
D y n a m i c M e m o r y H i e r a r c h y P e r f o r m a n c e O p t i m i z a t i o n *

Rajeev Balasubramonian1, David Albonesi^, Alper Buyuktosunoglu^, and Sandhya Dwarkadas1'
1 Department of Computer Science

Department of Electrical and Computer Engineering
University of Rochester

A b s t r a c t

Although microprocessor performance continues to in­
crease at a rapid pace, the growing processor-memory
speed gap threatens to limit future performance gains. In
this paper, we propose a novel configurable cache and
TLB as an alternative to conventional two-level hierar­
chies. This organization leverages repeater insertion to
provide low-cost configurability of size and speed. A
novel configuration management algorithm dynamically
measures hit and miss intolerance over intervals of in­
struction execution in order to tailor the cache and TLB
organizations on-the-fly to improve memory hierarchy
performance. The result is an average 14% improvement
in IPC and a speedup of up to 1.55 across a broad class of
applications compared to a conventional two-level hierar­
chy of identical total size.

1 I n t r o d u c t i o n

The performance of general purpose microprocessors
continues to increase at a rapid pace. In the last 15
years, performance has improved at a rate of roughly 1.6
times per year with about half of this gain attributed to
techniques for exploiting instruction-level parallelism and
memory locality [9]. Despite these advances, several im­
pending bottlenecks threaten to slow the pace at which
future performance improvements can be realized. Ar­
guably the single biggest potential bottleneck for many
applications in the future will be high memory latency and
the lack of sufficient memory bandwidth. Although ad­
vances such as non-blocking caches [5] and hardware and
software-based prefetching [10, 16] can reduce latency in
some cases, the underlying structure of the memory hier­
archy upon which these approaches are implemented may
ultimately limit their effectiveness. Thus, new approaches
that provide for lower latency and higher bandwidth than
conventional memory hierarchies are needed to prevent

*This work was supported in part by NSF grants CDA-9401142,
EIA-9972881, CCR-9702466, CCR-9701915, CCR-9811929, and
CCR-9705594; and an external research grant from DEC/Compaq.

the memory system from fundamentally limiting future
performance gains.

The most commonly implemented memory system or­
ganization is likely the familiar multi-level memory hier­
archy. The rationale behind this approach, which is used
primarily in caches but also in some TLBs (e.g., in the
MIPS R10000 [20]), is that a combination of a small,
low-latency L1 memory backed by a higher capacity, yet
slower, L2 memory and finally by main memory pro­
vides the best tradeoff between optimizing hit time and
miss time. Although this approach works well for many
common desktop applications and benchmarks, programs
whose working set exceeds the L1 capacity may spend
considerable time and energy transferring data between
the various levels of the hierarchy. If the miss tolerance of
the application is lower than the effective L1 miss penalty,
then performance may degrade significantly due to in­
structions waiting for operands to arrive. For such appli­
cations, a large, single-level cache (as used in the HP PA-
8X00 series of microprocessors [8, 12, 13]) may perform
better than a two-level hierarchy for the same total amount
of memory. For similar reasons, the PA-8X00 series also
implements a large, single-level TLB. Because the TLB
and cache are accessed in parallel, a larger TLB can be
implemented without impacting hit time in this case due
to the large L1 caches that are implemented.

One fundamental issue in current approaches is that
no one memory hierarchy organization is best suited for
each application. Across a diverse application mix, there
will inevitably be significant periods of execution during
which performance degrades due to a mismatch between
the memory system requirements of the application and
the memory hierarchy implementation.

Previous approaches to this problem [1, 2] have ex­
ploited the partitioning of hardware resources to en­
able/disable parts of the cache under software control,
but in a limited manner. In [1], a preliminary analysis
of a cache hierarchy using the approach was presented.
The design assumed a two-level on-chip cache in which a
set of partitions could be allocated between L1 and L2
as needed. However, the issues of how to practically
implement such a design were not addressed in detail,

1

the analysis only looked at changing configurations on
an application-by-application basis (and not dynamically
during the execution of a single application), and the sim­
plifying assumption was made that the best configuration
was known for each application. Furthermore, the orga­
nization and performance of the TLB was not addressed,
and the reduction of the clock frequency with increases
in cache size limited the performance improvement that
could be realized.

In [2], it was demonstrated that cache energy dissipa­
tion could be reduced by enabling all of the cache ways
when required to achieve high performance, but enabling
only a subset of the ways when cache demands were more
modest. As in [1], a perfect selection algorithm was as­
sumed and a single overall-best configuration was used for
each application. In addition, the cache was partitioned
into a separate subarray for each cache way, whereas in
practice, a different subarray organization may be used
that allows for conditional clocking of subarrays.

