous systems,” in Proc. ACM/IEEE Design Automation Conf.,
June 1999, pp. 110-115.

[46] S. Chakraborty, D. L. Dill, and K. Y. Yun, “Min-max timing analysis
and an application to asynchronous circuits,” Proc. IEEE, vol. 87, pp.
332-346, Feb. 1999.

Jordi Cortadella (M’88) received the M.S. and Ph.D. degrees in computer sci
ence from the Universitat Politecnica de Catalunya, Barcelona, Spain, in 1985
and 1987, respectively.

He is a Professor in the Department of Software of the same university. In
1988, he was a Visiting Scholar at the University of California, Berkeley. His
research interests include computer-aided design of VLSI systems with special
emphasis on synthesis and verification of asynchronous circuits, concurrent sys
tems and co-design. He has coauthored over 100 research papers in technical
journals and conferences.

Dr. Cortadella has served on the technical committees of several international
conferences in the field of Design Automation and Concurrent Systems. He
organized the 5th International Symposium on Advanced Research in Asyn
chronous Circuits and Systems as a Symposium Co-Chair.

Michael Kishinevsky (M’95-SM’96) received the M.Sc. and Ph.D. degrees in
computer science from the Electrotechnical University, St. Petersburg, Russia.

He was a Research Fellow at the St. Petersburg Mathematical Economics
Institute Computer Department, Russian Academy of Science, 1979-1982 and
1987-1989. From 1982 to 1987, he was with a software company. From 1988
to 1992, he was a Senior Researcher at the R&D Coop TRASSA. From 1992 to
1994, he was a visiting Associate Professor at the Department of Computer Sci
ence, Technical University of Denmark. From 1994 to 1998, he was a Professor
at the University of Aizu, Japan. Since 1998 he has been with the Strategic CAD
Labs, Intel Corporation, Hillsboro, OR. His research interests include high-level
and asynchronous design, reactive systems, and theory of concurrency. He coau
thored two books in asynchronous design and has published over 60 journal and
conference papers.

Dr. Kishinevsky has served on the technical program committee at several
conferences and workshops.

130 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2002

Steven M. Burns received a B.A. degree in mathematics from Pomona College,
in 1984, and M.S. and Ph.D. degrees in computer science from the California
Institute of Technology in 1987 and 1991, respectively.

He is a Principal Engineer at Intel Corporation’s Strategic CAD Labs. Prior
to joining Intel in 1996, he was an Assistant Professor of the Department of
Computer Science and Engineering at the University of Washington, joining the
faculty in 1991. His research and development interests include timing analysis
and optimization of high-performance digital circuits.

In 1992, Dr. Burns received an NSF Young Investigator Award. He received a
best paper award at the 1993 IEEE International Conference on Computer De
sign and at the 1996 Internation Symposium on Advanced Research in Asyn
chronous Circuits and Systems. He has served on the technical program com
mittee at several conferences and workshops.

Alex Kondratyev (M’94-SM’97) received the M.S and Ph.D. degrees in com
puter science from the Electrotechnical University of St. Petersburg, Russia, in
1983 and 1987, respectively.

In 1988, he joined the R&D Coop TRASSA, St. Petersburg, Russia, where
he was a Senior Researcher. From 1993 to 1999, he was an Associate professor
of the Hardware Department at the University of Aizu. In 2000, he joined The
seus Logic as a Senior Scientist. Currently he is a Research Scientist at Cadence
Berkeley Laboratories. He has coauthored a book on formal methods for asyn
chronous design and has published over 50 journal and conference papers. His
research interests include formal methods in system design, synthesis of asyn
chronous circuits, computer-aided design methodology and theory of concur
rency.

Dr. Kondratyev was a co-chair of Async’96 Symposium, co-chair of CSD’98
Conference, and has served as a member of the program committee for several
conferences.

Luciano Lavagno (M’93) graduated magna cumlaude in electrical engineering
from Politecnico di Torino, Italy, in 1983. In 1992, he received the Ph.D. degree
in electrical engineering and computer science from the University of California,
Berkeley.

