Colloque C4, supplément au n°10, Tome 42, octobre 1981

PICOSECOND DYNAMICS OF CARRIERS IN AMORPHOUS SEMICONDUCTORS

Z. Vardeny, J. Tauc and C.J. Fang*

Division of Engineering and Department of Physics, Brown University, Providence, Rhode Island 02912, U.S.A.

* Max Planck Institute für Festkörperphysik, Stuttgart, F.R.G.

Abstract .- Using time resolved photoinduced absorption with subpicosecond resolution we studied hot carrier thermalization followed by deep trapping and recombination in a-Si, a-Si:H, a-Si:F, a-Si:H:F and a-As₂Se₃. In a-Se and $a-As_2S_{3-x}Se_x$ (0.25 < x < 0.75) the observed relaxations were attributed to geminate recombination.

Introduction. - A passively modelocked dye laser producing subpicosecond pulses was used to study the ultrafast dynamics of excess carriers by the time resolved photoinduced absorption in a-Si, a-Si:H, a-Si:H:F and chalcogenide glasses: a-Se, a-As2Se3 and $a-As_2S_{3-x}Se_x$ (0.25 < x < 0.75). We found that when the exciting photon energy $\hbar\omega_p$ is larger than the band gap E_g , the photogenerated carriers are not bound together and we could follow the hot carrier thermalization as well as the consecutive trapping and recombination processes. On the other hand, when $E_g > \hbar \omega_p$, the photogenerated carriers are bound together and their geminate recombination is observed. In some of the studied amorphous semiconductors a polarizaton memory associated with induced dichroism was observed.

Experimental.- The dye laser and experimental set-up have been described elsewhere. $^{1-3}$ The laser produces linearly polarized light pulses at $\hbar\omega_p$ = 2eV with a single side exponential shape and $t_p = 0.6 - 0.8$ ps duration, 1-2 nJ energy and repetition rate $10^4-10^6 s^{-1}$. We used the pump and probe technique; the probe pulse is delayed by varying the length of its optical path. The probe beam passed through a polarization rotator and its polarization was either parallel (||) or perpendicular (|) to that of the pump beam. All experiments were done with optically thin samples: d < α ⁻¹ at 2eV, so that the photogenerated carrier concentration n varied from sample to sample (as α^{-1}) between 5 x 10¹⁶ and 10¹⁹ cm⁻³ per pulse.

induced absorption decay (a) $\hbar \omega_p > E_g$, (b) $\hbar \omega_p < E_g$.

Origins of observed relaxations.- The proposed electronic mechanisms for the transient photo-induced absorption coefficient $\Delta\alpha(t)$ for cases: (a) $\hbar\omega_p>E_g$ (b) $\hbar\omega_p<E_g$ are shown in Fig. 1. In case (a) hot carriers with excess energy $\triangle E$ are excited across the band gap by the pump pulse with energy hup. These carriers thermalize to the bottom of the band by loosing their energy due to the electron-phonon interaction. During this process they can reabsorb light. Since the optical absorption cross-section of hot carriers increases⁴ with ΔE , it is possible to observe the fast thermalization process by optical method, providing the system's response is fast enough. The electron-hole distance after thermalization Fig. 1 - Proposed mechanism for photo- (thermalization radius r_0) is larger in case (a) than the Onsager capture radius r and the carriers move independently of each other. Eventually, the thermalized carriers

Fig. 2 - Time dependence of the photoinduced absorption in a-Si, a-Si:H and a-Si:H:F for || polarizations. Solid curves - experimental, dotted curves - calculated.

Fig. 3 - Same as in Fig. 2 but for $a-As_2S_2.4S_{0.6}$, a-Seand $a-As_2Se_3$. will be removed from the bottom of the conduction band by trapping, recombination or both.^{1,5} In case (b) where $\hbar\omega_p < E_g$, carriers are excited in the Urbach tail (Fig. 1(b)), $r_0 < r_c$ and the electron and hole are bound together. In this case the recombination is geminate and is observed as a decay of $\Delta\alpha(t)$, since $\Delta\alpha(t)^n(t)$.

Amorphous Silicon.- Typical results for || polarization are shown in Fig. 2; they are examples of case (a). Most samples show an initial nonsymmetric response around t = 0 that decays fast to a lower value $\Delta \alpha_s$. The relative height of the measured peak at t = 0 is closely related to the average initial excess energy $\Delta \overline{E}(0) = (\hbar \omega_p - E_g)/2$ as seen in Fig. 2 where $\Delta \overline{E}(Si)$ $> \overline{\Delta E}(Si:H) > \Delta \overline{E}(Si:H:F)$.

When $\underline{\mid}$ polarization is used the peak in $\Delta \alpha$ is reduced; this is ascribed to the reduction of the coherent artifact component.^{2,3} At longer times when saturation is reached $\Delta \alpha_{\rm g}(\underline{\mid}) < \Delta \alpha_{\rm g}(||)$ and the depolarization ratio $\rho = \Delta \alpha_{\rm g}(\underline{\mid})/\Delta \alpha_{\rm g}(||)$ varies between 0.6 and 0.9.² This shows that a polarization memory associated with photoinduced dichroism can exist in these materials for surprisingly long times. We observed that ρ _increases with increasing the initial excess energy $\Delta E(0)$.