In this paper, we present what we contend to be a su­
perior alternative to static two-level cache and TLB hi­
erarchies: a configurable cache and TLB orchestrated by
a configuration algorithm that seeks to maximize perfor­
mance. Unlike the approach in [2] and similar to the ap­
proach in [1], parts of the cache that are not used as an
L1 cache serve as a backup L2 cache. In effect, what we
have is 2MB of on-chip cache real-estate that is dynam­
ically configured between L1 and L2, with the goal of
arriving at the optimal tradeoff between L1 hit time and
L1 miss time. Instead of changing the clock rate as pro­
posed in [1], we implement a cache and TLB with a vari­
able latency so that changes in the organization of these
structures only impact memory instruction latency and
throughput. Furthermore, we propose a novel hardware
design that monitors cache and TLB usage and application
latency tolerance at regular intervals, and improves per­
formance by properly balancing hit intolerance with miss
intolerance dynamically during application execution.

The rest of this paper is organized as follows. Section 2
describes the layout of the architecture, and how it enables
dynamic reconfiguration. Section 3 describes the dynamic
selection mechanisms, including the hardware counters
required and the hardware-based configuration manage­
ment algorithm. Sections 4 and 5 describe our simulation
methodology and present a performance comparison with
conventional two-level cache and TLB hierarchies. We
conclude in Section 6.

2 C a c h e a n d T L B A r c h i t e c t u r e

Our cache and TLB structures follow that described by
McFarland in his thesis [14]. McFarland developed a de­
tailed timing model for both the cache and TLB that bal­

ances both performance and energy considerations in sub­
array partitioning, and which includes the effects of tech­
nology scaling.

We use a 2MB data cache that is two-way banked and
interleaved on a word basis in order to provide enough
memory bandwidth for the four-way dynamic superscalar
processor that we simulate. This allows us to access two
adjacent words in a cache block at the same time. In or­
der to reduce access time and energy consumption, each
bank is implemented as two 512KB SRAM structures in­
terleaved on a word basis, one of which is selected on
each bank access. The data array section of the structure
is shown in Figure 1 in which only the details of one sub­
array are shown for simplicity (The other subarrays are
identically organized.). There are four subarrays, each of
which contains four ways. In order to reduce energy dis­
sipation, two address bits (Subarray Select) are used to
select only one of the four subarrays on each access. The
other three subarrays have their local wordlines disabled
and their precharge, sense amp, and output driver circuits
are not activated. The TLB virtual to real page number
translation and tag check proceed in parallel and only the
output drivers for the way in which the hit occurred are
turned on. Parallel TLB and tag access can be accom­
plished if the operating system can ensure that indexM ts-
page-offset-bits bits of the virtual and physical addresses
are identical, as is the case for the four-way set associative
1MB dual-banked L1 data cache in the HP PA-8500 [7].

In order to provide adaptivity while retaining fast ac­
cess times, we implement several modifications to Mc­
Farland's baseline design as shown in Figure 1:

McFarland drives the global wordlines to the center
of each subarray and then the local wordlines across
half of the subarray in each direction in order to min­
imize the worst-case delay. In contrast, because we
are more concerned with achieving comparable de­
lay with a conventional design for our smallest cache
configurations, we distribute the global wordlines to
the nearest end of each subarray and drive the local
wordlines across the entire subarray.

Repeaters are used in the global wordlines to electri­
cally isolate each subarray. That is, subarrays 0 and
1 do not suffer additional global wordline delay due
to the presence of subarrays 2 and 3.

McFarland organizes the data bits in each subarray
by bit number. That is, data bit 0 from each way are
grouped together, then data bit 1, etc.. We organize
the bits according to ways as shown in Figure 1 in or­
der to increase the number of configuration options.

Repeaters are used in the local wordlines to electri­
cally isolate each way in a subarray. The result is that

2

Subarray2 Subarray0 Subarray1 Subarray3

Precharge

3 -
_ LocalWordline _

Way3 Way2 Way1 Way0

Column
MUXes

Sense
Amps

Pre­
decoder

Row
Decoder

.. Data Bus

Subarray/Way Select

Cache Select
Logic

Subarray Select
(from address)

Tag Hit
(from tags)

Configuration Control
(from Config Register)

Figure 1: The organization of the data array section of one of the 512KB cache structures

the presence of additional ways does not impact the
delay of the fastest ways.

• Configuration Control signals from the Configura­
tion Register provide the ability to disable entire sub­
arrays or ways within an enabled subarray. Local
wordline and data output drivers and precharge and
sense amp circuits are not activated for a disabled
subarray or way.

We estimated the additional area from adding minimum
size repeaters to electrically isolate wordlines to be just
over 6%. In addition, due to the large capacity of each
cache structure, each local wordline is roughly 2.75mm
in length (due to the size of the cache) at 0.1 /ttm tech­
nology (assumed throughout this paper), and therefore a
faster propagation delay is achieved with these buffered
wordlines compared with unbuffered lines. Moreover, be­
cause local wordline drivers are required in a conventional
cache, the extra drivers required to isolate ways within a
subarray do not impact the spacing of the wordlines, and
thus bitline length is unaffected. In terms of energy, the
addition of repeaters increases the total memory hierarchy
energy dissipation by 2-3% in comparison with a cache
with no repeaters for the simulated benchmarks.

