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Abstract.- Using t i me resolved photoinduced absorption with subpicosecond res
olution we studie d hot carrier the rmalization followed by deep trapping and 
recombination in a-S i , a-Si:H, a-Si:F, a-Si:H:F and a-As2Se3. In a-Se and 
a-As2S3-xSex (0..25 ~ x ~ 0..75) the observed relaxations were attributed to 
geminate recombination. 

Introduction.- A passively mode locked dye laser producing subpicosecond pulses was 
used to study the ultrafast dynamics of excess carriers by the time resolved photo
induced absorption in a-Si, a-Si:H, a-Si:H:F and chalcogenide glasses: a-Se, a-As2Se3 
and a-As2S3-xSex (0..25 < x < 0.75). We found that when the exciting photon energy 
~wp is larger than the band-gap Eg , the photoge nerated carriers are not bound to
gether and we could follow the hot carrier thermalization as well as the co.nsecutive 
trapping and recombination processes. Dn the other hand, when Eg >/fiwp , the photo
generated carriers are bound together and their geminate recombination is observed. 
In some of the studied amorphous s emiconductors a polarizaton memory associated with 
induced dichroism was observed. 

Experimental.- The dye laser and experimental s e t-up have been described elsewhere. 1- 3 

The laser produces linearly polarized light pulses at ~wp = 2eV with a singl e side 
exponential shape and tp = 0..6 - 0..8 ps duration, 1-2 nJ energy and repetition rate 
ID4_1D6 s-1. We used the pump and probe t echnique; the probe puls e is delayed by 
varying the l eng th of its optical path. The probe beam pa ssed through a pol arization 
rotator and its polarization was either parallel (II) or perpendicular (I) to that 
of the pump beam. All expe riments were done with optically thin samples: d <a -1 
at 2eV, so that the photogenerated carrier concentration n varied from sample to 
sample (as a -I) be twe en 5 x 10. 16 and 10.19 cm-3 per pulse. 

Drigins of observed r e l axations.- Th e propos ed electronic mechanisms for the trans
ient photo-induced absorption coeffic i ent 
lla(t) for cases: (a) fiwp > Eg (b) 1iwp < Eg 
are shown in Fig. 1. In case (a) hot car
riers with excess energy 1'5 E are excited 
across the band gap by the pump pulse with 
energy i'iwp. These carriers thermal i ze to 
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Proposed mechanism for photo- , 
induced absorption decay 
(a) 1iwp > Eg , (b)i'iwp < Eg . 

the bottom of the band by loosing their 
ene rgy due to the electron-phonon interaction. 
During this process they can reabsorb light. 
Since the optical absorption cross-section 
of hot carriers i:J.creases4 wi th II E , it is 
possible to observe the fast thermalization 
process by optical method, providing the 
system's response is fast enough. The 
electron-hole distance after thermalization 
(thermalization radius ro) is larger in case 
(a) than the Dnsager capture radius rc 1 
and the carriers move independently of each 
other. Eventually, the thermalized carriers 
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Fig. 2 - Time dependence of 
the photoinduced absorption 
in a-Si, a-Si:H and a-Si:H:F 
for II polarizations. Solid 
curves - experimental, 
dotted curves - calculated . 
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Fig. 3 - Same as in Fig. 2 
but for a-As2S2.4S 0.6, a-Se 
and a-As2Se3. 
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will be removed from the bottom of the conduction band 
by trapping, recombination or both.l,S In case (b) 
where~w -< Eg , carriers are excited in the Urbach tail 
(Fig . l(h)), ro < rc and the electron and ho le are 
bound together. In this case the recombination is 
geminate and is observed as a decay of ~a(t), since 
fia (t )'Un( t). 

Amorphous Silicon.- Typical results for I I polarization 
are shown in Fig . 2; they are examples of case (a). 
Most samples show an initial nonsymmetric response 
around t = 0 that decays fast to a lower value fia s. 
The relative height of the measured peak at t = 0 is 
closely related to the average initial excess energy 
iE(O) = (-rlwp-~)/2 as seen in Fig. 2 where ~E(Si) 
> tf"E(Si:H) > fiE(Si :H :F) . 