The data indicate that the excess energy dissipation rate by interaction of electrons with phonons dAE/dt is faster in a-Si than in a-Si:H. It is generally assumed⁶ that the thermalization rate in amorphous solids is the highest possible rate associated with phonon emission $h\nu^2.$ Our results show that this is the case for a-Si; $h\nu^2$ averaged over its phonon spectrum gives 0.5 eV/ps in agreement with the thermalization rate extracted from the data $(\Delta E(0) \approx 0.35 \text{eV})$, $t_0 \simeq 0.7 ps$). The fit to the a-Si case shown in Fig. 2 was done using an impulse response $A(t) \sim \sigma$ (t) where $\sigma(t) = \sigma_s[1 + (b\Delta E(0)/K) (1 - t/0.7)]$ for t < 0.7 psand $\sigma(t) = \sigma_s$ for t > 0.7 ps where b is the enhancement parameter ($\Delta \sigma = b \Delta E$). From the fit we obtained $b = 1.2 \times 10^{-3} K^{-1}$ which is surprisingly close to the value of 1.3 10^{-3} K⁻¹ calculated for hot carrier absorption at 2eV assisted by optical deformation potential scattering in crystals.4

A slower dissipation rate, that can explain the results in a-Si:H, is provided by Fröhlich coupling to polar phonons. The average rate of $d\Delta E/dt$ over a Boltzmann distribution $exp(-\Delta E/kT_e)$ (where T_e is the hot carriers temperature) integrated over the ir-active phonon spectrum was calculated.² This rate first increases sharply with T_e and around $T_e = 2000K$ reaches a broad maximum⁵ of 0.1 eV/ps. For a-Si:H shown in Fig. 2 $\Delta E(0) \approx 0.1$ eV and the thermalization time $t_o \approx 1ps$. The fit to the observed $\Delta \alpha(t)$ is obtained using $A(t) \sim \sigma(t) = \sigma_s(1 + a T_e(0)(1 - t/1.2)]$ for t < 1.2psand $\sigma(t) = \sigma_s$ for t > 1.2ps with $a = 1.7 \times 10^{-1} K^{-1}$ and $T_e = 2\Delta E(0)/3 = 800K$. $\Delta \alpha(t)$ for a-Si:H:F was fit with a step function impulse response $A(t) = \sigma_s u(t)$. The reason of why $\Delta \Delta E/dt$ is larger in a-Si than in a-Si:H is unknown at this time; one can speculate that $\Delta \Delta E/dt$ increases with increasing disorder as other electron phonon interaction channels may open.

After thermalization, at longer time a slower decay, that cannot be described by a single exponential, of $\Delta \alpha(t)$ was observed¹ in sputtered a-Si; at lower T this decay is slower. It was attributed to trapping in deep traps or recombination centers. We observed similar decays in a-Si:F but not in hydrogenated samples. This suggests that F alone does not compensate the dangling bonds effectively.

Chalcogenide glasses.- Typical results for chalcogenide glasses are presented in Fig. 3. The gap E_g for a-As_2S_2.4 Se_{0.6} and a-Se at all T is larger than $\hbar\omega_p$, therefore, they represent case (b) (Fig. 1). In a-As_2Se_3 $E_g < \hbar\omega_p$ and it represents case (a) in the chalcogenide group. In the latter case the relaxations are similar as in a-Si:H discussed above. We will concentrate now on case (b). Excited in the Urbach tail, electron and hole are bound together as a pair with a binding energy $e^2/4\pi\epsilon r_0$ (ϵ is the dielectric constant). The energy above the ground state is $\Delta E^* = \hbar\omega_p - E_g + e^2/4\pi\epsilon r_0$. E_g is not well defined; we took for it the energy where $a = 10^4 \text{cm}^{-1}$. Assuming that the energy dissipation rate $d\Delta E^*/dt = \hbar\nu^2$ we calculate r_0 by solving the equation $r_0 = (D_{hot}t_0)^{1/2} = (D_{hot}\Delta E^*/h\nu^2)^{1/2}$. Taking $D_{hot} = 0.1 \text{ cm}^2/\text{s}^6$ and $h_{\nu} = 35\text{ meV}$ we obtain values of r_0 between 3 to 9A (Table I). The values of $t_0 = \Delta E^*/h\nu^2$ are less than 50 femtoseconds, too short to be observed.

The Onsager capture radii⁶ in these materials are $r_c \approx 80$ Å at 300K and ≈ 300 Å at 80K, considerably larger than r_0 . Since only a fraction $\exp[-r_c/r_0]$ of carriers escape the geminate recombination the dominant recombination process is geminate. The observed decays are exponentials $\exp[-t/\tau_r]$ where τ_r is longer at smaller E_g . An important feature of this recombination time τ_r is that it decreases with decreasing temperature¹ (as shown for a-Se in Fig. 3 and for other chalcogenides in Table I); this is just the opposite of the temperature dependence of the recombination time observed in a-Si after thermalization¹ mentioned above.

