
1560 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2007

Q u e r y i n g a n d C r e a t i n g V i s u a l i z a t i o n s b y A n a l o g y

Carlos E. Scheidegger, Huy T. Vo, David Koop, Juliana Freire, M em ber, IEEE, and Claudio T. Silva, M em ber, IEEE

Abstract— While there have been advances in visualization systems, particularly in multi-view visualizations and visual exploration, the
process of building visualizations remains a major bottleneck in data exploration. We show that provenance metadata collected during
the creation of pipelines can be reused to suggest similar content in related visualizations and guide semi-automated changes. We
introduce the idea of query-by-example in the context of an ensemble of visualizations, and the use of analogies as first-class operations
in a system to guide scalable interactions. We describe an implementation of these techniques in VisTrails, a publicly-available,
open-source system.

Index Terms—visualization systems, query-by-example, analogy

------------------------------ ♦ ------------------------------

1 In t r o d u c t io n

Over the last 20 years, visualization research has emerged as an ef
fective means to help scientists, engineers, and other professionals
extract insight from raw data. Visualization techniques are key to un
derstanding complex phenomena, and the Held has grown into a mature
area with an established research agenda [23]. Software systems have
been developed that provide flexible frameworks for creating complex
visualizations. These systems can be broadly classified as turnkey ap
plications (e.g.. ParaView. Visit. Amira) [15. 5. 22J and dataflow-based
systems (e.g., VTK, SCIRun, AVS, OpenDX) [27, 24, 11, 291. In
this paper, we focus on dataflow systems, since they are more general
and often serve as the foundation of turnkey applications (e.g., both
ParaView and Visit are based on VTK).

Most dataflow-based systems have sophisticated user interfaces with
visual programming capabilities that ease the creation of visualizations.
Nonetheless, the path from “data to insight” requires a laborious, trial-
and-error process, where users successively assemble, modify, and
execute pipelines [30]. In the course of exploratory studies, users often
build large collections of visualizations, each of which helps in the
understanding of a different aspect of their data. A scientist working on
a new computational fluid dynamics application might need a collection
of visualizations such as 3-D isosurface plots, 2-D plots with relevant
quantitative information, and some direct volume rendering images.
Although in general each of these visualizations is implemented in a
separate dataflow, they have a certain amount of overlap (e.g., they
may manipulate the same input data sets). Furthermore, for a particular
class of visualizations, the scientists might generate several different
versions of each individual dataflow while fine tuning visualization
parameters or experimenting with different data sets.

In previous work, we proposed a new provenance model that uni
formly captures changes to pipeline and parameter values during the
course of data exploration [1, 41. We showed that this detailed his
tory information, combined with a multi-view visualization interface,
simplifies the exploration process. It allows users to navigate through
a large number of visualizations, giving them the ability to return to
previous versions of a visualization, compare different pipelines and
their results, and resume explorations where they left off.

In this paper, we show how this provenance information can also
be used to simplify and partially automate the construction of new
visualizations. Constructing insightful visualizations is a process that

• Carlos F.. Scheidegger. Huy T. Vo. David Koop and Claudio T. Silva are with
the Scientific Computing and Imaging (SCI) Institute at the University of
Utah, email: {cscheid, hvo, dakoop, csilva} (9sci.utah.edu.

• Juliana Freire is with the School of Computing at the University o f Utah,
email: {Juliana} (iPcs.utah.edu

Manuscript received 3! March 2007; accepted i August 2007; posted online 27
October 2007. Published 14 September 2007.
For information on obtaining reprints of this article, please send e-mail to:
tveg <s> computer.org.

requires expertise in both visualization techniques and the domain of
the data being explored. We propose a new framework that enables
the effective reuse of this knowledge to aid both expert and non-expert
users in performing data exploration through visualization.

The framework consists of two key components: an intuitive
interface for querying dataflows and a novel mechanism for semi-
automatically creating visualizations by analogy. The query interface
supports both simple keyword-based and selection queries (e.g.. find vi
sualizations created by some user), as well as complex, structure-based
queries (e.g., find visualizations that apply simplification before an
isosurface computation for irregular grid data sets). The query engine
is exposed to the user through an intuitive query-by-example interface
whereby users query dataflows through the same familiar interface they
use to create the dataflows (see Figure 1). This simple, yet powerful ap
proach lets users easily search through a large number of visualizations
and identify pipelines that satisfy user-defined criteria.

