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We calculate the low-energy tunneling density of states v(e,T)  of an A?-channel disordered wire, 
taking into account the electron-electron interaction nonperturbatively. The finite scattering rate 1 / t  

results in a crossover from the Luttinger liquid behavior at higher energies, v a  e“, to the exponential 
dependence v (e ,T  =  0) a  exp(—e*/e)  at low energies, where e* a  l / ( N t ). At finite temperature T, 
the tunneling density of states depends on the energy through the dimensionless variable e/- fe*T.  At 
the Fermi level v(e =  0, T) exp(—^/e* /T ).
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The influence of electron-electron interactions on trans­
port in disordered systems has been extensively investi­
gated for the past two decades f 11. It is well known that 
the interaction has the strongest effect in low-dimensional 
systems. Electron tunneling into a one-dimesional con­
ductor is suppressed by interactions even in the absence 
of disorder. This suppression, which yields vanishing tun­
neling density of states (TDOS) at the Fermi level, can 
be described in the framework of the Luttinger liquid the­
ory. The recently discovered carbon nanotubes provide a 
unique opportunity for studying interaction effects in quan­
tum wires [2 -5 ]. Although the properties of single-wall 
nanotubes are well described by the Luttinger liquid the­
ory [6], the transport in multiwall nanotubes (MWNT) is 
still not very well understood. The number of channels, 
disorder strength, and carrier concentrations in these sys­
tems can vary over a wide range and are difficult to control 
experimentally. Whereas some measurements indicate bal­
listic electron transport [7], most experiments exhibit diffu­
sive electron motion [5 ,8 -10 ]. Furthermore, experiments
[11] demonstrate a strong suppression of TDOS v{e)  near 
the Fermi level (e =  0). On the other hand, the exist­
ing microscopic theory [1] treats the screened Coulomb 
interaction in the first order of perturbation theory; it pro­
vides the result for the correction to the density of states, 
8 v ( e )  —l / y / e ,  which is valid as long as 8 v(e)  is small. 
Clearly, this result of the lowest-order perturbation theory 
is insufficient for finding the behavior of TDOS v(e)  in 
the limit of e —► 0.

In this paper we present a theory of the zero-bias anom­
aly in the tunneling density of states in quantum wires. We 
treat the dynamically screened Coulomb interaction non­
perturbatively and allow for an arbitrary value of e r ,  where 
r  is the elastic momentum relaxation time of electrons, and 
energy e is measured from the Fermi level. This enables us 
to describe the crossover from the known Luttinger liquid 
results [12] valid at higher energies, e r  »  1 / - J n , to the 
new low-energy (e r  «  \/y /~ N ) behavior of the TDOS:

v ( e , T )  oc e x p j - J y F ( ’^ _ (1)

(hereinafter we use units with ft =  ks  =  1). The char­
acteristic energy e* here depends on the interaction 
strength g,
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on the number of channels N  in the quantum wire, and on 
r .  Here v  is the Fermi velocity averaged over all chan­
nels, and d  »  R  is the distance at which the electric field 
is shielded [13] say, by conducting electrodes surrounding 
the wire. The scaling function F(x)  and its asymptotics at 
x  « :  1 (regime considered first in Ref. [14]) and x  »  1, 
are presented in Fig. 1. The result (1) applies at suffi­
ciently low temperatures and energies, when the value of 
the exponent in this equation is large. Note that according 
to Eq. (1), at finite T  the characteristic scale for the energy 
dependence of TDOS is given not by T,  but by a much 
larger value y/e*T.

X

FIG. 1. The scaling function F(x) and its asymptotics: 
F(x) = 1.07 -  jc/2 for x «  1 (dotted line), and F(x) ~  1/x 
for x »  1 (dashed line).
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In the absence o f shielding Eq. (1) is somewhat m odi­
fied, as the interaction parameter g  becomes a weak func­
tion o f tem perature and energy. We briefly discuss this 
case at the end o f the paper; see Eqs. (19 )-(21 ).

