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ABSTRACT 

An efficient method for updating the lattice 
filter/predictor coefficients using the sign 
algorithm is introduced. The pertinent 
coefficients are updated using only the signs of 
the estimation errors at each stage. This method 
requires less number of multiplications than 
other adaptive lattice filter algorithms. The 
performance of this method is compared with that 
of the lattice filter using the lMS algorithm for 
the problems of spectrum estimation and adaptive 
interference cancellation. 

I. INTRODUCTION 

In this paper, we will introduce the lattice 
filter/predictor with the sign algorithm (SA) 
[1,2] (SA-lAT). In this approach, the pertinent 
coefficients are updated using only the signs of 
the estimation errors at each stage. Thus, the 
SA-lAT method requires less number of 
multiplications than that of other adaptive 
lattice filtering algorithms [3,4] and hardware 
implementation of the proposed algorithm is 
easier than that of others. The performance of 
this efficient technique will be demonstrated for 
applications of adaptive noise cancellation and 
spectrum estimation of stationary signals. 

II. lATTICE FILTER WITH SIGN ALGORITHM 

The M-stage symmetric lattice filter 
structure is shown in Fig. 1, where e·(n), w·(n) 
and vj(n) are the forward and backwar~ prediltion 
errors (residuals) and the estimated filter 
outputs at the j-th stage of the filter for 
o ~ j ~ M. Also, p. and g. are the reflection 
coefficients and th~ latti~e filter coefficients, 
respectively. Of course, the structure given in 
Fig. 1, sans the lattice filter coefficients 9j 
for 0 ~ j .~ M gives the lattice predictor 
structure. The relevant equations at each stage 
are given by 

vi (n) = vi _1 (n) - giwi (n); 0 ~ i ~ M, (1) 

ei (n) = ei_1(n)-Piwi (n-1); 1 ~ i ~ M, (2) 
and 

wi (n) = wi_l (n-l)-Piei_l (n); 1 ~ i ~ M (3) 

where v l(n) = y{n) and w (n) = b (n) = x(n). 
- 0 0 

In many filtering applications, when either 
the input signal statistics are not known, or the 
input signals are nonstationary, we may adaptively 
estimate p.'s and g.'s at each time instant. The 
lMS algorithm, whic~ was originally proposed to 
update the tapped delay line (TDl) filter coeffic­
ients [5], has been used to update these coeffi­
cients [3,4]. The relevant equations are given by 

g. (n+l)=g. (n)+;. (n)v. (n)w. (n); O~i~ M, (4) 
1 1 1 1 1 

~. (n+l)= ;. (n) + Il. (n)[e. (n)w. l(n-l) 
1 1 1 1 1-

+ei _1(n)wi (n)]; 1 ~ i ~ M (5) 

where g. (n) and ~.(n) denote estimates of gi(n) 
and p.(~) at time1 n and ~. (n) and Ili(n) are time 
varyi~g convergence param~ters given by 

~i (n) 
and 

Ili (n) 
where 

A A 

-2 -2 () 2 cr. l(n)=Bcr. l(n-l)+ 1-13 w1· l(n) 
1- 1- -

and 

( 6) 

(7) 

(8) 

A2 A2 2 2 
cr. l(n)=Bcr. l(n-l)+(1-B)[e. l(n)+w. l(n-l)] 
1- 1- 1- 1- (9) 

is similarly an estimate of the backward 
prediction error power at the (i-l)th stage. 
Also, ~ and 13 are constants such that 0 < ~ and 
o < 13 < 1 and 13 is usually chosen to be 1-~ [6]. 

It is well known that the convergence speed 
of the above adaptive lattice predictor/filter is 
superior to that of the TDl counterparts. Now, 
the problem of interest is to update the 
reflection and lattice filter coefficients with 
less number of multiplications than required in 
(4)-(9). Recently, the sign algorithm has been 
proposed to update the TDl coefficients [1,2]. 
While the SA requires fewer computations than the 
lMS algorithm, convergence of the TDl filter 
coefficients computed using the SA is slower than 
that of the adaptive TDl filter using the lMS 
algorithm [1,2]. To overcome this problem, we 
propose to use the SA to update the lattice 
filter and reflection coefficients. The 
pertinent equations are 
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g. (n+ 1) 
1 

gi(n) + ;.(n) sign[v.(n)Jw.(n); 
1 0~li~M1 (10) 

p. (n+1) 
1 

p. (n) + 11. (n)[sign{e. (n)}w. 1(n-1) 1 1 1 1-
+ s i g n {w i (n )}e i -1 (n) 1 ; 1 ~i ~M ( 11) 

where ~i (n) 

