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We formulate a geometrical theory of self-dual scalar fields in two dimensions with a local Lorentz­
invariant action. Path-integral quantization is used to derive chiral bosonization by demonstrating 
equivalence of correlation functions of currents and energy-momentum tensors in our theory with those 
for Weyl fermions. 
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Chiral bosons in two dimensions are the basic building 
blocks of string theory I and are essential to the bosonic 
formulation of the world-sheet field theory of the het­
erotic superstring. 2 However, as in the case of self-dual 
fields in other numbers of space-time dimensions, a man­
ifestly local Lorentz-invariant description of their quan­
tum mechanics is notoriously difficult to formulate. 3 

The chiral constraint O-I/I(x) = 0 is second class and is 
not easily imposed at the quantum level- the constraint 
has quantum fluctuations and only expectation values of 
the fields are chiral. If enforced with a Lagrange multi­
plier, the multiplier becomes a dynamical field, A sec­
ond-order constraint suggested by Siegel, 3 [0 - </l(x)]2 
= 0, is first class at the classical level but its algebra has 
an anomaly and at the quantum level it is a second-class 
constraint and again Lagrange multipliers fail to decou­
ple. Recently proposed solutions to this problem 4,5 are 
only partially satisfactory-additional anomaly-cancel­
ing terms can be added to the action of Abelian chiral 
bosons 4

- however, for the non-Abelian case the best one 
can do is to arrange the number of degrees of freedom so 
as to cancel the anomaly. 5 Coupling two-dimensional 
gravity to these models remains problematic. 6 Manifest­
ly covariant Becchi-Rouet-Stora-Tyutin quantization of 
a single chiral scalar has been argued to be inconsistent. 7 

Of course, at the Hamiltonian level, chiral bosons form a 
consistent Poincare-invariant and unitary field theory 
which is equivalent to a theory of Weyl fermions. 8,9 

However, to couple to external two-dimensional gravity 
or to ensure Lorentz invariance in coupling to external 

SCh = J d 2x [O+</l(x)o -</l(x) - A+ + (x )O-I/I(x)o -</l(x) 1, 

gauge fields it is desirable to begin with a manifestly co­
variant Lagrangean formalism. In this Letter we show 
that chiral bosonization, namely the requirement that 
correlation functions of currents and energy-momentum 
tensors as well as gravitational and gauge anomalies of 
chiral bosons to match those of Weyl fermions, provides 
a principle which defines the chiral Bose theory at the 
quantum level. 

Bosonization is essential to the solution of two-dimen­
sional field theories. There have recently been several 
efforts to extend bosonization to chiral (WeyI) fermions 
on arbitrary two-dimensional Riemann surfaces. 8 These 
work in Euclidean space and take advantage of the com­
plex structure of the Reimann surface to define chiral 
fields as holomorphic operators. In this Letter we take 
an alternative approach. We work in a 2D space-time 
where the metric has Minkowski signature and define 
chirality with respect to the local tangent spaces. To 
construct our model at the classical level consider a sca­
lar coupled to a two-dimensional background metric: 

SB = J d 2x t [-I g(x) 111/2gllv(x )OIl</l(X )8 V 1/1 (x ). 

(I) 

We decompose the metric into a product of Zweibein 
fields contracted with the Minkowski metric, gllv(x) 
=e~(Xh7abei(x). We consider the light-cone frame 
components of the Zweibein, IO e/ (x), set the positive 
light-cone components flat and orthonormal, e/ = 811+, 
and treat the other components as dynamical degrees of 
freedom. We obtain the action 

where A++ (x) =e.+ (x )/e'::- (x) is a Lagrange multiplier which enforces the chiral constraint [a -</l(x)]2 = O. This is 
the action proposed by Siegel. 3 The classical Poisson-bracket algebra of the constraints closes to form the one­
dimensional diffeomorphism algebra corresponding to reparametrizations of x -. Indeed, under an infinitesimal coordi­
nate transformation 8 fx ll = P (x) the Zweibein transforms like a vector field, 8 fe~ (x) = rex ) ave~ (x ) + oJV(x )e~ (x ). 
This preserves e/ (x) =811+ when f+ (x) =0. Under the remaining symmetry we have 

(3) 

This reparametrization invariance coincides with Siegel's gauge symmetry.3 There is also trivial invariance under the 
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local Lorentz transformation e!,- (x) --+ A -I (x )e!,- (x) since the action depends only on the ratio A+ + (x). This geome­
trical picture of the chiral constraint indicates a natural coupling of chiral bosons to a background metric, i.e., leaves 
el'+ (x) an external classical field. The model is 

where E~(x) = [e: (x)] - I, ¢(x) and el'- (x) are dynamical fields, and e/ (x) is the external gravitational field. This 
poses a classical field theory of chiral scalars with the novel feature that they couple to only one set of chiral com­
ponents of a background Zweibein. At the classical level this coupling has both general coordinate and local Lorentz in­
varIance. 