Having in mind experimental applications, we focus our 
discussion on carbon nanotubes. A typical M W NT con­
sists o f several (up to ten) graphite m onolayer sheets rolled 
concentrically into cylinders. A t zero doping they can be 
either metallic or semiconducting, depending on the heli­
cal arrangem ent o f the carbon hexagons. The electron band 
structure o f a single carbon nanotube [15] has two points 
in the Brillouin zone with the Dirac-like spectrum e* =  
v ( k 2 +  k \ ) l^2\ the velocity here is v  — 8 • 107 cm /s, 
and the transverse m omentum k±  =  n / R  is quantized due 
to the periodic boundary conditions around the circum ­
ference, —kpR  <  « <  kpR.  The num ber o f conducting 
subbands around each Dirac point N  =  2kpR  is deter­
mined by the radius o f the nanotube and by the doping 
level, /jl =  v k p  (—0.5 eV). A typical radius o f the out­
erm ost shell is o f the order o f 10 nm. Each subband has

its own Fermi velocity v n =  v y j l  — n 2/ k p R 2 and m o­
mentum k p v , J v  along the cylinder axis. The electrons 
are scattered between different subbands within the same 
tube by impurities, lattice imperfections, and by the incom ­
mensurate lattice potential o f the neighboring tubes. We 
consider the experimentally relevant case o f the ballistic 
electron motion around the circumference, I =  v t  >  R,  
and concentrate on low-energy, e <  v / R ,  limit. Electron 
tunneling at higher energies, e >  v l / R 2, in the opposite 
case o f a short mean free path, I <  R ,  was recently dis­
cussed in Ref. [16].

In the measurements o f the TDOS the tunneling current 
propagates through the outerm ost shell [8] while the inter­
shell tunneling is largely suppressed. The role o f the elec­
trons in inner shells is then believed to be reduced merely 
to the dynamical screening o f the Coulomb interaction be­
tween the electrons in the outer shell. L ittle is known about 
the contribution o f innershell electrons to screening since 
the doping level in the inner shells is difficult to character­
ize experimentally. Two distinct scenarios can be im ag­
ined: (i) the dopants are outside the nanotube, and the 
doping electrons reside in the outer shell only; (ii) the 
dopants are distributed uniformly inside the MWNT, which 
leads to a uniform density o f carriers across the shells. Be­
low we concentrate on the first scenario, when the inner 
shells o f the tube may be ignored. The second scenario 
will be considered elsewhere.

We start with calculating the TDOS in the first order in 
the screened interaction potential. This calculation follows 
the well-known route first developed for the case o f a dif­
fusive electron motion [17], and extended later [18,19] to 
the case o f an arbitrary value o f e r .  The zero-temperature 
result can be cast in the fam iliar [17,20] form,

8 v ( e )

vq
d(o~V((o).

■y(<w) =  a x
d q

2 w 2
T 2( co, q ) (g2(co, q)U(co,  q ) .

(3b)

Here T  is the im purity-renorm alized vertex. Its inverse is 
given by the usual impurity ladder,

t- —1/ \ ^  qvF (<w,q) =  ( ------------------7~r
M \  co — qv +  i / r

1
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The product o f Green functions averaged over the Fermi 
surface [abbreviated as Q 2 in Eq. (3)] equals 

1
(co — qv +  i / r ) 2 

1
TT VQ I ’

(to +  i / r ) 2 +  (qv„  +  q ± v ± n)2
[(co +  i / r ) 2 -  ( q v n +  q ± v l n )2]2 ’

where qv =  q v n + q ± v ln  and v± „  =  v n / ( k FR)  is the 
transverse velocity in the nth band, vq =  Y.n(7TVn ) ^ 1 is 
the total density o f states in the outerm ost shell (the sum­
mation accounts also for both spin directions and the pres­
ence o f two Dirac points in the Brillouin zone).

The function U(co, q) in Eq. (3b) represents the dynam i­
cally screened Coulomb interaction o f electrons and is 
given by

U(co, q) =  ------------------------  . (6)
1 — F(q)n(<w ,q)

W ithin the assumptions o f our model, the polarization 
operator here,

I I ( c o , q ,q m) =  ^0r (< w ,q )(--------- qY , . . )  , (J)
\  co — qv +  i / T /

is provided by the outer-shell electrons. The bare Coulomb 
potential in Eq. (6) is

2 e 2 (  (f> \
V ( q , q m) =  ----- d4>K{) \ 2 q R  sin—  Ico sm ^  , (8)

TT Jo \  2 /
where Ko(x)  is the modified Bessel function, and we used 
the fact that the momenta along the circum ference o f the 
tube are quantized and given by q m =  m / R .

To consider the low-energy behavior o f 8 v ( e ) ,  we will 
need only the long-range limit, qR  <K 1, o f Eqs. (6)—(8); 
w e find for the bare interaction

1 e 2 ln [ m in ( |i , - 4 i ) ] ,

m 0 , 

m =  0 .