<u>Geminate recombination model.</u> Two models for geminate recombination were considered. In the first model (usually referred to as time-dependent Onsager model⁸) the carriers diffuse towards each other. The number of pairs N(t) surviving recombination was calculated⁸ to be $N(t) = N_0 \exp[-r_c/r_0][1 + r_c/(\pi Dt)^{1/2}]$. This model predicts a $t^{-1/2}$ decay of $\Delta\alpha(t)$ which is slower at lower T (because of the temperature dependence of D in amorphous materials), both against the experimental data.

Fig. 4 - Decay time τ_r plotted vs. the thermalization radius r_0 for $a-As_2S_{3-x}Se_x$ and a-Se. Another approach describes the geminate recombination as a tunneling process^{1,9} in which N(t) = N(0) $\exp[-t/\tau_{1}]$ with time constant $\tau_{r} = \nu^{-1}\exp[2\beta r_{0}]$, where β^{-1} is the extent of the wave function. This model agrees with the observed exponential decays as well as with the temperature dependence of τ_{r} . This dependence is due to the temperature dependence of Eg which is larger at lower T; consequently r_{0} is smaller and τ_{r} is shorter. A consequence of this model is that τ_{r} depends on Eg only, regardless of whether a certain value of Eg is obtained by changing composition or temperature. This is clearly confirmed by experiment, as seen in Fig. 4 where τ_{r} is plotted vs. r_{0} . The data lie on a straight line for almost 3 orders of magnitude of τ_{r} . The fit gives $\nu = 1.1 \times 10^{13} s^{-1}$ and $\beta^{-1} = 2.1A$; both parameters have reasonable values. In the case of $a-As_2Se_3\hbar\omega_{p} > E_{g}$ and $r_{0} \approx r_{c}^{-10}$ so that the geminate recombination time constant becomes very long. Indeed, as shown in Fig. 3, $\Delta\alpha(t)$ shows no apparent decay up to 60ps.

Our results do not contradict the work on the temperature dependence of the luminescence decay in GD a-Si:H^{ll} in which diffusion had to be included for explaining the data on geminate recombination at high T. In our case the excitation occurs into the Urbach tail, $r_0 \leq r_c$ and the diffusion is negligible at all T.

We thank F. Jansen for the a-Se and a-As₂Se₃ samples and T. R. Kirst and J. Strait for assistance with the experiments. This work was supported in part by NSF grant DMR-79-09819 and the NSF Materials Research Laboratory program at Brown University.

*On leave from Chinese University of Science and Technology, Beijing, PROC

References.

- 1. D. E. Ackley, J. Tauc and W. Paul, Phys. Rev. Lett. 43, 715 (1979).
- 2. Z. Vardeny and J. Tauc, Phys. Rev. Lett. 46, 1223 (1981).
- 3. Z. Vardeny and J. Tauc, submitted to Optics Communications.
- 4. K. Seeger, Semiconductors Physics, Springer, New York, p. 374, 1973.
- 5. Z. Vardeny, J. Tauc and C. J. Fang, Proc. Int. Topical Conf. on Tetrahedrally Bonded Amorphous Semiconductors, Carefree, Arizona 1981, in print.
- 6. J. C. Knights and E. A. David, J. Phys. Chem. Sol. 35, 543 (1974).
- 7. E. M. Conwell in Solid State Physics, Suppl. 9, Acad., New York, 1967.
- 8. K. M. Hong and J. Noolandi, J. Chem. Phys. 68, 5163 (1948).
- 9. N. F. Mott, E. A. Davis, R. A. Street, Phil. Mag. 32, 961 (1975).
- 10. J. Mort, I. Chen, M. Morgan and S. Grammatica, Sol. St. Comm. (in print).
- 11. J. Noolandi, K. M. Hong and R. A. Street, J. Non-Cryst. Sol. 36, 669 (1980).

TABLE I

Geminate Recombination Decay Parameters in Chalogenide Glasses

Sample	T(K)	τ _r (ps)	Eg(eV)	r _o (Å)
a-As ₂ S _{2.25} Se _{0.75} *	85	3	2.58	3.5
^{a-As} 2 ^S 2.56 ^{Se} 0.44 [*]	300	7	2.51	4.1
a-As ₂ S _{2.4} Se _{0.6}	300	11	2.47	4.7
a-As ₂ S _{2.25} Se _{0.75} *	300	13	2.43	4.9
a-Se	80	80	2.20	7
a-Se	300	>380	2.05	9
a-As ₂ Se ₃	80,300	hearst-sir hearst-sir hollow	1.8	40-80

*From D. E. Ackley's Ph.D. Thesis, Brown University, 1979.

2000K.secschas