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Scaling and eigenmode tests of the improved fat clover action
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We test a recently proposed improved lattice-fermion action, the fat link clover action, examining indicators 
of pathological small-quark-mass lattice artifacts (“exceptional configurations” ) on quenched lattices of spac
ing 0.12 fm and studying scaling properties of the light hadron spectrum for lattice spacing a = 0.09 and 0.16 
fm. We show that the action apparently has fewer problems with pathological lattice artifacts than the con
ventional nonperturbatively improved clover action and its spectrum scales just as well.

DOI: 10.1103/PhysRevD.63.034501 PACS number(s): 11.15.Ha, 12.38.Gc

I. INTRODUCTION

The goal of lattice fermion improvement schemes is to 
increase the effectiveness of computer algorithms by signifi
cantly reducing lattice artifacts at economically coarse lattice 
spacings, particularly in the range a  0.15 fm. The clover 
action with the clover coefficient chosen nonperturbatively 
[1] (NPCA) has been found to give a substantially better 
scaling of the hadron spectrum over the range 0.06,0.16 fm 
than the conventional Wilson fermion action WA 2,3 . 
However, as the lattice spacing is increased over this range, 
the NPCA becomes increasingly sensitive to local fluctua
tions in the gauge configurations that produce unwanted ar
tifact singularities at small, positive quark mass, the so- 
called ‘‘exceptional configurations.’’ To avoid them, one 
must keep the quark mass artificially high. At increasingly 
coarse lattice spacing, the lower bound on ‘‘safe’’ quark 
masses rises, making an extrapolation to physical quark 
masses increasingly problematical. Difficulties with such 
‘‘exceptional’’ configurations are overcome in a variety of 
approaches, including pole shifting 4 and schemes which 
implement an exact chiral symmetry on the lattice, the over
lap formalism 5 , and the domain wall approach 6 . Such 
methods are computationally expensive. Here, we consider a 
new (approximate improvement scheme, the ‘‘fat clover’’ 
action.

The ‘‘fat clover’’ action (FCA), proposed by DeGrand, 
Hasenfratz, and Kovacs [7], couples the standard clover ac
tion to a locally smoothed gauge field. Smoothing of the 
gauge fields is achieved through a series of APE blocking 
steps 8 . It is intended that the number of blocking steps 
remains fixed as the continuum limit is approached. Thus the 
fermion-gauge coupling is modified at a scale that is a fixed 
multiple of the cutoff, and the correct local action is recov
ered in the limit. Smoothing has a number of beneficial ef
fects: lattice artifacts are suppressed, chiral properties are 
improved, and the renormalization of a variety of lattice 
quantities, such as the local-vector-current and axial-vector- 
current renormalization constants Z V and ZA, is small [7,9].

Here we examine two variants of fat link actions: one 
using the tree level value for the strength of the clover term 
(TFCA) and one using an optimized value (OFCA). (See

Table I for a guide to our abbreviations.
We first study the distribution of real eigenmodes of the 

lattice Dirac operator in an ensemble of gauge configura
tions, with particular attention to the ‘‘exceptional’’ eigen
values at positive quark mass. We show that the FCA has 
improved chiral properties, in the sense that the spread of 
leading near zero modes is narrower than with the NPCA at 
a lattice spacing of 0.12 fm. Thus the ‘‘safe’’ lower bound on 
quark masses is lower with the FCA. We then present a 
study of fluctuations in the pion correlator as a qualitative 
test of the suppression of exceptional configurations in 
NPCA and TFCA.

Finally we perform a small scaling test of the quenched 
hadron spectrum for the TFCA and OFCA. Scaling is tested 
as the lattice constant is varied from 0.092 fm to 0.164 fm, 
choosing some fixed value of the quark mass, such that either 
m 2 =2.5o\ where a  is the string tension, or mw/ m ^ 0.7 [7]. 
Included for comparison are the corresponding results for the 
standard Wilson action WA , nonperturbative clover action 
NPCA , and the standard Wilson action on a fat link back

ground FWA . In this scaling study we pay careful attention 
to the elimination of a variety of sources of systematic error: 
we scale all quantities with physical dimensions and fix the 
lattice dimensions in physical units.

In Sec. II we give details of the FCA and our computa
tional method. In Sec. III we present results of our lattice 
simulations. We conclude with Sec. IV.

TABLE I. Guide to abbreviations for the fermion actions in this
study.