While the query interface allows users to identify pipelines (and
sub-pipelines) that are relevant for a particular task, the visualization by
analogy component provides a mcchanism for reusing these pipelines
to construct new visualizations in a semi-automated manner—without
requiring users to directly manipulate or edit the dataflow specifications.
As Figure 2 illustrates, our technique works by determining the differ
ence between a source pair of analogous visualizations, and transferring
this difference to a third visualization. This forms the basis for scalable
updates: the user docs not need to have knowledge of the cxact details
of the three visualization dataflows to perform the operation. Together,
these contributions are a step towards sealable pipeline development
and refinement as an integral part of visualization systems.

Contributions and Outline. To the best of our knowledge, this is
the first work that leverages provenance information to simplify and
automate the construction of new visualizations. The paper is organized
as follows. We review related work in Section 2. In Section 3. we define
a set of basic operations over sets of dataflows. These operations include
computing the difference between two pipelines, updating pipeline
definitions, and matching similar pipelines. For the latter, we describe
a new algorithm based on neighborhood similarities (Section 5.3). The
basic operations are used both in the query-by-example interface and in
creating visualizations by analogy, which are presented in Section 4. An
implementation of the proposed framework is discussed in Section 5. In
Section 6, we present case studies that illustrate how our new dataflow
manipulations streamline the process of constructing visualizations,
and provide sealable mechanisms for exploring a large number of
visualizations. We discuss the potential impact of our work on existing
visualization systems in Section 7. We conclude in Section 8 where we
outline directions for future work.

2 R e l a t e d W o r k

Visualization systems have been quite successful at bringing visualiza
tion to a greater audience. Seminal systems such as AVS Explorer and
Data Explorer [29, 111 enabled domain scientists to create visualiza

1077-2626/07/S25.00 © 2007 IEEE Published by the IEEE Computer Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276286061?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2007 1561

Fig. 1. Querying by example. The interface for building a query over an ensemble of pipelines is essentially the same as the one for constructing and
updating pipelines, in fact, they work together: portions of a pipeline can become query templates by directly pasting them onto the Query Canvas.
In this figure, the user is looking for a volume rendered image of a file whose name contains the string “4877”. The system highlights the matches
both at the visualization level (version tree, shown in the middle) and at the module level (shown in the right insets).

tions with minimal training and effort. The early success of these sys
tems led to the development of several alternative approaches. SCIRun
[24] focuscs on computational steering: the intentional placement of
visualization and human intervention in the process of generating simu
lations. The Visualization Toolkit [27] is a library that directly exposes
a powerful dataflow API for several programming languages.

However, as scientific visualization becomes more widely used, sev
eral scalability issues have arisen, which range from ensuring good
performance, handling large amounts of data, capturing provenance,
and providing interfaces to interact with a large number of visual
izations. Distributed, parallel systems [5, 3] have been developed to
address performance and dataset size concerns. Such systems provide
a scalable architecture for creating and running visualization pipelines
with large data.

Another important requirement that has come to the attention of
developers and users of visualization systems is the ability to record
provenance so that computational experiments can be reproduced and
validated. Provenance-aware scientific workflow systems have been
developed that record provenance both for data products (i.e., how
a given result was generated) and for the exploratory process, the
sequence of steps followed to design and refine the workflows used
to process the data [25, 26, 4], Provenance mcchanisms have also
been proposed for visualization-specific systems. Kreuseleret al. [16]
proposed a history mcchanism for keeping track of parameter values
in visual data mining, and Jankun-Kelly et al. [13] recently proposed a
formal calculus for parameter changcs. VisTrails uses a schcmc that
uniformly captures both parameter and pipeline changes [1,4],

As multiple workflows are manipulated in exploratory processes, it is
important to provide interfaces that allows users to compare their results.
Jankun-Kelly and Ma [12] have proposed a spreadsheet-like interface
for quickly exploring the parameter space of a visualization. In the area
of user interfaces, Kurlanderet al. [18, 17] have presented approaches
to streamline the repetitive tasks users often face. The seminal example
of a system which uses the same interface to both manipulate and query
data is the Query-By-Example database language [31]. We propose a
similar approach for querying visualization ensembles in Section 4.2.
Graph searching and query languages have also been investigated in
database systems [28].