From 1984 to 1988, he was with CSELT Laboratories, Torino, Italy. In 1988,
he joined the Department of Electrical Engineering and Computer Science of
the University of California at Berkeley, where he worked on logic synthesis
and testing of synchronous and asynchronous circuits. He is the author of a book
on asynchronous circuit design, the co-author of a book on hardware/software
co-design of embedded systems, and has published over 60 journal and confer
ence papers. Between 1993 and 1998 he was an Assistant Professor with the
Department of Electronics of Politecnico di Torino. Since 1993, he has been the
architect of the POLIS project, developing a complete hardare/software co-de
sign environment for control-dominated embedded systems. He is currently an
Assistant Professor at the University of Udine, Italy and a Research Scientist
at Cadence Berkeley Laboratories. He has also been a consultant for various
EDA companies, such as Synopsys and Cadence. His research interests include
the synthesis of asynchronous and low-power circuits, the concurrent design of
mixed hardware and software systems, and the formal verification of digital sys
tems.

In 1991, Dr. Lavagno received the Best Paper award at the 28th Design Au
tomation Conference in San Francisco, CA. He has served on the technical com
mittees of several international conferences in his field (namely the Design Au
tomation Conference, the International Conference on Computer Aided Design,
and the European Design Automation Conference).

Kenneth S. Stevens (SM’99) received the B.A. degree in biology in 1982 and
the B.S. and M.S. degrees in computer science, in 1982 and 1984, from the
University of Utah. He received the Ph.D. degree in computer science from the
University of Calgary, AB, Canada, in 1994.

From 1984 through 1991, he held research positions at the Fairchild/Schlum-
berger Laboratory for AI Research, the Schlumberger Palo Alto Research Lab
oratory, and Hewlett Packard Laboratories, in Palo Alto, CA. He became an
Assistant Professor at the Air Force Institute of Technology in Dayton, OH in
1994, and since 1996 he has been an Adjunct Professor. Since 1996 he has been
employed at Intel Corporation’s Strategic CAD Labs in Hillsboro, OR, where
he is currently a Principal CAD Engineer. His research interests include asyn
chronous circuits, VLSI, architecture, hardware synthesis and verification, and
timing analysis. He holds seven patents and has been the principal author for
three papers which received the best paper award.

Dr. Stevens has been on the Technical Program Committee for the Async
conference series since 1998.

Alexander Taubin (M’94-SM’96) received the M.Sc. and Ph.D. degrees in
computer science and engineering from Electrotechnical University of St.Pe-
tersburg, Russia.

He was a Research Fellow at the Computer Department of St. Petersburg
Mathematical Economics Institute, USSR Academy of Science, from 1979
to 1989. From 1988 to 1993, he was a Senior Researcher at the R&D Coop.
TRASSA. From 1993 to 1999, he was with the Department of Computer
Hardware at the University of Aizu Japan, as a Professor. In 1999, he joined
Theseus Logic, Inc. Sunnyvale, CA as Senior Scientist. His current research
interests include design of asynchronous systems (analysis, synthesis, testing,
formal verification and architectural design for asynchronous microprocessors
and DSP) and models for concurrent behavior. He coauthored two books in
asynchronous design and has published more then 40 journal and conference
papers.

Dr. Taubin has served on the technical committees of several international
conferences in his field.

Alexandre Yakovlev (S’94-M’97) received the M.Sc. and Ph.D. degrees in
computing science from Electrotechnical University of St. Petersburg, Russia,
in 1979 and 1982, respectively.

He has worked at Electrotechnical University of St. Petersburg in the area
of asynchronous and concurrent systems since 1980, and in the period between
1982 and 1990 held positions of Assistant and Associate Professor in the Com
puting Science Department. Since 1991, he has been a Lecturer, Reader, and
since 2000 Professor in Computer Systems Design at the Newcastle University
Department of Computing Science, where he is heading the VLSI Design re
search group. His current interests and publications are in the field of modeling
and design of asynchronous, concurrent, real-time and dependable systems. He
has coauthored over 100 research papers in technical journals and conferences.

Dr. Yakovlev has organized and served on the technical committees of several
international conferences in the field of asynchronous systems, concurrency and
Petri nets.