FCA Clover action on fat gauge links either optimized or 
tree level .

OFCA Clover action on fat gauge links with optimized clover 
coefficient

TFCA Clover action on fat gauge links with tree-level clover 
coefficient

NPCA Conventional clover action with non-perturbatively 
tuned clover coefficient

FWA Wilson action on fat gauge links
WA Conventional Wilson action (r=  1)
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II. COMPUTATIONAL METHOD

A. Fat clover action

The fat clover action (FCA) is the usual clover action

S s w = ^ m ( k ) > ! ' = S w - k c s w ^  (1)
j X <  V

where Sw is the Wilson action, and P^„ is the standard ‘‘clo
ver’’ expression for the field strength tensor , except that 
all link variables in Sw and P^„ are fat links. The fat link is 
constructed from the original ( ‘‘thin’’) links with a series of 
APE blocking steps [8]. A single step creates a new gauge 
configuration with each gauge link replaced by a weighted 
sum of the link and its staples, followed by a projection back 
to SU(3). Explicitly, each link Ux^  is replaced by
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where V  represents the projection, which in SU(3) chooses 
the unique group element U of SU(3) maximizing Tr( UVt ).
Replacement occurs after all smooth links for the lattice are 

computed.) This process is repeated N =  10 times in our 
study with a coefficient c  = 0.45. Such a choice was found to 
give good stability in instanton size and placement during 
smoothing in both SU(2) and SU(3) [10,11. We have not 
explored other choices extensively, but suspect considerable 
latitude is permitted in the choice of c and N. After smooth
ing, the mean plaquette of the fat link is close to 1: For 
6/g2 = 5.7, the mean plaquette is Tr Uplaq/3 = 0.985 and for 
6/g2 = 6.0 it is 0.994.

Fat link clover actions, like all clover actions, have no
O (a ) nor O (g 2a ) corrections as long as the clover coeffi
cient cSw is taken to approach unity in the g —>0 limit. In 
perturbation theory 12 the effect of the fat link is to multi
ply the usual thin link quark-gluon vertices by a form factor 
(1 —(c/3 )a 2q2)N with q^ = (2 /a)sin(^a/2), where q is the 
gluon momentum. This easily accounts for the observed con
siderable reduction in additive quark mass renormalization 
and finite renormalization constants for vector and axial cur
rents close to unity.

The clover coefficient cSw is a priori unspecified. We 
expect, based on the near unit value of the mean plaquette, 
that an optimal value for simulations would be close to the 
tree-level value of unity, and that is what one would choose 
in a tadpole-based improvement program [13]. We chose the 
value of cSw using the approach of DeGrand, Hasenfratz and 
Kovacs, based on the position of real eigenmodes of the 
Dirac operator 7 .

To locate the real eigenmodes, for each configuration we 
calculated a noisy estimator of the expectation value {^ y 5 ifr) 
[7,14,15]

5 ̂  (3)

PHYSICAL REVIEW D 63 034501

TABLE II. Pole location mpa for small instantons.

p/a 1.0 1.1
csw

1.2 1.3 1.5 1.8

1.00 -0.141 0.073 0.003 0.071 - -
1.25 0.083 0.036 0.012 0.065 0.188 -
1.50 0.050 0.013 0.021 0.061 0.146 -
1.75 0.030 0.001 0.025 0.056 0.121 -
2.00 0.019 0.004 0.026 0.050 0.102 0.194
2.25 0.012 0.006 0.025 0.045 0.088 0.159
2.50 0.009 0.007 0.023 0.041 0.078 0.138
2.75 0.007 0.007 0.021 0.037 0.070 0.122
3.00 0.006 0.006 0.020 0.034 0.064 0.111

at a closely spaced series of real values , where is an 
arbitrary random vector, held constant for the scan over /c. A 
real eigenvalue of M  («•) appears as a pole in A  («•), provided 
the corresponding eigenvector has nonzero overlap with the 
vector rj. The quantity iqM^ 1( k ) t} would also diverge at a 
real eigenvalue of M  («•), but since the real eigenmodes of 
M ( ) are also close to being eigenmodes of 5 with eigen
value ±  1, the factor y5 helps to distinguish them.