The algorithm wc dcscribc for matching two pipelines is similar
to a tcchniquc developed to match database schcmas [21], It is also
reminiscent of well-known variations of PageRank. which is the basis
for Google's succcssful ranking algorithm [2, 19]. Our visualization-
by-analogy mechanism shares some of the objectives of programming-
by-example techniques [20],

3 P ip e l in e O p e r a t io n s

Below, we review some terminology and introduce basic pipeline oper
ations that serve as the basis for query-by-example and visualization by
analogy.

Definitions. A visualization system is a system that provides func
tionality for graphically displaying data according to a specific set of
rules. The programmatic rules for displaying this data constitute a
pipeline. Executing the pipeline in the visualization system produces
a visualization. The pipeline is composed of modules which define
specific operations and connections which specify the conceptual flow
of data between modules. Each conncction links an output port of
one module (the source) with an input port of another module (the
destination). Module state is represented by module parameters. Wc
denote the set of all visualization pipelines as V.

Operations as functions on ¥ . One important observation that
wc leverage throughout the text is that every operation performed on
a pipeline (adding and deleting modules, connections and parameters,
ctc.) can be directly expressed as a (potentially partial) function / :
V —»■ V. Many of our results depend on making these functions first-
class elements in the visualization system.

3.1 Computing Pipeline Differences
Dataflow-based systems allow users to crcatc a variety of pipelines,
rather than being restricted to a predefined set of visualizations. In
the proccss of deriving insightful visualizations, a series of pipelines
is often created by iterative refinement. To understand this process as
well as the derived visualizations, it is useful to compare the different
pipelines. The standard representation of a pipeline is a directed graph,
with labeled vcrticcs representing operations. Given a pair of such
pipelines, we want to determine the difference between the visualiza
tions they generate. In the following, wc show how to dcscribc and
manipulate differences between pipelines.

Wc define 5 : V —> V as a function on the spacc of visualizations,
and A : ¥ x ¥ - * 5 a s a function that takes two pipelines p„ and pi,
and produces another function that will transform pa to pi,. For brevity,
let 8ai, = A(Pa-Pb)- From now on. we will use 5 to refer to an arbitrary
A(a,b). It is clear that 5 is not unique: even though 8ah(pa) = ph is a
ncccssary constraint, there arc no further restrictions. In some sense,
we would like to pick the 8ai, that minimally changes all other pipelines.
Wc define the distance between p„ and pi, as the number of changcs
necessary to perform the transformation. We then look for the minimal
set of operations that takes p„ to pi,. As we discuss in section 4.1, this
is computationally impractical, so we relax the minimality requirement
and instead use heuristics.

1562 SCHEIDEGGER ET AL: QUERYING AND CREATING VISUALIZATIONS BY ANALOGY

Fig. 2. Visualization by analogy. The user chooses a pair of visualizations to serve as an analogy template. In this case, the pair represents a
change where a file downloaded from the WWW is smoothed. Then, the user chooses a set of other visualizations that will be used to derive new
visualizations, with the same change. These new visualizations are derived automatically. The pipeline on the left reflects the original changes, and
the one on the right reflects the changes when translated to the last visualization on the right. The pipeline pieces to be removed are portrayed in
orange, and the ones to be added, in blue. Note that the surrounding modules do not match exactly: the system figures out the most likely match.

We also restrict our initial analysis to the simple ease where pi,
is derived from pa — the user created pi, by applying a finite set of
changes to pa. We denote this relationship as pa < pi,. Then, a system
with some knowledge of how the pipelines were constructed should be
able to determine the differences between related pipelines using this
history. We demonstrate such an implementation in Section 5.