When I polarization is used the peak in ~a is reduced; 
this is ascribed to the reduction of the coherent 
artifact component. 2 ,3 At longer times when saturation 
is reached fias(l) < fias(1 I) and the depolarization 
ratio p = fia (IT/fias(11) varies between 0 . 6 and 0.9. 2 

This shows t~at a polarization memory associated with 
photoinduced dichroism can exist in these materials for 
surprisingly long times. We observed that p __ increas
es with increasing the initial excess energy ~E(O). 

The data indicate that the excess energy dissipation 
rate by interaction of electrons with phonons diE/dt 
is faster in a-Si than in a-Si:H. It is generally 
assumed 6 that the thermalization rate in amorphous 
solids is the highest possible r a te associated with 
phonon emission h v 2 . Our results show that this is 
the case for a-Si; hv 2 averaged over its phonon 
spectrum gives O.S eV/ps in agreement with the thermal
ization rate extracted from the data ~E(O) " 0.3SeV, 
to " 0 -. 7ps) . Th e fit to the a-Si case shown in Fig . 2 
was done using an impulse response A(t) 'Ua- (t) where 
cr-(t) = 0s[l + (bEE(O)/K) (1 - t/O.])) for t < 0 . 7ps 
and 0-( t) = as for t > O. 7ps where b is the enhancement 
parameter ~(J = b~). From the fit we obtained 
b = 1.2 x 10-3K-l which is surprisingly c lose to the 
value of 1.3 10-3K-l calculated for hot carrier 
absorption at 2eV assisted by optical deformation 
potential scattering in crystals . 4 

A slower dissipation rate, that can explain the results 
in a-Si:H, is provided by Fr·ohlich coupling to polar 
phonons. The average rate of dEE/dt over a Boltzmann 
distribution exp(-ftE/kTe ) (where Te is the hot carriers 
temperature) integrated over the ir-active phonon 
spectrum was calculated. 2 This rate first increases 
sharply with Te and around Te = 2000K reaches a broad 
maximumS of 0.1 eV/ps. For a-Si : H shown in Fig. 2 
6E(0) " 0.1 eV and the thermalization time to " lps. 
The fit to the observed ~a (t) is obtained using 
A(t) 'UQ (t) = osO + a Te(O)O - t/1.2)) for t < 1.2ps 
and o(t) = a for t > 1.2ps with a = 1.7 x 10-3K-l and 
Te = 26E(0)/~ = BOOK . ~a(t) for a-Si:H:F was fit with 
a step function impulse respons e A(t) = 0s u(t). The 
reason of why d~/dt is larger in a-Si than in a-~i:H 
is unknown at this time.; one can speculate that dfiE/dt 
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increases with increasing disorder as other electron phonon interaction channels 
lillY open. 

After thermalization, at longer time a slower decay, that cannot be described by 
a single exponential, of fin(t) was observed l in sputtered a-Si; at lower T this decay 
is slower . It was attributed to trapping in deep traps or recombination centers. 
We observed similar decays in a-Si:F but not in hydrogenated samples . This suggests 
that F alone does not compensate the dangling bonds effectively. 

Chalcogenide glasses.- Typical r e sults for chalcogenide glasses are presented in 
Fig. 3. The gap Eg for a-As2S2.4 SeO.6 and a-Se at all T is larger than~wp' there
fore, they represent case (b) (Fig. 1). In a-As2Se3 Eg < ~wp and it represents 
case (a) in the chalcogenide group . In the latter case the relaxations are similar 
as in a-Si:H discussed above . We will c~ncentrate now on case (b). Excited in the 
U~bach tail, electron and hole are bound together as a pair with a binding energy 
e /4 'IT £ ro ( £ is th~ dielectric constant>. The energy above the ground state is 
llE* = -ifwp_ - Eg + e (4 ·ff £ roo Eg is not w~ll . def~ned; we took for it the energy where 
a = 104 cm 1. Assummg that the energy dtn1pation rate dfiE*~dt = hv 2 we calculate 
ro by solving thg equation r = (Dhotto ) = (DhotfiE*/hV 2 )1 2. Taking 
~ t = 0.1 cm2/s and hv = 3gmeV we obtain values of rQ between 3 to 9~ (Table I). 
TIi~ values of to = fi E*/ hv 2 a:e less than 50 femtoseconds, too short to be observed. 
The observed decays are ascr1bed to recombination. 