In the continuum limit the only real eigenvalues of M  ( ) 
are chiral zero modes, occurring at «-c = 1/8, i.e. zero bare 
quark mass. If the lattice Dirac operator is not chiral, the real 
modes are spread around «• c (defined as the value of «• where 
m  2 ( ) extrapolates to zero , and can also be shifted from the 
chiral «• c = 1/8 value. Such real eigenmodes are undesirable 
lattice artifacts that prevent lattice simulations at small quark 
mass [16 . Configurations that produce them are called ‘‘ex
ceptional,’’ although the problem really lies with the choice 
of fermion action and not with the gauge configuration itself. 
Actions with improved chiral properties have real eigen- 
modes that cluster more closely around «• c . For such actions 
it should be possible to study lower quark masses without 
encountering difficulties with exceptional configurations, or 
to carry out a simulation on a coarser lattice at the same 
quark mass.

For a sufficiently high degree of fattening one can opti
mize the clover coefficient by minimizing the spread of the 
real eigenmodes on Monte Carlo-generated configurations. 
In this work, however, we choose a simpler approach. We 
generate a series of artificial lattice instantons of varying size 
a < r 0< 3 a on 84 lattices and of size 2a < r 0< 6 a on 124 
lattices. Instanton studies at 6/g2 = 5.7 and 6/g2 = 6.0 pre
dicted instanton sizes in this range 17 . For each such gauge 
configuration, we examined the position of the resulting fer- 
mion real eigenmode. Results are shown in Tables II and III 
and Fig. 1. For large r0 the near-zero modes are quite close 
to zero quark mass. As r0 drops below the lattice cutoff, the 
would-be zero mode moves toward negative quark mass. The 
trajectory of real eigenmodes is altered by adjusting the clo
ver coefficient c S w  . We find that with c S w =  1.2 the variation 
in pole position is minimized for instanton sizes in the range 
r0> a . With c S w =  1.1 the variation in pole position is mini
mized for r0> 2 a . Since our scaling test considers lattices 
over a range of spacings varying by a factor of 2, we choose
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TABLE III. Pole location mpa for larger instantons.

p/a 1.0
csw

1.1 1.2

2.00 0.019 0.003 0.024
2.50 0.008 0.005 0.020
3.00 -0.004 0.005 0.015
3.50 -0.002 0.005 0.012
4.00 0.002 0.004 0.010
4.50 0.002 0.003 0.009
5.00 0.002 0.003 0.007
5.50 0.002 0.002 0.007
6.00 -0.003 0.002 0.006

csw= 1.2 for our coarsest lattice spacing and csw= 1.1 for 
our finest lattice spacing to assure scaling consistency. We 
call the action with tuned clover coefficient the ‘‘optimized 
fat clover action’’ (OFCA). To test sensitivity to this choice, 
we also present results with the tree-level choice cSw= 1 
(TFCA).

B. Computational parameters

There are two parts to this study: an analysis of the dis
tribution of low energy real eigenvalues and an analysis of 
the scaling of the spectrum. For studies of the distribution of 
near-zero eigenvalues at 6/g2 = 5.85 we analyzed 100 con
figurations of size 104, and for the companion spectrum 
study to relate the pion mass to the k value, 20 configura
tions of size 123 x  48. For the spectrum scaling studies we 
have worked with two ensembles of quenched gauge con
figurations generated with the conventional one-plaquette 
Wilson action: 120 configurations of size 83x 24  at 6/g2 
= 5.7 and 100 of size 163 X 48 at 6.0, corresponding to lattice 
spacing a = 0.164 and 0.092 fm, respectively, based on re-

-o .2  r i i i i i i i i i i i i i i
0 2 4 6

r o / a

FIG. 1. Zero mode pole position expressed as a bare quark mass 
vs instanton size for artificial lattice instantons. Note that all the 
curves eventually approach negative infinity for small instanton 
sizes.

cent measurements of the string tension for this action in 
lattice units [1 8  and the choice 4 a =  468 MeV [19],

The lattice dimensions for the scaling study were chosen 
to keep an approximately constant physical volume, so as to 
avoid inconsistent finite size effects. To allow tuning of the 
quark mass, either by fixing the pion mass in terms of the 
string tension or in terms of the rho mass, we calculate the 
spectrum for (typically three n e ig h b o rin g  values selected 
so that the desired dimensionless ratios can be reached by 
interpolation. Quark propagators were generated from a fixed 
Gaussian (shell-model) source with standard deviation 2 a 
for the coarsest lattice and 4 a for the finest. Our scaling tests 
were computed at three values of the clover coefficient cSw 
for each gauge coupling: cSw= 1.1 or 1.2, as noted above, for 
the OFCA, csw= 1 for the tree-level fat clover action 
(TFCA, and csw= 0 for the fat Wilson action (FWA) to test 
the relative merits of smoothing and reducing the O(a) errors 
in the action.