Figure 2 shows the cache configurations possible in our
design. Although multiple subarrays are enabled in an or­
ganization, only one is selected each cycle according to
the Subarray Select field of the address. However, the
number of enabled ways within each subarray that are
initially enabled on an access may be varied. When a
miss in the enabled ways is detected, all tag subarrays
and ways are read. This permits hit detection to data
in disabled ways within enabled subarrays as well as to
data that has been mismapped due to reconfiguration (dis­
cussed below). When this occurs, the data in the enabled
way (which has already been read out and placed into a
buffer) is swapped with the data in the disabled way. In
the case of a miss to both enabled and disabled ways, the
displaced block in the enabled way is placed into one of
the disabled ways or subarrays. This prevents thrashing
in the case of low-associative organizations. In effect, the
cache behaves like a two-level exclusive cache, with the
sizes of L1 and L2 being dynamically chosen. Note that
because some of the configurations span only two subar­
rays, while others span four, the number of sets is not al­
ways the same. Hence, it is possible that a given address
might map into a certain cache line at one time and into

3

Enabled Subarrays/Ways

Subarray 2 Subarray 0 Subarray 1 Subarray 3

W3 W2 W1 W0 W3 W2 W1 W0 W0 W1 W2 W3 W0 W1 W2 W3

256-1 256KB 1 way 2.0 E E

512-2 512KB 2 way 2.5 E E E E

768-3 768KB 3 way 2.5 E E E E E E

1024-4 1024KB 4 way 3.0 E E E E E E E E

512-1 512KB 1 way 3.0 E E E E

1024-2 1024KB 2 way 3.5 E E E E E E E E

1536-3 1536KB 3 way 4.0 E E E E E E E E E E E E

2048-4 2048KB 4 way 4.5 E E E E E E E E E E E E E E E E

Figure 2: Possible cache organizations that can be configured shown by the ways that are initially enabled (as L1)
denoted with an E under a particular column. Only one of the four SRAM structures is shown; the ways enabled within
each structure are identical. Abbreviations for each organization are listed to the left of the size and associativity of
the L1 section, while access times in cycles are given on the right. Note that the TLB access may dominate the overall
delay of some configurations. The numbers listed here simply indicate the relative order of the access times for all
configurations and thus the performance/energy tradeoffs allowable.

another at another time (resulting in the mismap alluded
to earlier). In cases where subarrays two and three are dis­
abled, the high-order Subarray Select signal is used as a
tag bit. This extra tag bit is stored on all accesses in order
to detect mismaps. Mismapped data is handled the same
way as a level one miss and level two hit, i.e., it results
in a swap. Our simulations indicate that such events are
infrequent.

The direct-mapped 512KB and two-way set associative
1MB cache organizations are lower energy, and lower per­
formance, alternatives to the 512KB two-way and 1MB
four-way organizations, respectively. These options ac­
tivate half the number of ways on each access for the
same capacity as their counterparts. For execution peri­
ods in which there are few cache conflicts and hit latency
tolerance is high, the low energy alternatives may result
in comparable performance yet save considerable energy.
We focus in this paper on performance, and hence cur­
rently do not use these two configurations. Hence, if the
application cannot tolerate level one cache misses, the size
is increased progressively from 256KB 1-way to 768KB
3-way to 1MB 4-way and then finally onto 1.5MB 3-way
and 2MB 4-way. From a performance perspective, the
512KB 2-way configuration provides no advantage over
the 768KB 3-way configuration (due to their identical ac­
cess times in cycles) and thus this 512KB configuration is
not used.

Our 512-entry, fully-associative TLB can be similarly
configured as shown in Figure 3. There are eight TLB

increments, each of which contains a CAM of 64 virtual
page numbers and an associated RAM of 64 physical page
numbers. Repeaters are inserted on the input and output
buses to electrically isolate successive increments. Thus,
the ability to configure a larger TLB does not degrade the
access time of the minimal size (64 entry) TLB. Similar
to the cache design, TLB misses result in a second access
but to the backup portion of the TLB. Unlike the cache de­
sign, data is not swapped between the primary and backup
portions.

The performance improvement gained in [1] was lim­
ited by the fact that the clock rate of the chip was increased
whenever the cache size was increased beyond its mini­
mum size. Thus, all pipeline stages were forced to operate
at this slowed down rate, which mitigated the performance
benefits of increasing cache size. To remedy this situation,
we vary the latency of the cache and TLB access on half­
cycle increments according to the timing of each configu­
ration, assuming a two cycle access for the minimum size
direct-mapped 256kB configuration (Refer to Figure 2 for
timing values.). Half cycle increments are necessary to
distinguish the different configurations in terms of their
organization and speed. Such an approach can be im­
plemented by capturing cache data using both phases of
the clock, similar to the double-pumped Alpha 21264 data
cache [11], and enabling the appropriate latch according
to the configuration. The advantages of this approach is
that the timing of the cache can change with its configu­
ration while the main processor clock remains unaffected,

4

vpn ppn 3.1 Latency Tolerance Metrics

enable

enable

enable

CAM - RAM

CAM - RAM

CAM - RAM

A

A

A

► CAM RAM

enable

Figure 3: The organization of the configurable TLB

and no clock synchronization is necessary. However, be­
cause we assume that the processor uses only one phase
of the clock, cache data that is latched using the alternate
phase is used by the processor a half-cycle later. In addi­
tion, the control logic that determines when an instruction
that uses the result of a load should be speculatively issued
(assuming a cache hit) must take into account the config­
uration that is enabled. Finally, we maintain a two stage
cache pipeline access for each configuration. This implies
a lower throughput for the larger configurations as well
as for the large conventional L2 cache due to their higher
latencies.