(3a)

(9), _ ___  \ I — / *
q2R2

The integrals in Eqs. (3a) and (3b) are dominated by the 
region o f high frequencies co »  q v ,  where the dynam i­
cally screened Coulomb interaction (6) has plasmon poles, 
and can be rewritten as
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x r —... J —GO 2 'ii
(co + i / T ) y ( q, qm) 

(t)[(t)((t) + i / r ) "«(<?)] ’
(10)

Here cam(q) denotes the frequency of the plasmon exci­
tations which in the long wave length limit, q d  1, is 
given by the following equation:

I e 2voq2v \  ln [m in (|r, J p ) ] ,  m =  0 ,
tam i q ) = \ e2 V v l 2 7  (11)

~ u ( r  v \\ + m #  0 .

In Eq. (11) we introduced the average squares of the lon­
gitudinal, v p  and transverse, v±,  electron velocities

2 =  £ „  Vn  2 =  y 2 ^ n  V ^ n 2

^  (kFR ) 2 Z „ v ^ '
For e >  v l / R  in Eq. (3a), we can approximate the sum 

over m in Eq. (10) by an integral recovering the ballistic 
counterpart [19] of the two-dimensional diffusive correc­
tion discussed by Egger and Gogolin [16] for short-range 
interaction. However, in contrast to their conclusions, 
for lower energies e <  v  L / R  the contribution of m i= 0 
terms becomes energy independent for both short-range 
and Coulomb interaction, in the latter case because of the 
gaps in plasmon spectra. The m =  0 plasmon, on the other 
hand, is gapless. Its contribution to Eq. (10) depends on 
e, and has a singularity at e —► 0. Therefore, to study 
the energy dependence of DOS at low energies we neglect 
the nonsingular contribution of the m  # 0  modes and re­
tain only the m =  0 term in Eq. (10). The expression (11) 
for m  =  0 ceases to be correct at frequencies larger that 
\ / N v / R  which correspond to plasmons with wavelength 
of the order of the tube radius R,  representing the obvious 
ultraviolet cutoff for one-dimensional effects. Performing 
the integral over the momenta in Eq. (10), we obtain

■sfb
y ( c o )  =

I co +
Re-

.3 /2
(12)

I ttN v

where v  =  Y .n Vn / N  is the average Fermi velocity. The 
two distinct regions of the frequency dependence here, 
ca »  1 / r  and to 1 / r ,  define two domains for the 
energy-dependent correction to the TDOS. Substituting 
'Y(co)  into Eq. (3a), and assuming that v t  >  d / \ f N ,  
we obtain

S v ( e )

vo
eT + lnAr, 

n(A /e),
e <  1 / r . 
e >  1 / r .

(13)

where g is defined in Eq. (2), and A =  v \/iV/ (R2d ) x̂ . 
The first term of the low-energy asymptotic here is famil­
iar from the zero-bias anomaly theory of Altshuler and 
Aronov [1], while the second term represents the omitted 
in [1] high-frequency (ca »  1 /r )  contribution to the inte­
gral Eq. (3). The behavior of 8 v  at e »  1 / r  corresponds 
to the ballistic electron motion.

The perturbative expressions diverge at the Fermi level 
(e —► 0). To calculate the tunneling DOS to all orders in 
the interaction constant at small e, we make use of the

phase approximation for the fluctuating potential induced 
by the electron-electron interaction [14]. The nonpertur­
bative expression for the density of states can be cast in 
the form equivalent to the one derived in Ref. [21],

v(e,  T)

vo
=  T cosh—  

2 T
dt~

X exp] I dca"V(ca)

cos e t  
cosh tt Tt 

cosh cos cat
sinh 2 T

(14)

In the region of validity of Eq. (14), the time integral can 
be evaluated within the saddle-point approximation. As 
the saddle point lies on the imaginary axis in the interval 
0 ^  —i t <  1 /2T,  the denominator in Eq. (14) is always 
a slowly varying function and does not contribute to the
saddle-point exponent. ____

We consider first the ballistic regime e >  A/e * / r .  It 
allows us to reproduce the conventional Luttinger liquid 
results, so for brevity we mention here only the limit 
T  —► 0. Evaluating the integrand of Eq. (14), we find

v (e ) vo a  = (15)