III. RESULTS

A. Fermion eigenmodes

For each of the actions in our study we determined the 
distribution of the real eigenmodes on a set of 100 104 gauge 
configurations, generated with the conventional single 
plaquette action at 6/g2 = 5.85. We determined the probabil
ity distribution P (m 2V) of the leading pole (i.e., the eigen
value corresponding to the largest quark mass) for the vari
ous actions in our study.

Note that this statistic is different from the eigenvalue 
histograms of Ref. [7 , where all the low energy eigenmodes 
were included to study the spread of the physical modes. 
Since here we consider only the pole corresponding to the 
largest mass on each configuration, these plots are indicative 
of the exceptional configurations.

To compare leading-pole distributions from the various 
actions, we converted the k values to m \  values, by measur
ing the hadron spectrum with the same action on a set of 20 
123x 48 quenched configurations. Results are shown in Fig.
2. Pion masses used for constructing the linear scale conver
sion, m 2 = a / k + b are given in Tables IV and V. The bin 
widths in this figure are variable, since the poles were lo
cated by scanning at the same constant increment in for all 
actions. We took this interval as the resolution of the pole 
location. The corresponding interval in m 2 , however, varied 
from action to action. The bin heights are scaled so that the 
probability distributions all have unit total area. The TFCA 
and OFCA actions clearly produce distributions that are 
more sharply clustered around m ^ = 0 . The peak for the 
OFCA appears at a nonzero bin in m 2 , but we estimate a 
combined systematic and statistical error one sigma of one 
bin width arising from the conversion from to m 2 near 
zero pion mass.

To put these results in another perspective, we have also 
measured the ratio m /m  for these configurations. For our 
sample of gauge configurations at 5.85 the NPCA en
counters its first pole at mw/m p= 0.56(4), the TFCA, at 
about 0.37(6) and the OFCA at about 0.42(5).
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TABLE V. Continuation of Table IV.
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FIG. 2. Probability distribution of leading eigenvalue for various 
fermion actions on 100 124 gauge configurations at quenched 6/g2 

5.85.

B. Pion correlators

While a pole in the quark propagator at c is the most 
precise indicator of an exceptional configuration, fluctuations 
in a hadron correlator, e.g., the pion correlator, give a quali
tative indication. Poles in the quark propagator typically 
have residues with concentrated support in Euclidean space
time. For instanton-induced poles, localization of the residue 
comes from localization of the zero eigenmode. Since the 
pion propagator is the gauge-invariant square of the quark 
propagator, a nearby exceptional pole typically contributes a 
strong localized fluctuation in the pion correlator in some 
cases inducing a ‘‘W’’ shape in a semilog plot.

Starting from a common sample of 80 quenched single- 
plaquette 83x 24 gauge configurations at 6/g 2 5.7, we com
pute the pion correlator for the NPCA and TFCA for a range 
of quark masses. We then consider two measures of fluctua
tions: 1 the noise to signal ratio of the correlator at a fixed 
time and 2 the number of outliers, based on a correlated chi 
square measure.

The simplest measure of fluctuations is the noise to signal 
ratio in a correlator, namely the ratio of the standard devia
tion of a correlator cr( t) to the value of the correlator, c ( t), 
as a function of distance and/or quark or pion mass. The

TABLE IV. Pion masses smeared-local channel in lattice units 
vs k for a variety of actions on quenched 123 X 48 lattices at 6/g2 
= 5.85.

OFCA TFCA NPCA

0.1200 0.621 6 0.1220 0.539 4 0.1300 0.733 7
0.1210 0.547 6 0.1230 0.463(4) 0.1310 0.645 7
0.1220 0.465 7 0.1240 0.378(5) 0.1320 0.547(8)
0.1230 0.37011) 0.1245 0.3195 0.1330 0.432 9
0.1235 0.316 17 0.1250 0.260(12) 0.1335 0.364(10)

FWA WA

0.1265 0.515 6 0.1560 0.511 9
0.1275 0.455 6 0.1570 0.457(10)
0.1285 0.389(7) 0.1580 0.400(12)
0.1295 0.309 10 0.1590 0.336 16
0.1300 0.261 13 0.1595 0.298(18)

pseudoscalar correlator is the most useful one to look at, 
since simple theoretical arguments suggest that ( t) /c( t) 
should be roughly independent of the quark mass. In Fig. 3 
this ratio at t=  10, namely cr( 10)/c (10), is plotted over a 
range of m / m for the NPCA and TFCA. It is clear that for
0.5 m /m  0.7, fluctuations are dramatically reduced 
with the TFCA.