3 D y n a m i c S e l e c t i o n M e c h a n i s m s

Our cache and TLB organization makes it possible to pick
an L1 cache size depending on the application’s require­
ments. The appropriate size at any time is that which
achieves the best trade-off between the access time for
each cache hit and the time spent servicing cache misses.
Cache miss rates give a first order approximation of the
cache requirements of an application, but they do not di­
rectly reflect the effects of various cache sizes on memory
stall cycles. In this section, we first present a metric that
quantifies this effect and describe how it can be used to
dynamically pick an appropriate cache size.

The actual number of memory stall cycles incurred is a
function of the time taken to satisfy each cache access and
the ability of the out of order execution window to overlap
other useful work while these accesses are made. Load
latency tolerance has been characterized in [19], and [6]
introduces two hardware mechanisms for estimating the
criticality of a load. One of these monitors the issue rate
while a load is outstanding and the other keeps track of
the number of instructions dependent on that load. While
these schemes are easy to implement, they are not very
accurate in capturing the number of stall cycles resulting
from an outstanding load. We propose an approach that
more accurately characterizes load stall time and further
breaks this down as stalls caused by cache hits and misses.

We assume that the issue logic is built around the Reg­
ister Update Unit (RUU) [18]. The RUU holds all instruc­
tions that are at different stages in the pipeline (queued,
issued, and completed). To every entry in the RUU, in
addition to the ready bits for the operands, we add two
bits per operand: one specifying if the operand is pro­
duced by a load and another specifying if the load was a
hit or a miss. At instruction decode time, this information
can be deduced from the register map table. Every cache
miss results in a broadcast of the destination register tag to
the RUU, so that the entries can update the hit/miss status
of their operands. Every cycle, we use this information
to determine how many instructions were stalled by an
outstanding load. For every instruction in the RUU that
directly depends on a load, we increment an intolerance
counter if (i) all operands except the operand produced
by a load are ready, (ii) a functional unit is available, and
(iii) there are free issue slots in that cycle. Depending
on whether the load is marked as a hit or a miss, the in­
tolerance is classified as hit or miss intolerance. If more
than one operand of an instruction is produced by a load,
a heuristic is used to choose the hit/miss bit of one of the
operands. In our simulations, we choose the operand cor­
responding to the load that issued first.

The metric just described has limitations in the pres­
ence of multiple stalled instructions due to loads. Free is­
sue slots may be mis-categorized as hit or miss intolerance
if the resulting dependence chains were to converge. This
mis-categorization of lack of ILP manifests itself when
the converging dependence chains are of different lengths.
Stalling the shorter chain for a period of time should not
affect the execution time. Hence, the number of program
stall cycles should be dependent on the stall cycles for the
longer dependence chain. The chain in the critical path is
difficult to compute at runtime. The miss and hit intoler­
ance metrics effectively add the stalls for both chains, and
in practice, seem to work well.

5

Since we are also interested in TLB reconfiguration, we
need a metric for picking an appropriate TLB size. In
our model, the pipeline stalls while a TLB miss is being
serviced. Hence, the TLB miss rate serves as a reasonable
approximation to the effect of the TLB on execution time.
We also have a TLB usage metric that counts the number
of TLB entries that are accessed since the last count.

3.2 Improving Performance Using Toler­
ance Information

The hit and miss intolerance counters indicate the effect
of a given cache organization on actual execution time.
Large caches tend to have higher hit intolerance because
of the greater access time, but lower miss intolerance due
to the smaller miss rate. These intolerance counters serve
as a hint to indicate which cache sizes to explore and the
optimal cache configuration is the one that usually has
the smallest sum of hit and miss intolerance. To arrive at
this configuration dynamically at runtime, we use a sim­
ple mechanism that uses past history to pick a size for the
future.

We examine hit and miss intolerance values in every
million cycle interval. Based on this, we pick one of two
states - stable or unstable. The former suggests that be­
havior in this interval is not very different from the last
and we do not need to change cache size, while the latter
suggests that there has recently been a phase change in the
program and we need to explore and pick an appropriate
size.

The initial state is unstable and the initial cache size is
chosen to be the smallest. If the miss intolerance for an
interval exceeds the hit intolerance, we move to a bigger
cache size in the hope that we can contain the working set
and bring about a drastic drop in miss intolerance. Like­
wise, if the hit intolerance is greater, we move to a smaller
size. For every different cache size, we keep the CPI for
that interval in a table. This exploration continues until a
cache size is revisited or the maximum or minimum size
is reached. At this point, the table is examined to pick the
cache configuration that worked best, the table is cleared,
and we switch to the stable state. We continue to remain in
the stable state while hit and miss intolerance do not sig­
nificantly differ from that in the previous interval. When
there is a change, we switch to the unstable state, return
to the smallest cache size and start exploring again. The
pseudocode for the mechanism is listed below.