~i (n) 
and 

and ]1. (n) 
A 1 

a.;Y. 1(n) 
1-

Ili (n) 
with A 

= a.h i _1 (n) 

are now gi ven by 

Yi_1(n) = Syi _1(n-1) + (I-B) IWi _
1 

(n) I 
and 

A A 

r i _1(n)=Sri _1 (n-1)+(1-S){le i _1(n) I 

( 12) 

(13) 

(14) 

+ I WI -1 ( N-1) I }. ( 15) 

In (10)-(15) 
1 ifx;.O 

sign(x) = {-I otherwise (16) 

and 1(')1 denotes absolute value of (.). 

Note that if a. and S are chosen such that 
multiplications by a. and S can be replaced by bit 
shifting operations, we need only one division 
for updating each of the coefficients, whereas 
the LMS-LAT structure requires four multi­
plications and one division for updating each of 
the reflection coefficients and two multipli­
cations and one division for updating each 
lattice filter coefficient. Also, if we do not 
use time-varying convergence parameters in (10)­
(15) the SA-LAT structure needs no multiplication 
or division at all. 

III. AR SPECTRUM ESTIMATION 

Suppose that we are given the auto­
correlation function R(m) for Iml "M, of a wide 
sense stationary time series {x(n)}, the maximum 
entropy spectrum of {x(n)} is given by [7J 

S(f) = PM 11 + I am e-j21Tfml-2 (17) 
m=l 

where the autoregressive (AR) parameters 
{am} ~ {a 1 ,a 2 ,···,aM! are ob~ained as the 
SOlut10n to the matr1x equat10n 

lR(:(.~l ~~5l ~gl ::: ~~~.:~ll ! [~l 
aM

I = 0= (18) 

R(M) R(M-1) R(O) 

and M 
PM = L amR(m) for aO = 1 

m=O 
( 19) 

is the prediction error power of the optimum 
predictor of order M designed to best approximate 
the current sample value x(n) as the sum of the 
weighted past samples. The reflection coeffi­
cients are related to the AR parameters through 
the Levinson-Durbin relations [12J given by 

k=1,2, ... ,M (20) 

(22) 

Also, PM is given by the recursive relations 

Pk = (1 - IpkI2)Pk_1; k=1,2,3, ••• ,M. (23) 

where Po = R(O). However, in many cases, we may 
only need to know the relative magnitude of the 
spectrum and in such cases, we may arbitrarily 
set PM as 1 and avoid the computations in (23). 

Now, we will compare the spectrum estimates 
obtained by computing the AR parameters usiQg 
(20)-(22) after substituting the estimates Pk(n) 
obtained from (11) for the SA-LAT predictor and 
those obtained from (5) for the LMS-LAT predictor 
for the reflection coefficients in (20), when the 
input to the lattice predictor is {x(n)}. That 
is, at any time n, we will estimate the spectrum 
as 

) 
M A '2 f 1-2 

S(f,n) = 1 + L am(n)e-J 1T m (24) 
m=1 

where unit prediction error power is assumed for 
all n. 

The simulation example concerns the 
convergence properties and the steady state 
characteristics of the LMS-LAT and SA-LAT 
predictors. The problem here is to estimate the 
AR parameters of the signals obtained as the 
output of a filter given by 

H(z) = 1/{1_z-1 + 0.8z-2 j (25) 

when the input is zero mean, white, Gaussian 
stationary signals with unit variance. The 
relevant MEM spectrum is estimated using (24) at 
1000-th iteration. Thirty independent 
simulations were run using 1000 samples each and 
three stages for both the SA-LAT and LMS-LAT 
predictors. Also, in each case a. = 0.0025 and 
S = 0.9975. The results presented in Fig. 2 are 
the averages of all the 30 simulations. In 
Figs. 2(a) and (c), the estimates of al and a2 
for n = 0,1,2,"',1000 are plotted for the SA-LAT 
and LMS-LAT predictors. Also, Figs. 2(b) and (d) 
compare the ensemble variances (in dB's) of the 
thirty estimates of al and a2 for both the 
methods. From these results, we can observe that 
in this example, the SA-LAT predictor converges 
faster than the LMS-LAT predictor and that the 
variance of the estimated coefficients for both 
the methods are more or less the same in the 
steady state. However, in the transient state, 
the LMS-LAT performs better from an estimation 
variance point of view. Therefore, we would 
expect no degradiation in performance for 
spectrum estimation of stationary signals for 
large n. However, there may be some degradation 
in performance in a non-stationary environment. 