We denote the correlator on the i th configuration by ci( t) 
and its mean over the sample of configurations by c ( t). For 
the outlier test we start by constructing the usual covariance 
matrix t,t , based on the observed fluctuations, and its in
verse wt, t; . The correlated chi square measure for configu
ration i is then

[ c i (&
t, t'

c a m c ^ ' ) - c { t ' ) ] Wt 4

for N t degrees of freedom. The corresponding confidence 
level is then used to determine the strength of deviation from 
the mean. For the sample of 80 configurations we treated the 
two time intervals [0,Nt/2] and [N /2 +  1,Nt-  1] separately. 
A configuration was deemed exceptional, if the confidence 
level determined on either interval was less than 10-7 , a 
somewhat arbitrary value that was chosen to correspond to 
strongly discernible deviations, many of them with the ‘‘W ’’ 
shape, characteristic of an exceptional configuration. Note 
that a Gaussian normal fluctuation at this level in a sample of

FIG. 3. Noise to signal ratio for the pion correlator at time t 
= 10 vs m„./mp for the NPCA and TFCA, on a set of 80 83X24 
lattices at 5.7.

2
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TABLE VI. Outliers at C.L. <10 7 for the NPCA in a sample 
of 80.

k m v / mp N

0.125 0.84(1) 0
0.127 0.78(1) 4
0.129 0.68(1) 5
0.1295 0.64(1) 7
0.130 0.48(2) 12
0.1302 0.50 2 15
0.1303 0.51 3 14

80 would be expected only once in about 105 trials. The 
process of identifying outliers was carried out iteratively, in 
each pass removing the outliers from the sample as they were 
identified, until none remained. Results are summarized in 
Tables VI and VII. Based on this measure, if we were to 
insist on no more than one exceptional configuration in a 
sample of this size at 5.7, the NPCA would be restricted 
approximately to mOT/ mp>  0.8 and the TFCA to m OT/m p

0.6.

C. Spectrum

Correlators for the zero momentum pion, rho, nucleon, 
and were fit to single exponential forms, minimizing the 
correlated 2. Care is needed to prevent biases arising from 
the choice of the fitting range, particularly from the choice of 
minimum time tmin. We used two methods to test for bias: In 
fitting correlators for a set of closely spaced values we 
selected 1 the smallest tmin giving a minimum C.L. for all 
k ’ s  greater than 0.05 and an average C.L. greater than 0.1; 
and (2) the tmin for which the product of C.L. and the number 
of degrees of freedom df is maximum, a rather ad hoc rule 
of thumb [20], As a rule both methods gave the same tmin. 
Where a different value was obtained, we determined that the 
variation in mass value was within the statistical errors of the 
fits.

We found that tmin for the 83x  24 lattice was generally 
half the value on the 163x48  lattice. In the few cases in 
which it was not (the rho meson for OFCA and TFCA, we 
verified that, had we enforced this further condition, the cen
tral mass value would have shifted by less than 1%, an 
amount smaller than the error in the observed scaling viola
tion. Our fitting range is then approximately constant in

TABLE VII. Outliers at C.L. 10 7 for the TFCA in a sample 
of 80.

K m /m N

0.121 0.80(1) 0
0.122 0.75 1 0
0.123 0.70(2) 0
0.124 0.62 2 0
0.125 0.50 2 2
0.126 0.42 4 5

TABLE VIII. Summary of hadron masses and bootstrap errors 
for various fat-link actions: OFCA (cSw= 1.1,1.2), TFCA (cSW 
= 1.0), and FWA (cSW= 0.0).