i f s t a b l e
NOISE = 0 . 3 * (l a s t _ m i s s _ i n t o l +

l a s t _ h i t _ i n t o l) ;
i f m i s s _ i n t o l - l a s t _ m i s s _ i n t o l < NOISE
an d h i t _ i n t o l - l a s t _ h i t _ i n t o l < NOISE

r e m a in a t s t a b l e ;

e l s e
make u n s t a b l e ;
c h o o s e s m a l l e s t c a c h e ;

i f u n s t a b l e
u p d a te t a b l e e n t r i e s ;
FACTOR = l a t e n c y _ o f _ n e x t _ s i z e /

l a t e n c y _ o f _ c u r r e n t _ s i z e - 1 ;
i f m i s s _ i n t o l > F A C T O R * h it_ in to l

i n c r e a s e s i z e ;
e l s e i f h i t _ i n t o l > m i s s _ i n t o l

d e c r e a s e s i z e ;
i f r e v i s i t i n g o r

u n a b le t o i n c r / d e c r any f u r t h e r
i n s p e c t t a b l e ;
move t o b e s t s i z e ;
make s t a t e s t a b l e ;

The rationale behind the use of FACTOR is that the
miss intolerance tends to decline sharply when the work­
ing set fits in the cache. Hence, we want to ensure that
larger cache sizes are explored as long as there is the pos­
sibility that the reduction in miss intolerance is not offset
by the corresponding increase in hit intolerance. Simi­
larly, NOISE is used to incorporate some hysteresis when
reacting to changes in the application behavior so as to
avoid unnecessary changes in cache organization. We
chose an interval of a million cycles as an appropriate
checkpoint.

Clearly, this mechanism is best suited to programs that
can sustain uniform behavior for a number of intervals.
While switching to an unstable state, we also move to the
smallest cache size as a form of “damage control” for pro­
grams that have irregular behavior. This choice ensures
that for these programs, more time is spent at the smaller
cache sizes and hence performance is more like that of a
conventional cache. Other heuristics (such as exploring
from the current size instead of moving to the smallest
size) were also tried and the above heuristic worked best
for most applications.

In addition to cache reconfiguration, we also change the
size of the TLB. TLB size is increased if the miss rate is
high enough that the TLB overhead exceeds 3% of exe­
cution time. The size is decreased if the TLB usage is
less than half. At the time of changing cache and TLB
size, once the appropriate sizes are chosen, the dominat­
ing (larger) latency is used to determine whether a larger
cache (or TLB) would work just as well without impact­
ing overall memory latency, and that size is used instead.

6

Fetch queue size 8
Branch predictor comb, of bimodal

and 2-level gshare
Bimodal size 2048

Level 1 1024entries,history 10
Level2 4096 entries (global)

Combining predictor size 1024
RAS size 32

BTB 2048 sets, 2-way
Branch misprediction latency 5 cycles
Fetch, decode and issue width 4

RUU and LSQ size 64 and 32
LI I-cache 64KB 2-way

Memory latency 66 cycles
Integer ALUs 4

Integer mult/div 2
FP ALUs 2

FP mult/div 1

Table 1: Simplescalar simulator parameters

4 E v a l u a t i o n M e t h o d o l o g y

4.1 Simulation Methodology

We used Simplescalar-3.0 [3] for the Alpha AXP instruc­
tion set to simulate an aggressive 4-way superscalar out-
of-order processor. The simulation parameters are sum­
marized in Table 1.

The data memory hierarchy is modeled in great detail.
For the reconfigurable cache, the 2MB of on-chip cache is
partitioned as a two-level exclusive cache, where the size
of the L1 is dynamically picked. It is organized as two
word-interleaved banks, each of which can service up to
one cache request every cycle. It is assumed that the ac­
cess is pipelined, so a fresh request can issue after half
the time it takes to complete one access. The bus between
the two levels and to memory, writeback buffers, and con­
tention for the caches have also been modeled. We assume
that the access to the second level is pipelined and a fresh
request can issue every 4 cycles. The second level ac­
cess time is 15 cycles. We picked a line size of 128 bytes
because it yielded a much lower miss rate for our bench­
mark set than smaller line sizes. It also enabled a more
optimal layout, and hence lower access times. The down­
side of this choice is the need for a wider bus between L1
and L2, but this investment seems worthwhile, given the
much better performance that it affords (due to the lower
miss rate and faster access time). As was shown in Fig­
ure 2, the minimum cache is 256KB and direct mapped,
while the largest is 2MB 4-way, the access times being 2
and 4.5 cycles, respectively. Our minimum sized TLB has
64 entries, while the largest is 512. A TLB miss at the

first level results in a 6 cycle lookup in the second level
(no swap is done). A miss in the second level results in
a call to a TLB handler that is assumed to complete in 30
cycles. The page size is 8KB. Note that the TLB is not
like an inclusive 2-level TLB - the second level is never
written to. It is looked up in the hope that an earlier larger
first level TLB had entries in it, which could still be used.
Hence it is much simpler than the two-level TLB of the
same size that we use for our base processor.