We expect that, as in the case of ordinary bosons and Dirac fermions, there is a correspondence at the quantum level 
between the dynamics of Weyl fermions and chiral bosons. Indeed, in Minkowski space Weyl fermions also couple to 
one chiral component of the Zweibein. To see this, consider the Weyl action, 

SF =i-fl J d 2x I e(x) I ",1 (x )E~ (x Hol'+wl'(x )hl'L (x), 

where wI' (x) is the spin connection. Using the identity I e (x) I E~ = - fl'v fabe~ (x), 10 we get 

SF = - i-fl J d 2X ",l (x )[e/ (x )f!'vOv - t f!'vOl'e/ (x) 1 "'L (x). (5) 

At the quantum level, the Weyl fermion and chiral boson theories are equivalent if they have identical correlation func­
tions of their energy-momentum tensors, i.e., when the effective actions 

iS~~[e/ 1 =In J del'- (x )d¢(x )expCiSB[e/ ,el'- ,¢l +iSct[e/ ,el'-])' 

iSftf [e/l =In J dlJlL (x )dlJlL<x )exp(iSF[e/, "'L, ",l]), 

(6) 

(7) 

coincide. In (6) we add local counterterms Sct. which are necessary to cancel the anomaly of the Siegel symmetry and 
to adjust the effective action to match the fermion determinant. 

To begin, let us consider the analogous and more familiar case of chiral coupling to external gauge fields. The deter­
minant of the Dirac operator coupled to an external U (I) vector gauge field is 

Indety!'(ol'-iAI')=- ;lr Jd2x (0-A+-O+A-) 0+
1
0_ (o-A+-o+A-)+trlno+o-. (8) 

Since the massless Dirac operator is the direct sum of left- and right-handed Weyl operators which couple to each of 
the light-cone components of the vector potential separately, we expect that its determinant factorizes, i.e., 

lndet yOyl'(ol' - iAI') =In det(o+ - iA +) + lndet(o - - iA -) + Oocal counterterms). (9) 

Inspection of (8) confirms this with the local counterterm Ci/lr)JA+A - necessary to decouple the left-moving and 
right-moving parts and yields the Weyl fermion determinant 

. i J 0+ Indet(o--IA-)=2; A- 0- A-+trlno-. 

The vector coupling of the gauge field bosons is 

iSbtf[A +,A -1 =In J d¢(x )exp [i J d 2x[0+¢o -¢+ (2lr) - 1/2A + o-¢ - (2lr) - 1/2A - 0+¢1] 

i J 2 [0- 0+ ) I =- d x A+-A++A--A--2A-A+ -Ttrlno+o-, 
2lr 0+ 0-

(10) 

and we could define a theory of bosons with a chiral coupling by adding the local counterterm Ci/ lr) J A +A - and in­
tegrating over the unwanted component A + (x): 

iSg~[A - 1 =In J d¢(x )dA + (x )exp [i J d 2x [o+¢ o-¢ - (2lr) - 1/2A - o+¢+ (2lr) - 1/2A + 0 -¢+ lr -I A +A -] ] 

i J 2 ch =- d xA--A--trino-. 
2lr 0-

(II) 

This effective action yields the gauge anomaly of a Weyl fermion. Note that the normalization of the path integral in-
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dicates that this model has the (negative) degrees of freedom of a Weyl fermion, i.e., the normalization deta.:' corre­
sponds to twice the degrees of freedom of a chiral Bose field which would have deta.: '/2 or deta; '/2. Our theory corre­
sponds to a bosonized Wyel fermion which has two Majorana-Weyl degrees of freedom. 

For external gravitational fields we revert to the second-order constraint and the formalism of (6) and (7). The 
Dirac operator is the direct sum of Weyl operators which couple to e,,+ (x) and eJi- (x) separately, 

- e,-"'&,: I ,"&,e,-l, 
where a is the spin matrix and the Dirac determinant must factorize, 

o 

To get the Weyl determinant we use the result of bosonization of Dirac fermions in a gravitational background field II: 

Indet I e I yOyQEg(aJi + w!'a) =In f dt/>(x )exp(jSn [t/>,e~]) + (Iocal counterterms) 

. f 1 =-9
1
- d 2x I e I R-2 R + (Iocal counterterms), 

6n V 

from which, using (13), we identify the effective actions for the left-moving and right-moving Weyl fermions by inspec-
tion: 

r+[e/l = 4~n f d 2
x ah- - 13+(13- _\._ -13+) ah--, (15a) 

- [ - 1 - i fd 2 13 2 I 13 2 
r eJi - 48n x -1..++ 13-(13+ -1..++8-) -1..++. (J 5b) 