cSW 6/g 2 K m va mpa mNa m^a

1.1 6.0 0.1225 0.3985(21) 0.539 5 0.807(7) 0.899(11)
1.1 6.0 0.1230 0.3549 23 0.511 6 0.752(8) 0.865(14)
1.1 6.0 0.1235 0.3072 25 0.483(7) 0.691 9 0.832(17)
1.2 5.7 0.1200 0.731 4 0.968(7) 1.411 17 1.58(2)
1.2 5.7 0.1220 0.569 5 0.882(10) 1.223 24 1.44 3
1.0 6.0 0.1225 0.4293 20 0.553 5 0.841(7) 0.920(10)
1.0 6.0 0.1230 0.3891(22) 0.526 5 0.791 7 0.882(12)
1.0 6.0 0.1235 0.3460 25 0.498(6) 0.737(8) 0.848(14)
1.0 5.7 0.1200 0.816(4) 0.992(5) 1.496 15 1.63019
1.0 5.7 0.1220 0.682(4) 0.907 6 1.335 16 1.503 23
1.0 5.7 0.1245 0.478(6) 0.802(10) 1.095(28) 1.341 29
0.0 6.0 0.1270 0.355 3 0.455 5 0.725 6 0.802(13)
0.0 6.0 0.1280 0.280(4) 0.4105 0.631 7 0.743 13
0.0 6.0 0.1290 0.186(5) 0.369 9 0.51913 0.678(22)
0.0 5.7 0.1280 0.666 5 0.780(6) 1.263(18) 1.359(17)
0.0 5.7 0.1310 0.501 7 0.681(8) 1.073 22 1.204 23
0.0 5.7 0.1330 0.435 9 0.650(8) 0.993 22 1.151 27

physical units, and our results are therefore free of bias from 
this source.

We also checked the single exponential fits against two- 
exponential fits and verified that the results were stable 
within statistical errors. Results of the fits are shown in Table 
VIII.

We consider two alternatives for fixing the quark mass:
(1) fixing m 2J a = 2 . 5  and (2) fixing m OT/ mp = 0.7. These val
ues were chosen to correspond to each other, approximately. 
Since variations in the strength of the clover term changes 
the N  and mass splittings, so can change the pi to 
rho mass ratio at fixed physical quark mass, the former 
method is preferable. We present the second, more popular, 
method to allow comparison with other work.

Table IX and Figs. 4 and 5 show the masses of particles 
and their ratios at m 2 2.5 and the scaling violations from 
6/g 2 5.7 to 6/g 2 6.0. For comparison, conventional Wil
son data WA from recent calculations are shown. The WA 
6/g 2 5.7 values are interpolated from raw data given in Ref. 
[21]. The WA 6/g2 = 6.0 values are interpolated from raw 
data given in Refs. 22,23 . The value m 2 2.5 is slightly 
outside the range of values given in Ref. 22 , so to avoid 
extrapolation, those data were supplemented by data given in 
Ref. 23 ; however, extrapolation from the data of Ref. 22 
alone gives the same results. The 6/g2 = 5.7 NPCA values 
were interpolated from unpublished values provided by 
Heller [24]. The 6/g2 = 6.0 NPCA values are from Ref. [2].

The mass of the rho meson is seen to be a sensitive indi
cator of scaling violations. The scaling violation in the rho 
mass is reduced from approximately 7% for the WA to less 
than 2% for the OFCA and TFCA. Fattening the WA does 
not improve scaling with any significance. Thus smoothing 
of the gauge fields alone does not improve scaling. This is 
because the Wilson action, with either thin or fat links, has
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TABLE IX. Scaling summary at m2 = 2.5<t.

6/g 2 m /m mN / mp mp / -Jcr mN/^cr mA /y[(T

5.7 0.815 5 1.596 11
WA

1.929(21) 3.075 36
6.0 0.763(2) 1.538 6 2.072(10) 3.186 17 -

6.4 0.6 % 3.6 0.8 % +7.4(1.3)% 3.6 1.3 % -

5.7 0.823(11) 1.604 30
FWA

1.921(26) 3.082(59) 3.362(60)
6.0 0.768(11) 1.587(21) 2.055(23) 3.261(31) 3.631(62)

6.6 1.7 % -1.1(23)% +7.0(1.9)% +5.8(2.3)% + 8.0(2.7)%

5.7 0.704 8 1.439(24)
TFCA

2.246(29) 3.233(61) 3.733 75
6.0 0.695(10) 1.480(23) 2.275(29) 3.366 38 3.872(65)

1.3 1.8 % + 2.8(24)% 1.3 1.8 % +4.1(2.3)% +3.7(2.7)%

5.7 0.678 9 1.408(29)
OFCA

2.334(34) 3.285(66) 3.814(80)
6.0 0.684(10) 1.462(24) 2.310(30) 3.384 39 3.922(68)

+0.9(2.0)% +3.8(2.7)% -1.0(1.9)% +3.0(24)% + 2.8(2.8)%

5.7 0.671 8 1.432(20)
NPCA

2.356(30) 3.375(52) 3.854 87
6.0 0.674(2) 1.488 9 2.345(12) 3.490(23) -

+0.4(1.2)% 3.9 1.6 % -0.5(1.4)% +3.4(1.7)% -

O (a ) lattice artifacts which are removed by the addition of 
the clover term. (A similar behavior for a fat link action 
without a clover term, in that case, a hypercubic action, was 
also seen in Ref. 25 .