We compare our dynamic scheme with three base con­
figurations that are identical in all respects, except for the
data cache hierarchy. The first uses a two-level exclusive
cache, with a direct mapped 256KB L1 cache backed by
a 14-way 1.75MB L2 cache. The L2 associativity results
from the fact that 14 ways remain in each 512KB struc­
ture after two of the ways are allocated to the 256KB L1
(only one of which is selected on each access). Compari­
son of this scheme with the configurable approach demon­
strates the advantage of resizing the first level. We also
compare with a two-level inclusive cache which consists
of a 256KB direct mapped L1 backed by a 16-way 2MB
L2. This configuration serves to ensure that the first base
case does not perform poorly merely because of its exclu­
sive nature. (An exclusive cache performs worse because
every miss results in a swap or writebacks, which cause
greater bus and memory port contention.) We also com­
pare with a 64KB 2-way inclusive L1 and 2MB of 16-way
L2, which represents a typical configuration in a modern
processor and ensures that the performance gains for our
dynamically sized cache are not obtained simply by mov­
ing from a direct mapped to a set associative cache. For
all these caches, the L1 access is two cycles and the sec­
ond level access is 15 cycles and is consistent with access
times obtained from McFarland’s model [14]. The con­
ventional TLB is a two-level inclusive TLB with 64 en­
tries in the first level and 448 entries in the second level.

4.2 Benchmarks

We have used a variety of benchmarks from SPEC95,
SPEC2000, and the Olden suite [17]. These particular
programs were picked because they have high miss rates
for the L1 caches we considered. For programs with low
miss rates for the smallest cache size, the dynamic scheme
affords no advantage. The chosen benchmarks were com­
piled with the Compaq cc, f77, and f90 compilers at an
optimization level of O2. Warmup times were studied and
the simulation was fast-forwarded through these phases
(one of the Olden benchmarks (mst) is small enough that it
can be simulated in its entirety). A further million instruc­
tions were simulated in detail to prime all structures be­
fore starting the performance measurements. The bench­
marks are summarized in Table 2.

7

Benchmark Suite Datasets Simulation window (instrs)
em3d Olden 20,000 nodes, arity 20 1000M-1100M
health Olden 4 levels, 1000 iters 80M-140M

mst Olden 256 nodes entire program 14M
perimeter Olden 32Kx32K image 1428M-1528M
compress SPEC95 INT ref 1900M-2100M
hydro2d SPEC95FP ref 200M-335M

apsi SPEC95FP ref 200M-400M
swim SPEC2000 FP ref 1200M-1400M

art SPEC2000 FP ref 300M-500M

Table 2: Benchmarks

4.3 Timing Estimation

We use the cache and TLB timing model developed by
McFarland [14] to estimate timings for both the config­
urable cache and TLB, and the caches and TLBs of a con­
ventional L1-L2 hierarchy. McFarland’s model contains
several optimizations, including the automatic sizing of
gates according to loading characteristics, and the careful
consideration of the effects of technology scaling down to
0.1/ttm technology [15] (which we used for all delay cal­
culations). The model integrates a fully-associative TLB
with the cache to account for cases in which the TLB dom­
inates the L1 cache access path. This occurs, for example,
for all three conventional caches as well as for the mini­
mum size L1 cache (direct mapped 256KB) in the config­
urable organization.

For the global wordline, local wordline, and output
driver select wires, we recalculate cache and TLB wire de­
lays using RC delay equations for repeater insertion [4].
Repeaters are used in the configurable cache as well as
in the conventional L1 cache whenever they reduce wire
propagation delay.

5 P e r f o r m a n c e R e s u l t s

In this section, we compare the interval-based scheme
with three base cases. The various configurations are tab­
ulated in Table 3. We also ran the benchmarks with a
perfect memory system (all data cache accesses serviced
in one cycle) to estimate the contribution of the memory
system to execution time. We refer to the difference in
CPIs as the memory-CPI. Since our dynamic cache is only
trying to improve memory performance, the memory-CPI
quantifies the impact of our scheme on memory perfor­
mance, while CPI quantifies the impact on overall perfor­
mance.

Some of our benchmarks (the ones from the Olden
suite) are much shorter than the SPEC programs. Hence,
to get an overall metric of performance across all bench­
marks, we use the HM of IPC. This would represent the

A Base exclusive cache with
256KB 1-way LI and 1.75MB 14-wayL2

B Base inclusive cache with
256KB 1-way LI and 2MB 16-way L2

C Base inclusive cache with
64KB 2-way LI and 2MB 16-way L2

D Interval-based dynamic scheme

Table 3: Summary of the various configurations

em3d heal mst peri comp hydr apsi sw im art

Figure 4: CPI for the 3 base cases (A, B, C) and the
interval-based scheme (D)

performance of a workload where each application ran for
an equal timeslice.

Figures 4 and 5 show the CPI and memory-CPI for each
of the applications. Table 4 summarizes the speedups with
respect to each base case for every application. To quan­
tify the effect of the TLB and the cache, we ran case A
and case D with a perfect TLB to determine the improve­
ment got with the cache alone, which is shown in the last
column.

