
Bridging the XML-Relational Divide with LegoDB: A Demonstration*

Philip Bohannon:!: Juliana Freiret Jayant R. Haritsa+ Maya Ramanath+ Prasan Roy:!: Jerome Simeon:!:

Abstract

We present LegoDB, a cost-based XML storage map­
ping engine that automatically explores a space of possible
XML-to-relational mappings and selects an efficient map­
ping for a given application.

1. Introduction

XML is becoming the predominant data exchange for­
mat in a variety of application domains (supply-chain, sci­
entific data processing, telecommunication infrastructure,
etc.). By relying on relational engines for storage purposes,
XML developers can benefit from a complete set of data
management services (including concurrency control, crash
recovery, and scalability) and from the highly optimized re­
lational query processors. However, due to the mismatch
between the XML and the relational models and the many
different ways to map an XML document into relations, it is
very hard to tune a relational engine and ensure that XML
queries will be evaluated efficiently. In fact, many current
products (e.g., [5]) require developers to go through an often
lengthy and complex process of manually defining a map­
ping from XML into relations. In this demonstration, we
present our LegoDB system, which is aimed at automati­
cally providing XML developers with an efficient storage
solution that is tuned for the given application.

We motivate the need for finding appropriate storage
mappings with an XML application scenario inspired from
the Internet Movie Database (lMDB) [4]. This database,
whose XML Schema is shown in Figure 1, contains a col­
lection of shows, movie directors and actors. Each show
can be either a movie or a TV show. Movies and TV shows
share some elements (e.g., title and year of produc­
tion), but there are also elements that are specific to each

* An earlier version of this demo was previously presented at the 28th
IntI. Conf. on Very Large Data Bases (VLDB), August 2002.

t Computer Science & Engineering, Oregon Graduate Institute, Beaver­
ton, OR 97006, USA. juliana@cse.ogi.edu (Contact Author)

+Database Systems Lab, SERC, Indian Institute of Science, Bangalore
560012, INDIA. {haritsa,maya}@dsl.serc.iisc.ernet.in

+Lucent Bell Labs, 600 Mountain Avenue, Murray Hill, NJ 07974,
USA. {bohannon,prasan,simeon}@research.bell-labs.com

type IMDB =
irndb [Show* , Director* , Actor*]

type Show =

show [@type[String] , title[String] ,
Year, Aka{ l , lO }, Review* ,
(Movie I TV)]

type Year = year[Integer]
type Aka = aka[String]
type Review = review [- [String]]
type Movie =

box_office [Integer] , video_ sales [Integer
type TV =

seasons [Integer] , description [String] ,
Episode*

type Episode =

episode [narne[String] ,
guest_ director [String]

Figure 1. XML Schema for IMOB documents

show type (e.g., only movies have a box_office, and
only TV shows have seasons).

Three possible relational storage mappings for the IMDB
schema are shown in Figure 2. Configuration (a) results
from inlining as many elements as possible in a given ta­
ble, roughly corresponding to the strategies presented in [6].
Configuration (b) is obtained from configuration (a) by par­
titioning the Reviews table into two tables: one that con­
tains New York Times reviews, and another for reviews
from other sources. Finally, configuration (c) is obtained
from configuration (a) by splitting the Show table into
Movie shows (Showl) and TV shows (Show2). Even
though each of these configurations can be the best for
a given application, there are cases where they perform
poorly. One cannot decide which of these configurations
will perform well without taking the application (Le., a
query workload and data statistics) into account.

For example, the first storage mapping shown in Fig­
ure 2 inlines several fields that are not present in all the
data, making the Show relation wider than necessary. Sim­
ilarly, when the entire Show relation is exported as a single
document, the records corresponding to movies need not be
joined with the Episode table, but this join is required by
mappings 2(a) and (b). Finally, the (potentially large) de­
scription element need not be inlined unless it is fre­
quently queried.