The Onsager capture radii 6 in these materials are r ~ 80~ at 300K and ~ 300~ 
at 80K, considerably larger than roo Since only a fractron exp[-rc/rol of carriers 
escape the geminate recombination the dominant recombination process is geminate . 
The observed decays are exponentials exp[-t/Trl where Tr is longer at smaller Ego. 
An important feature of this recombination time Tr is that it decreases with de
creasing temperature l (as shown for a-Se in Fig. 3 and for other chalcogenides in 
Table I); this is just the opposite of the temperature dependence of the recombina
tion time observed in a-Si after thermalization l mentioned above . 

Geminate recombination model.- Two models for geminate recombination were considered. 
In the first model (usually referred to as time-dependent Onsager mode18 ) the car
riers diffuse towards each other. The number of pairs N(~~ surviving recombination 
was calculated8 to be N(t> = No exp[-r Ir 1[1 + r 1('lTDt>l/ I. This model predicts 
a t -1/2 decay of fin ( t> which is slower c at °lower T

C 
(because of the temperature de

pendence of D in amorphous materials), both against the experimental data. 
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Fig. 4 - Decay time Tr 
plotted vs. the thermaliza-
tion radius ro for 
a-As2S3 - xSex and a-Se . 
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Another approach describes the geminate recombination 
as a tunneling process l ,9 in which N(t) = N(O) 
exp[-tfr I with time constant Tr = v -lexp[2 Bro], 
where B -I 1S the extent of the wave function. This 
model agrees with the observed exponential decays as 
well as with the temperature dependence of T r . This 
dependence is due to the temperature dependence of Eg 
which is larger at lower T; consequently ro is smaller 
and T is shorter. A consequence of this model is that 
Tr depends on Eg only, regardless of whether a certain 
value of Eg is obtained· by changing composit ion or 
temperature. This is clearly confirmed by experiment, 
as seen in Fig. 4 whereTr is plotted vs. roo The data 
lie on a straight line for almost 3 orders of magnitude 

. . 13-1 B-1 Q of Tr . The f1t g1vesV = 1 . 1 x 10 sand = 2.11\; 
both parameters have reasonable Y8lues. In the case 
of a-As2Se~ 1'Iw > Eg and ro ~ rc so that the geminate 
recombinat10n ~ime constant becomes very long. Indeed, 
as shown in Fig . 3, fin(t) shows no apparent decay up 
to 60ps. 

Our results do not contradict the work on the tempera
ture dependence of the luminescence decay in GD 
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a-Si:Hll in which diffusion had to be included for explaining the da t a on geminate 
recombinat ion at high T. In our case the excitation occurs into the Urbach tail, 
ro « rc and the diffusion is negligible at all T. 
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TABLE I 

Geminat e Recombination Decay Parameters in Chalogenide Glasses 

Sample T(K) Tr(PS) Eg(eV) ro(~) 

a-As 2S2 . 25 SeO.75 * 85 3 2.58 3.5 

* 300 7 2.51 4.1 a-As2S2 . 56SeO.44 

a-As2S2.4SeO.6 300 11 2.47 4.7 

a- As 2S2.25 SeO.75 
* 300 13 2 .43 4.9 

a-Se 80 80 2.20 7 

a-Se 300 ) 380 2.05 9 

a-As 2Se3 80,300 1.8 40-80 

*From D. E. Ackley's Ph.D. Thesis, Brown University, 1979. 