8

Benchmark Speedup with respect Speedup with
to the 3 base cases only the cache

64K-2-inc (C) 256K-l-inc (B) 256K-l-exc (A)
em3d 1.05 1.04 1.11 1.08
health 1.68 1.55 1.55 1.19

mst 1.13 1.06 1.08 1.08
perimeter 0.99 0.99 0.99 0.99
compress 1.20 1.10 1.10 1.06
hydro2d 0.90 0.92 0.95 0.95

apsi 0.97 1.04 1.04 1.07
swim 1.14 1.14 1.15 1.06

art 0.96 0.97 0.98 0.98

Table 4: Summary of CPI speedups when compared to the three base cases and speedup with respect to case A, when
assuming a perfect TLB for both

0)

■ A

□ b

□ c

n d

Figure 5: Mem-CPI for the 3 base cases (A, B, C) and the
interval-based scheme (D)

When compared with base case A, the CPI speedup is
as high as 1.55 for health, while the mem-CPI speedup is
2.0. The HMs of the IPCs for A, B, C and D are 0.882,
0.895, 0.874 and 0.999, which is a 1.14 speedup for D
over A. The corresponding speedup for mem-IPC is 1.25.
From the last column of Table 4, it is clear that in most
cases the cache and TLB play commensurate roles in the
improvement.

We can categorize our results based on the behavior of
applications with working set sizes that either fit or do not
fit in the available on-chip memory, as well as due to the
effect of cache associativity.

Perimeter, em3d, swim, and art have a working set size
larger than 2MB. Hence, perimeter remains at the min­
imum sized cache after an initial exploration phase and
shows no change in performance (it sees a change of phase
at a later point, but again picks the minimum sized cache).

For Em3d, the best tradeoff point occurs at the 2MB cache
size and the program remains stable at that size. Even
though there is no sharp drop in miss rate at the 2MB
cache size, there is a sharp increase in CPI because there
is no (often fruitless) backup cache to be looked up. The
saving of those 15 cycles on every trip to memory gives
the CPI a boost. Swim also picks the 2MB cache size for
the same reason. It does have 3 different execution phases,
which cause it to become unstable and do an exploration
before settling on the 2MB each time. Art is very unstable
in its behavior and does not remain in any one phase for
more than a few intervals. It also does not fit in 2MB, so
there is no size that causes a sufficiently large drop in CPI
to merit the cost of exploration. This results in a slight
CPI degradation.

Health is an application with a working set size that fits
in the available on-chip cache (2MB). The cache size of
1.5MB that the dynamic scheme stabilizes at helps bring
down the miss intolerance drastically, resulting in a large
CPI improvement. For mst, a cache size of 256KB pro­
vides the best trade-off point for most of the execution
(the initialization phase of the mst (minimum spanning
tree)). In the last few million cycles where the mst is com­
puted, the working set size changes and the interval-based
scheme increases the cache size in an effort to minimize
the high miss intolerance. The program finishes execution
before a stable state can be reached, however. Compress
also dynamically adapts its cache configuration during ex­
ecution and benefits from a larger cache (768KB). The
program is fairly unstable and keeps changing phase ev­
ery few intervals. The use of hit and miss intolerance help
control the exploration phase and only 2 cache sizes are
tried before settling on the 768KB cache.

Apsi gets its benefit from moving to a set associative
cache. Even though our default cache is direct-mapped,
the dynamic scheme has the ability to reconfigure and
move to a larger set-associative cache, thereby showing

9

a speedup of 1.04 with respect to the direct-mapped base
cases (A and B). C performs slightly better (D has a slow­
down of 0.97 compared to C) because its set-associative
cache is smaller and hence faster. Note that apart from hy­
dro2d and apsi, the 64KB 2-way cache (configuration C)
always performs worse than base case B. Our dynamic
scheme is able to reap the benefits of a set-associative
cache for those applications with a large number of cache
conflicts, while retaining the lower latencies and behavior
of the direct-mapped cache for other applications. Like
compress, apsi too is quite inconsistent in its behavior, re­
sulting in frequent exploration. Again, the hit intolerance
metric prevents extensive exploration.

Hydro2d has very inconsistent behavior across inter­
vals and the algorithm hardly remains at stable state for
more than one interval. Due to our choice of starting from
the smallest cache size at the start of each unstable phase,
only a small performance degradation occurs.

In terms of the effect of TLB reconfiguration, health,
swim, and compress benefit from using a larger TLB.
Health and compress require 256 and 128 entries for best
performance, and the dynamic scheme is able to settle at
this size. Swim shows phase change behavior with respect
to TLB usage, resulting in 5 stable phases that require the
entire range of TLB sizes. We notice a slight degradation
in performance because of the configurable TLB in some
of the benchmarks, because of the fact that the config­
urable TLB design is effectively a 1-level hierarchy using
a smaller number of total TLB entries since data is not
swapped between the primary and backup portions when
handling TLB misses.

Em3d is the only benchmark where our choice of an
exclusive cache severely degrades performance. Because
of an L1 miss rate of more than 17%, the excess traffic
between the first two levels severely degrades the exclu­
sive cache performance compared to that of the inclusive
caches. Hence, the speedup with respect to B and C is
not as marked as that with respect to A. Note that em3d
avoids the traffic between L1 and the backup ways by dy­
namically picking the 2MB cache size.