759 I E E E~
COMPUTER

SOCIETY
Proceedings of the 19th International Conference on Data Engineering (ICDE'03)
1063-6382/03 $ 17.00 © 2003 IEEE

TABLE Show TABLE Showl

(Show_ id INT ,

TABLE Show
type STRING ,
title STRING , (Show_ id INT ,

type STRING ,
title STRING ,
year INT ,
box_office INT ,
video_ sales INT ,
seasons INT ,
description STRING

year INT ,
box_office INT ,
video_ sales INT ,
seasons INT ,
description STRING

(Showl_ id INT ,
type STRING ,
title STRING ,
year INT ,
box_office INT ,
video_ sales INT

TABLE Show2
(Show2_ id INT ,

TABLE NYT_ Reviews type STRING ,

TABLE Review
(Reviews_ id INT ,

tilde STRING ,
review STRING ,
parent_ Show INT

(Reviews_ id INT ,
review STRING ,
parent_ Show INT

title STRING ,
year INT ,
seasons INT ,
description STRING

TABLE Reviews

TABLE Episode
(Episode_ id INT ,

episode STRING ,
guest_ directo r STRING
par ent_ Show INT)

(Reviews_ id INT ,
tilde STRING ,
review STRING ,
parent_ Show INT

TABLE Reviews
(Reviews_ id INT ,

tilde STRING ,
review STRING ,
parent_ Showl_ Show2 INT)

TABLE Episode
(Episode_ id INT , TABLE Episode

(Episode_ id INT ,
e p isode STRING ,
guest_ director STRING
parent_ Show2 INT)

name STRING ,
guest_ director STRING
parent_ Show INT)

(a) (b) (c)

Figure 2. Three storage mappings for shows

2. XML Storage with LegoDB

LegoDB is a cost-based XML storage mapping engine
that automatically explores a space of possible XML-to­
relational mappings and selects an efficient mapping for a
given application. It is based on the following principles:

Logical/Physical independence. An XML application de­
veloper should be able to design her application at
a logical level, i.e., using XML-driven design tools,
without requiring expertise in relational technology.

Automatic mapping. The generation of XML-to-
relational mappings must be automatic - developers
should not be required to manually specify mappings.

Application-driven mapping. The storage design should
take into account the requirements of the target appli­
cation. LegoDB takes application characteristics into
account and uses a cost-based approach in order to find
the best storage for a given application.

Leverage existing technologies. LegoDB leverages cur­
rent XML and relational technologies whenever pos­
sible. The target application characteristics are mod­
eled using XML Schema, an XQuery workload, and a
set of sample XML documents. The best among the
derived configurations is selected using cost estimates
obtained by a standard relational optimizer.

Extend existing technologies. LegoDB develops new spe­
cific extensions to existing technologies whenever nec­
essary. Notably, in [1], we propose novel XML

Schema rewriting techniques to generate a space of
possible relational mappings, and in [3], we extend
XML Schema with statistics in order to support accu­
rate cost estimation for XQuery workloads.

3. LegoDB Architecture

The architecture of LegoDB, shown in Figure 3, is com­
posed of two main components: storage design and runtime
support, described below.

3.1. Storage design

LegoDB takes, as inputs, parameters that describe the
target application (an XML Schema, an XQuery workload,
and a set of sample documents) and outputs an efficient re­
lational configuration (a set of relational tables) as well as
a mapping specification. The modules of the storage design
component (see Figure 3) are the following:

StatiX. The first task in the system is to extract statistical
information (about the values and structure) from the
given XML document, and this is done by the StatiX
module. This information is necessary to derive ac­
curate relational statistics that are needed by the rela­
tional optimizer to accurately estimate the cost of the
query workload.

Physical Schema Generation. The statistics together with
the XML Schema are sent to the Physical Schema Gen­
eration module, which outputs a physical schema, or
p-schema. An important feature of p-schemas is that

760 I E E E~
COMPUTER

SOCIETY
Proceedings of the 19th International Conference on Data Engineering (ICDE'03)
1063-6382/03 $ 17.00 © 2003 IEEE

there exists a fixed mapping between p-schema types
and relational tables.