The thirty spectrum estimates (in dB's) 
obtained using the AR parameters obtained at the 
1000-th iteration are plotted together in 
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Fig. 3(a) for the LMS-LAT approach and in 
Fig. 3(b) for the SA-LAT method. We can see that 
the SA-LAT approach yields more consistent 
estimates than the LMS-LAT method, even though we 
need substantially less number of computation 
than for the LMS-LAT predictor for computing the 
reflection coefficients. 

IV. ADAPTIVE NOISE CANCELLATION 

The block diagram for the setup used in the 
simulation in this section is shown in Fig. 4. 
The example considered is one of removing 
multiple sinusoidal interferences when the 
desired signal is a simulated electrocardio­
graphic (ECG) signal. ~In this example, the 
additive noise signal r(n) and the reference 
input r( n) are gi ven by 

r(n) = 0.2 sin(120~/750) 
+ 0.2 sin(260~/750 + 100) (26) 

and 
r(n) = 0.5 sin(120~/750 + 20 0) 

+ 0.15 sin(260~/750 + 450), (27) 

respectively. The- simulated ECG signal s(n) and 
the primary input d(n) are displayed in figs. 5a 
and b. Now, the problem is to estimate r(n) as a 
weighted sum of r(n-i), O(i(M, so that we can 
remove the sinusoidal components from d(n). 

The estimated ECG signals for 2000(n(3000 
(the system is assumed to have reached steady 
state in this range) is plotted as Figs. 5c and d 
when SA-LAT and LMS-LAT filters, respectively 
were used. The same convergence parameters 
a = 0.005 and ~ = 0.995 and 3 lattice filter 
stages were used for both the methods. Comparing 
Figs. 5c and d, we can see that the performance 
of the SA-LAT filter is only slightly worse than 
that of the LMS-LAT filter. In view of the large 
computational savings obtained by the SA-LAT 
approach, this small degradation in performance 
is certainly acceptable. 

V. CONCLUSIONS 

The adaptive lattice filter whose co­
efficients were updated by the SA was introduced 
in this paper. Its effectiveness for estimating 
the spectra of stationary signals and adaptive 
interference cancellation was demonstrated 
through simulation examples. For the stationary 
AR mOdel signals used in this paper, the SA-LAT 
predictor converged faster than the LMS-LAT 
predictor, even though it required less number of 
computations. Even though both the methods yield 
more or less the same mean squared error in the 
steady state, the LMS-LAT predictor performs 
better in the transient state from an estimation 
variance point of view. 

The performance of the SA-LAT filter for 
interference noise cancellation was only slightly 
worse than that of the LMS-LAT filter, in spite 
of the fairly large reduction in computational 
load. The faster convergence of the SA-LAT 
predictor in the first example is contrary to the 
results reported in [1,2J where SA and LMS 

algorithm are used to update the TDL filter 
coefficients. Thus, further study is required to 
understand the properties of the SA-LAT 
structure, and it is being pursued at this time. 
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30.11.3 
1183 



den) 

primary 
input -

x(n)=wo(n) {J wO(n-l) 
-1 _ __ + 

reference 7. 

input - -

S(f.1000) 
24.0 

0.0 

-10. 0 L-'------'----'-----'-----'------L---'-----'~~~_ 
0.0 NORMALIZED FREQUENCY 0.5 

eomr-- (a) LMS-LAT 

S (f ,1 000) ( dB) 
24.0 

Figure 1. M-stage symmetric lattice filter structure 
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Figure 2. Ensemble averages of the estimated AR 
parameters and estimation variances 
in dB 
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Figure 3. Thirty AR spectrum estimates using 
the U1S-LAT and SA-LAT predi ctors 
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Figure 5. Results of simulation in Section IV 
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