Scaling violations of the nucleon mass are statistically 
consistent for all the actions considered. Scaling violations of 
the delta mass are improved from roughly 8% for the FWA 
to less than 4% for the TFCA and OFCA. This also is found 
for the alternative fits of the delta masses, suggesting that the

1 ' ' 1 1 1

- A \ -

'

- N -

+ WA _
- x FWA -

------m □ TFCA .
P o OFCA

NPCA “

- 1 , , 1 I 1 I i i i 1 , , -

0.0 0.1 0.2 
a  ( fm )

FIG. 4. Hadron masses in units of the string tension for various 
actions vs lattice spacing at fixed m2 = 2.5<t. Masses are extrapo
lated to a common continuum value using a function linear in a for 
WA and FWA and a function linear in a 2 for the other actions.

scaling improvement seen is real, despite potentially large 
systematic errors in the fits of the delta masses.

We extrapolated the mass values to zero lattice spacing, 
forcing a common extrapolated mass for all actions. Our ex
trapolation is linear in a for the WA and FWA and linear in 
a 2 for the OFCA, TFCA and NPCA. Results are plotted in 
Figs. 4 and 5. It is clear that none of the actions completely 
remove scaling violations in the nucleon or delta mass, but 
that all of the clover actions show smaller violations than the 
Wilson actions.

For the second approach we adjust quark masses so as to 
fix the ratio mw/mp= 0.7. Table X shows the masses of par-

FIG. 5. Hadron mass ratios for various actions vs lattice spacing 
at fixed m2 = 2.5<t. The extrapolation is the same as in Fig. 4.

034501-6



SCALING AND EIGENMODE TESTS OF THE IMPROVED .. .

TABLE X. Scaling summary at m„./mp= 0.7.

6/g 2 mN / mp mp / \fa mN /Vo- mA / 4a

WA
5.7 1.55416 1.698 19 2.638 35 -
6.0 1.5148 1.924 10 2.913 17 -

-2.6(1.1)% + 13.3(1.4)% 
FWA

+ 10.4(1.6)%

5.7 1.547 38 1.710 27 2.646 62 3.024 71
6.0 1.548 24 1.905 24 2.952 33 3.463 61

+0.1 (2.9)% + 11.4(2.3)% 
TFCA

11.6 2.9 % 14.5 3.4 %

5.7 1.436 24 2.247(29) 3.235 61 3.735 75
6.0 1.475 22 2.289(28) 3.393 37 3.889 64

2.7 2.3 % + 1.91.8% 
OFCA

4.9 2.3 % 4.1 2.7 %

5.7 1.422 26 2.383 33 3.393 64 3.893 76
6.0 1.475 22 2.349 29 3.465 38 3.968 65

3.7 2.4 % -1.4(1.8)%
NPCA

2.1 2.2 % + 1.9(2.6)%

5.7 1.455 9 2.427(10) 3.532 17 -
6.0 1.466 18 2.380(17) 3.488 34 -

+0.8(1.4)% -1.91.3% -1.2(1.1)% —

ticles and their ratios, and the scaling violations from 6/g2 
= 5.7 to 6/g2 = 6.0. For comparison, conventional Wilson 
data from recent calculations are shown. The Wilson 6/g2 
= 5.7 values are interpolated from raw data given in Ref. 
[21]. The Wilson 6/g2 = 6.0 values are interpolated from raw 
data given in Ref. 22 . Also shown are data for the TFCA 
and NPCA. For the NPCA the 6/g2 = 5.7 values are given in 
Ref. [3], already interpolated to mw/ mp= 0.7. The values at 
6/g2 = 6.0 are from Ref. [2].