Physical Schema Transformation. The system then
searches for efficient relational configurations by re­
peatedly transforming p-schemas, i.e., generating new
p-schemas by adding/removing types and changing
regular expressions into equivalent expressions. But,
each transformed p-schema will validate exactly the
same set of documents as the original schema. Note
that because p-schema types are mapped into rela­
tions, LegoDB generates a series of distinct relational
configurations by performing schema transformations.

Translation Module. For each transformed p-schema, the
Translation Module generates a set of relational tables,
translates the XQuery workload into the SQL equiva­
lent, and derives the appropriate statistics for the gen­
erated tables. This information is then input to the re­
lational optimizer for cost estimation.

The design phase produces an XML-to-relational map­
ping that has the lowest cost among the alternatives ex­
plored by LegoDB. It is important to note that: the rela­
tional optimizer is used by LegoDB as a black box to obtain
cost estimations; and the quality of the selected mapping
depends on the accuracy of the estimates computed by the
optimizer. A more detailed description of the various sys­
tem modules is available in [1, 3].

3.2. Runtime Support

The runtime support component of LegoDB (see Fig­
ure 3) operates as follows: After a configuration is selected,
the corresponding tables are created in the RDBMS. The
DB Loader module shreds the input XML documents and
loads it into these tables. Once the relational database is
created and loaded, the Query Translation module is used
to perform query translation on behalf of the target XML
application. Note that other XQuery to SQL mapping tools
can also be used in LegoDB (for instance, [2]).

4. Demonstration

The proposed demonstration will show the complete pro­
cess - storage design and runtime support - for storing and
querying XML in a relational database. We will show for
different schemas and data sets (IMDB, DBLP, etc.) as well
as different applications, how LegoDB derives efficient con­
figurations and mappings. The steps will include the collec­
tion of statistics from a given set of XML documents and
searching a space of relational configurations. Further, we
will demonstrate (for the first time) the impact of the choice

XML doc ument

m apping specification

XML
document

Storage Design

R e la tional Optimize r

Relational fa bles,

statistics and S QL
workload

Translation Modul e XQuery

XQuery Re~~f Runtime Support

SQL query/results

Figure 3. LegoDB Architecture

of search algorithm on the resulting relational configura­
tions. We will also show how runtime support components
are used to load the XML data into the selected relational
schema and run XQuery queries on the relational database
by translating the XQuery query to SQL. Finally, we will il­
lustrate the performance improvement obtained by LegoDB
by comparing query evaluation times of configurations se­
lected by LegoDB against configurations derived by map­
ping strategies proposed in the literature.

References

[1] P. Bohannon, 1. Freire, P. Roy, and 1. Simeon. From XML
schema to relations: A cost-based approach to XML storage.
In Proc. of Intl. Con! on Data Engineering (ICDE), 2002.

[2] M. Fernandez, W. Tan, and D. Suciu. Silkroute: trading be­
tween relations and XML. WWW91Computer Networks, 33(1-
6):723-745,2000.

[3] 1. Freire, 1. Haritsa, M. Ramanath, P. Roy, and 1. Simeon.
Statix: Making XML count. In Proc. of ACM SIGMOD Intl.
Con! on Management of Data, 2002.

[4] Internet Movie Database. http://imdb.com.
[5] Oracle's XML SQL utility.

http://technet.oracle.comltech!xml/oracle_xsu.
[6] 1. Shanmugasundaram et al. Relational databases for querying

XML documents: Limitations and opportunities. In Proc. of
Intl. Con! on Very Large Data Bases (VLDB) , 1999.

761 IEH~
Proceedings of the 19th International Conference on Data Engineering (ICDE'03)
1063-6382/03 $ 17.00 © 2003 IEEE

COMPUTER
SOCIETY