In the diffusive regime e <  y je * /r , the main contribu­
tion to the TDOS comes from the small frequencies, where 
one can reduce Eq. (12) to 'V(co)  =  y je* /wco3. Further­
more, if e 1 / N t  and T  g / i r N T ,  the saddle-point 
approximation is again applicable for the evaluation of the 
time integral in Eq. (14). One can easily check that at the 
saddle point the coshirT t function in Eq. (14) can be re­
placed by 1, and therefore the density of states satisfies the 
scaling form

v ( e , T )
vo

(At )' 

Here the function

■ exp

F(x)  = dy
cosh |  — coshyzj(x) 

yp n y3/ 2 sinh-r

(16)

zsM ]

(17)

is determined by the value of the integrand in Eq. (14) at 
the saddle point ts =  izs/ T .  The dependence of zs on the 
ratio e /V e*T =  x  is given by equation

1 f x dy  sinhr, v
x =  ~7= / r-  • u 7o ■ ^18>■s/ tt J o y /y sm h y /2

Numerical solution of this parameter-free equation and the 
subsequent evaluation of the integral in Eq. (17) yields the 
graph of scaling function F(x)  plotted in Fig. 1 and its 
asymptotics given in the figure caption. Note that the pre­
exponential factor in Eq. (16), which we omitted in Eq. (1) 
for the sake of brevity, provides the proper matching of 
the results (15) and (16) obtained in the energy domains 
e »  y je* / t  and e y je * /r , respectively.

We derived our main results, Eqs. (16)—(18), assum­
ing that the Coulomb interaction is shielded at distances
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~d.  In the absence of shielding, the long-range nature of 
the interaction potential leads to a stronger [221 than pre­
dicted by Eq. (15) suppression of the TDOS in the ballistic 
regime, \ r^v(e) /vq\ a —[ln(e/e*)]3/2. At lower energies 
(corresponding to the diffusive regime), the effect of the 
long-range potential can be accounted for by replacing the 
parameter e* of Eq. (2) with the logarithmic function of 
energy and temperature,

e*{e,T) =  eo ln
v / R

max(e, y/Teo) 4 v N t ' 
(19)

After the definition of e* is adjusted to reflect this replace­
ment, we can use Eqs. (16)—(18) again. In the limit of low 
temperatures, T «  e2/ eo, we find

v{e) oc exp e o , v—  ln—  
e eR

(20)

The suppression of the TDOS near the Fermi surface (e «  
y/Teo) at finite temperatures is given by

v(T) exp 1.07
\ R j T ^ ) _

(21)

The origin of the strong suppression of the TDOS, see 
Eqs. (15), (16), (20), and (21), lies in the redistribution of 
charge of the tunneling electron along the wire. This pro­
cess is impeded by the finite propagation time of plasmons 
which enable the charge spreading. The requirement that 
the wavelength of the relevant plasmons v  \ /N /  e be shorter 
that the length of the wire L imposes the lower energy limit 
for the applicability of the present theory. For smaller ener­
gies, e <  v \ [ N /L ,  the tunneling DOS of the wire depends 
on the impedance of the leads attached to the segment [231 ■ 
To observe a sizable suppression of TDOS, the nanotube 
must be sufficiently long, and therefore have high intrinsic 
resistance. We find that in order to reach the strong dif­
fusive renormalization of TDOS anomaly (e, T «  e*) the 
total resistance of the segment should be made larger than 
( h / e 2) ^ N / g. This condition on the overall segment length 
does not invalidate the employed method which assumes 
the diffusive motion of electrons. Indeed, the characteris­
tic frequencies of the plasmons involved are high enough 
for the weak localization’s corrections to be ignored in the 
calculation of TDOS. In order to avoid localization ef­
fects in the dc transport measurement, the two junctions 
needed for the TDOS measurement should be attached to 
the MWNT within a distance shorter than the localization 
length from each other.

We presented above the derivation of TDOS only for the 
case of a relatively long mean free path I, exceeding the 
radius R of a MWNT, but our main result (1) is valid for 
any relation between I and R. The only additional feature 
appearing in the case I <sc R, is the intermediate range of 
energies studied in Ref. [161, where the TDOS behaves as 
in a two-dimensional disordered conductor.

In summary, we have obtained the tunneling density 
of states in a disordered quasi-one-dimensional conductor. 
Our results are nonperturbative in the electron-electron in­
teraction, and cover both the diffusive and ballistic regimes 
of the electron motion. In contrast to the two-dimensional 
case [21,241, the nonperturbative results (14) and (20) are 
not given by a simple exponentiation of the first-order in­
teraction correction (13).
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