When pa < pi,, we can then say S„/, is the sequence of operations
that was used to derive pi, from pa. However, few pairs of pipelines
respect this property, and we would like A to be completely general.
We start with a simple extension: if S„/, exists, so should S/,„. In fact,
we would like

&ab&ba = e
where e is the identity function. We can achieve this if our sequence of
changes consists of invertible atomic operations. Specifically, suppose
8„b = /„ o • • • o /j where each f has a well-defined inverse. For example,
if fj is the operation of adding a module to the pipeline, f r 1 is the
operation of deleting that module from the pipeline. Then,

°ba ab - f r \fn

3.3 Matching Pipelines
While computing pipeline differences is an integral part in reason
ing about multiple visualizations, another important operation is to
match similar pipelines, i.e., we wish to find correspondences between
pipelines. The result of pipeline matching can either be a binary deci
sion (whether the pipelines match) or a mapping between the two inputs.
Note that different metrics and thresholds can be used to determine the
similarity of two pipelines. In the remainder of this section, we discuss
an approach for finding the best mapping between two pipelines.

Let D represent the set of all domain contexts and define map :
¥ x ¥ - i (i) - i /)) a s a function which takes two pipelines, p„ and
as input and produces a (partial) map from the domain context of pa
to the domain context of pc. The map may be partial in cases where
elements of pa do not have a match in pi, or vice versa. Notice that
if Pa < Pb- maP(Pa-Ph) = m3Pah >s ^ e identity on all elements that
were not added or deleted in the process of deriving pi,.

To construct such a mapping, we formulate the problem as a
weighted graph match
corresponding to the p
would be the modules

From now on, we assume that any function that operates on V has an
inverse (note that both functions might still be partial).

Our ultimate goal is to apply the pipeline difference result 5 to
pipelines other than those used to create it. To analyze where 5 is
applicable, we introduce the domain and range context of 5. Formally,
the domain context of 5, D (8), is the set of all pipeline primitives
required to exist for 5 to be applicable. We represent these contexts
as sets of identifiers. For example, if 5 is a function that changes the
file name parameter of a module with id 32, D(8) is the set containing
the module with id 32. Similarly, the range context of 5, /?(<5), is the
set of all pipeline primitives that were added or modified by 5. Note
that D (8) = R(S), which provides an easy way to compute range
contexts,

3.2 Updating Pipelines
Finding differences is not only a useful technique for analyzing
pipelines, but it can also be used to create new visualizations. The
idea is similar to applying patches in software systems: the difference
results can be applied to modify an existing pipeline. Given a 5, it is
straightforward to apply it to a pipeline. Recall that 5 is a sequence of
actions that transform a pipeline. Thus, updating a pipeline pa is as
simple as computing 8(pa). Note, however, that 5 can fail if an ele
ment of D(8) does not exist in pa. However, if we allow 5 to continue
despite one or more operations failing, we can still achieve a partial
update.

ing problem. Let G„ = (Va.Ea) be the graph
lipeline pa. In a straightforward definition, Va
in pa and Ea the connections in pa. However,

one could consider other definitions such as the dual of this representa
tion. For Vlh we define a scoring function s : Va x V/, —*■ [0.0.1.0] that
defines the compatibility between vertices. For example, the similarity
score of two modules that are exactly the same can be set to 1.0 and
the score of modules M\ and Mi such that M\ is a subclass of Mi may
be set to 0.6.

We define a matching between Ga and G/, as a set of pairs of vertices
M = {(vY,. v’;,)} where va € Va and v/, e V/,. A matching is good when

£ s(vaA’b)

is maximized. A good matching on pipelines is one that corresponds
to a good matching on their representative graphs. Given a good
matching M, we can define a mapping from pa to pi, as va —> v/, for all
(vaA>h) e M .

4 S c a l a b l e P ip e l in e M a n ip u l a t io n P r im it iv e s

Using the concepts defined in the previous section, we now introduce
two new primitives for manipulating visualizations,

4.1 Complexity Analysis
The operations described in this section arc theoretically hard to com
pute. Computing a minimal A(pa.pb). or matching two pipelines pa
and pi„ is, in general, as hard as solving a subgraph isomorphism.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2007 1563

Fig. 3. Query-by-example and analogy-based updates provide a simple way for users to manipulate multiple pipelines simultaneously. In this
example, the user selects parts of a query result and updates them all with an analogy that introduces a preprocessing module to the pipeline that
supersamples the original dataset.

This problem is trivially reducible from the MAX-CLIQUE problem, a
well-known NP-eomplete problem. Additionally. MAX-CLIQUE is a
particularly hard problem: there is no approximation algorithm for it
with a subpolynomial approximation factor [9J. Sincc wc cannot get a
good approximation, heuristics for both problems are well justified.