It must also be noted that the inclusive caches use the
L2 as a unified cache, while the exclusive organizations
have an L1 I-cache and memory at the next level. For the
benchmarks studied, this did not affect performance, but
performance degradation may occur for the configurable
cache for programs with large instruction footprints.

6 C o n c l u s i o n s

We have described a novel configurable cache and TLB
as an alternative to conventional two-level hierarchies.
Repeater insertion is leveraged to enable dynamic cache
configuration, with a cache organization that allows for

dynamic speed/size tradeoff while limiting the impact of
speed changes to within the memory hierarchy. Our con­
figuration management algorithm is able to dynamically
examine the tradeoff between hit and miss intolerance in
hardware to determine appropriate cache size and speed.
Our results show an average 14% with up to a 55% im­
provement in IPC in comparison with a conventional L1-
L2 design of identical total size, with the benefit almost
equally attributable on average to the configurable cache
and TLB.

Future work includes exploiting the low-energy config­
urations and implementing energy-aware modifications to
the configuration algorithm, exploring reconfiguring on
subroutine granularity, and investigating the use of com­
piler support. For instance, for those subroutines where
the cache size is a function of a dynamic runtime pa­
rameter, compiler support to instrument the subroutine
so that this information can be utilized at runtime would
be useful. In addition, for applications where a subrou­
tine granularity is not the most appropriate, the compiler
could choose appropriate adaptation points. We will ex­
plore these mechanisms for applications with regular ac­
cess patterns, where it is likely to be most effective. The
effect of similar mechanisms for the L2-L3 hierarchy also
need to be studied. Finally, improvements at the circuit
and microarchitectural levels will be pursued that better
balance configuration flexibility with access time and en­
ergy consumption.

R e f e r e n c e s

[1] D. Albonesi. Dynamic IPC/clock rate optimization. Pro­
ceedings o f the 25th International Symposium on Com­
puter Architecture, pages 282-292, June 1998.

[2] D. Albonesi. Selective cache ways: On-demand cache re­
source allocation. Proceedings o f the 32nd International
Symposium on Microarchitecture, November 1999.

[3] D. Burger and T. Austin. The Simplescalar toolset, ver­
sion 2.0. Technical Report TR-97-1342, University of
Wisconsin-Madison, June 1997.

[4] W. Dally and J. Poulton. Digital System Engineering.
Cambridge University Press, Cambridge, UK, 1998.

[5] K. Farkas and N. Jouppi. Complexity/performance trade­
offs with non-blocking loads. Proceedings o f the 21st In­
ternational Symposium on Computer Architecture, pages
211-222, April 1994.

[6] B. Fisk and I. Bahar. The Non-Critical Buffer: Using Load
Latency Tolerance to Improve Data Cache Efficiency. In
IEEE International Conference on Computer Design, Oc­
tober 1999.

[7] J. Fleischman. Private communication. October 1999.

[8] L. Gwennap. PA-8500’s 1.5M cache aids performance. Mi­
croprocessor Report, 11(15), November 17, 1997.

10

[9] J. Hennessy. Back to the future: Time to return to some
long standing problems in computer systems? Federated
Computer Conference, May 1999.

[10] N. Jouppi. Improving direct-mapped cache performance
by the addition of a small fully-associative cache and
prefetch buffers. Proceedings o f the 17th International
Symposium on Computer Architecture, pages 364-373,
May 1990.

[11] R. Kessler. The Alpha 21264 microprocessor. IEEE Micro,
19(2):24-36, March/April 1999.

[12] A. Kumar. The HP PA-8000 RISC CPU. IEEE Computer,
17(2):27-32, March 1997.

[13] G. Lesartre and D. Hunt. PA-8500: The continuing evo­
lution of the PA-8000 family. Proceedings o f Compcon,
1997.

[14] G. McFarland. CMOS Technology Scaling and Its Impact
on Cache Delay. PhD thesis, Stanford University, June
1997.

[15] G. McFarland and M. Flynn. Limits of scaling MOS-
FETS. Technical Report CSL-TR-95-62, Stanford Univer­
sity, November 1995.

[16] T. Mowry, M. Lam, and A. Gupta. Design and evaluation
of a compiler algorithm for prefetching. Proceedings o f
ASPLOS-V, pages 62-73, October 1992.

[17] A. Rogers, M. Carlisle, J. Reppy, and L. Hendren. Support­
ing dynamic data structures on distributed memory ma­
chines. ACM Transactions on Programming Languages
and Systems, Mar. 1995.

[18] G. S. Sohi. Instruction Issue Logic for High-Performance,
Interruptible, Multiple Functional Unit, Pipelined Comput­
ers. IEEE Transactions on Computers, 39, Mar 1990.

[19] S. T. Srinivasan and A. R. Lebeck. Load Latency Toler­
ance in Dynamically Scheduled Processors. Journal o f
Instruction-Level Parallelism, 1, Oct 1999.

[20] K. Yeager. The Mips R10000 superscalar microprocessor.
IEEE Micro, 16(2):28-41, April 1996.

11