Here r+ and r - depend only on the ratios 1..- - =e ~/e+ and 1..++ =e; Ie':, respectively, and are therefore invariant 
under local Lorentz transformations e/ (x) --+ A(x )e/ (x), eJi- (x) --+ A -, (x )eJi- (x). They are not invariant under 
general coordinate transformations and local counterterms can be added so that their variation reproduces the con­
sistent gravitational anomalies for right-moving and left-moving fermions. We also obtain the local counterterms, 
Set =r+ +r - - (I/96n)J I e I RV -2R, which must be added to the classical action in (6) to decouple the left-moving 
and right-moving sectors: 

Q _ _ 1 f 2 [ 1..- - 1..++ Set[eJil - -- d x 13-1..++ 13-1..+++13+1..-- 13+1..--
48n \-1..++1..-- \-1..++1..--

-13+1..--\ 2 a-A+++tln(ete.:)lelv 21n(ete':) 
-1..++1..--

- 2 [13+1..--(13+ -1..++13-)+13-1..++(8- -A--a+)l1n(ete.:»). (J6) 
\-1..++1..--

Using (6), (13), and (J4) we compute the effective action for chiral bosons: 

f deJi- (x )dt/>(x )exp(iSn [t/>,e~l + is et[eg]) =expCir + [e/]) f deJi- (x )expCir - [eJi-]) 

and Sg[[e/l =r+[e/l which coincides with that for Weyl fermions. This completes the proof that correlation func­
tions for energy-momentum tensors in the present formulation of chiral bosons coincide with those for complex Weyl 
fermions. 

To make sense of the right-hand side of (17) it is necessary to define the integration measure deJi- (x). A 2D metric 
can be parametrized by a conformal transformation ogJiy=pgJiY and a diffeomorphism 8g!,v=VJv+VviJl' It was shown 
by Polyakov '2 in the context of his string theory that the measure for the integration over two-metrics decomposes as 

dgJiv(x) =dp(x )dj+(x)dj- (x )detVt detV,-, 

where Va± = fJive/ av - afJiVaJiev± and j ± parametrize the diffeomorphisms and detV,± are Faddeev-Popov deter­
minants. The integration over Zweibeine can be parametrized similarly and defined as 

deg(x) =dA + (x )dA - (x )dj+(x )dj - (x)detVt detV,-, 
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where A ± (x) = t [p(x) ± InA (x)] are combinations of local Lorentz and conformal transformations. Since V t and 
VI- depend only on eIJ+ and eIJ-, respectively, the zweibein integration measure factorizes into measures for left-moving 
and right-moving degrees of freedom and we identify deIJ- (x) =dA - (x )dj - (x )detV 1-. Up to local counterterms, the 
Faddeev-Popov determinant is fixed by the conformal anomaly of the ghost variables. Its essential non local part is 
given by 12 In detV 1- = - 26ir - [eIJ-] and the functional integral on the right-hand side of (t 6) is 

N= J dA -(x)dj-(x)exp{(t -26hr-[e
IJ
-]1. 

Since r - is invariant under local Lorentz transformations this contains an unrestricted integration over A + (x) and is 
therefore proportional to the volume of the local Lorentz group. By adding local counterterms to r - which are propor­
tional to 

- 20~A+ + Ine =- +Ine =- (0+0- - O-A++O - )Ine =-

we regain invariance under the diffeomorphism (Siegel gauge) transformation 0) (but no longer Lorentz invariance) 
and the integration is proportional to the volume of the Siegel gauge group: 

N = (vol.O!) J dA - (x )eXP{i (1 ~~6) J d 2 xA - o+o-A - }. 

If we had used our formalism for D chiral bosons instead 
of 1 we would replace the (I - 26) in the integrand 
CD - 26) and for the critical number D =26 the integral 
would be proportional to the volumes of both the local 
Lorentz and Seigel gauge groups. The mechanism we 
have used for canceling the Siegel anomaly by introduc­
ing the conformal field lne ~ is similar to Polyakov's 12 

method for canceling the conformal anomaly in string 
theory away from critical dimensions and we see that the 
conformal degrees of freedom decouple only for critical 
D. 

It is straightforward to extend the present analysis to 
consider both gauge currents and gravity. It is also 
straightforward to extend these considerations to chiral 
non-Abelian bosonization where our method for cancel­
ing the Siegel anomaly yields a consistent theory of non­
Abelian chiral bosons away from critical dimensions, 13 
and we expect that our results will be useful in construct­
ing bosonic formulations of superstring theories on group 
manifolds and for 2D supergravity. A canonical analysis 
to determine the spectrum of the model would be in­
teresting. How 10 bosonize 2D Weyl-Majorana fermions 
remains unknown. The effective actions r ± correspond 
to the sums of all Feynman diagrams with one Weyl fer­
mion loop and arbitrary numbers of external gravitons. 
As in the case of a non-Abelian chiral couping to gauge 
fields it is usually presented in the form of a Wess­
Zumino action which is local but refers to one extra di­
mension. Here we have obtained the exact non local 
chiral effective action in two dimensions. 
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