The mass of the rho again is seen to be a sensitive indi
cator of scaling violations. For the pair of lattice spacings 
used, the scaling violation of the rho mass is reduced from 
approximately 13% for the conventional WA to less than 2% 
for the OFCA or the TFCA. There is no significant scaling 
improvement of the rho mass for the FWA compared with 
the WA. The scaling violations of the rho are compounded 
with those required by the fixing of the pion to rho mass ratio 
to the same constant for all cases. The quark masses are 
forced to values at 6/g2 = 5.7 and 6/g2 = 6.0 such that the 
scaling violation of the pion mass equals that of the rho 
mass. This roughly doubles the total rho scaling violation at 
fixed m  /m  , compared with that for fixed m  , for cases 
where scaling violations in the pi-rho mass splittings are 
large, as will be shown to be the case for the Wilson actions.

Scaling violations of the nucleon mass also are com
pounded with those required by the fixing of the pion to rho 
mass ratio to the same constant for all cases. The value of the 
nucleon mass is lowered similarly to the pion mass by the 
clover magnetic moment term, so forcing the scaling vio
lation of the pion mass to equal that of the rho mass also 
forces the nucleon mass to acquire a similar scaling viola
tion. At m  /m  0.7, scaling violations of the nucleon mass 
are reduced from approximately 10% for the WA and FWA

PHYSICAL REVIEW D 63 034501

TABLE XI. Mass splittings at m2 2.5 .

6/g 2 (m 2p-  m 2)/o (mN—m^ VVcr

WA
5.7 1.22 3 -
6.0 1.79 2 -

FWA
5.7 1.197 0.28 8
6.0 1.72 6 0.37 7

TFCA
5.7 2.54(7) 0.50(10)
6.0 2.68 6 0.51 8

OFCA
5.7 2.94 8 0.53 10
6.0 2.84 6 0.54 8

NPCA
5.7 3.05 6 0.48 5
6.0 3.00 2 —

to approximately 5% for the TFCA to approximately 2% or 
lower for the OFCA.

Scaling violations of the delta mass are improved from 
roughly 14% for the FWA to less than 5% for the OFCA.

Mass splittings are given in Table XI at m 2 2.5 . Phe
nomenological values of the differences of the squared 
masses of vector and pseudoscalar particles are almost equal 
for different quark flavors, so the unrealistically high quark 
mass used in the lattice calculations should not matter much. 
Similarly, the difference of the masses of spin \  and spin § 
baryons are comparable for different flavors. Scaling viola
tions of the mass splittings are reduced substantially for the 
clover actions compared with the Wilson actions. Also there 
is rough agreement with experimental values for the clover 
actions. The experimental values are (m 2p- m 2) = 5.7 x 1 0 s 
MeV2 and m ^ - m N= 294 MeV. Using ^ r= 4 6 8  MeV, we 
have (m 2p— m 2) ^ = 2 .6  and (mN—m&) /^ = 0 .6 3 .

In summary, the proposed fat clover actions with either 
tree-level clover coefficient (TFCA or optimized clover co
efficient OFCA , have greatly improved scaling properties 
compared with the Wilson action. The scaling improvement 
with either of these actions is comparable to that of the 
NPCA. Scaling tests of the FWA show that smoothing by 
itself does not improve scaling. The combination of the clo
ver term with a fat link allows one to reach smaller values of 
the pseudoscalar mass than is possible with the NPCA, with 
an apparently equivalent level of scaling violations.

IV. CONCLUSIONS

Using a common set of gauge configurations, we have 
carried out a systematic study of the distribution of leading 
near-zero eigenvalues and the scaling of the light hadron 
spectrum and for a variety of fermion actions on quenched 
lattices with lattice spacing in the range [0.09,0.16] fm. Ac
tions included in this study are the conventional Wilson ac
tion WA , Wilson action on fat gauge links FWA , clover 
action with a non-perturbatively tuned clover coefficient
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(NPCA), tree-level ‘‘fat’’ clover action (TFCA and opti
mized fat clover action OFCA . All of the clover actions 
show better scaling behavior than any of the Wilson 
actions—an entirely expected result, since adding the clover 
term with the correct coefficient converts an O (a ) action 
into an O (a2) one. Based on an analysis of pole positions, 
we have found that the fat clover actions OFCA and TFCA 
exhibit chiral properties superior to the NPCA, WA, and 
FWA. A further analysis of fluctuations in the pion correlator 
shows that the TFCA is far less noisy than the NPCA, a 
further circumstantial indication of a suppression of excep
tional configurations.
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