In this work, wc make use of the information stored in 8 functions
both to reduce the search space and to increase the effectiveness of
these heuristics.

4.2 Query-By-Example
Working with multiple visualizations is problematic if they have to
be treated individually. In the process of visualizing different data
sets, trying different techniques, and tweaking parameters, a user may
create a large number of visualizations. It is clearly impractical to
loeate those that match ccrtain criteria by examining cach individually.
To solve the problem of locating pipelines, we introduce the idea of
query-by-example for visualizations. Instead of formulating the search
criteria in a structured language, a user builds a pipeline fragment that
contains the desired features. The exact same interface used in building
a pipeline can be used for building a query, which means that a user
familiar with building pipelines can easily query them. Figure 1 shows
an excerpt of the query-by-example functionality.

Our algorithm is based on the observation that searching all pipelines
for a given pattern is equivalent to determining whether a candidate
pipeline matches the pattern. Once a query, represented as a pipeline
fragment, is constructed, we can use the pipeline matching algorithm
on each candidate pipeline to determine if it satisfies the query. De
pending on user preferences, we can require an exact or an approximate
match. While each element of the query pipeline (modules, connec
tions. parameters, etc.) needs to be included in the match, a candidate
pipeline that contains more elements than those in the query pipeline
still satisfies the query.

It should be noted that differences can help optimize our matching.
For example, suppose that we have a given query pipeline p q and two
candidate pipelines pa and pi,. If we find that pa satisfies the query,
and we know 8ai we can check to see if the domain context D(8ai,)
contains any elements that matched pq. If it does not, we know that
Pi, also matches. Similarly, if pa does not match pq and R(8ai,) does
not contain ncccssary elements for matching pq. wc know that pi, will
not satisfy the query. Thus, we can determine all pipelines that satisfy
our query by iteratively matching and updating the matches based on
differences.

4.3 Visualization by Analogy
When creating visualizations, users often have to integrate new features
into existing pipelines. For example, a user may wish to improve a

given visualization by adjusting parameter so they match a published
result. The user might also simply want to switch to a different vi
sualization algorithm. In either case, there usually exists an example
that demonstrates the given technique. A user can infer the ncccssary
changes, and then apply them to a particular visualization. This ana
logical reasoning is very powerful, and wc show that visualization by
analogy can be (partly) automated. Figure 2 illustrates the process of
creating visualizations by analogy.

Two ordered pairs are analogous if the relationship between the first
pair mirrors the relationship between the sccond pair. Therefore, if wc
know what the relationship is between the first pair, and are given the
first entity of the second pair, we should be able to determine the other
entity of that pair. More concretely, given a difference between 5 two
pipelines, we should be able to modify an arbitrary pipeline so that the
resulting changes mirror 5.

To automate this operation, we need to compute the difference be
tween two pipelines and apply this difference to another (possibly
unrelated) pipeline. Suppose that we have three pipelines pa. pi,. pc.
and wish to compute p j so that pa : p^ as pc : pj. We discussed the
problem of finding the difference in Scction 3.1, but recall that updat
ing a pipeline pc with an arbitrary 5 will fail if pc does not contain
the domain context of 5. When this is the case, we need to map the
difference so that it can be applied to pc.

We wish to express 8ai, so that 8ai,(pc) succeeds. This is exactly
what mapaf docs; recall that to construct this operator wc need to find
a match between pa and pc, as described in Section 3.3. More precisely,
we first compute 8*h = mapac(pa,pb) ar|d then find 8*h(pc).

In summary, our algorithm is:

1. Compute the difference: 8ai, = A(pa,ph)
2. Compute the map: mapaf = map(pa,pf).
3. Compute the mapped difference: 8*h = mapaf(<5ai)
4. Compute p(j = 8*h(pc)

5 Im p l e m e n t a t io n

To implement the scalable manipulation primitives introduced in Sec
tion 4, we use the freely available VisTrails system. VisTrails automati
cally captures the evolution of workflows which allows straightforward
implementations of the pipeline operations presented in Scction 3. Wc
provide a quick overview of some key concepts in VisTrails; the reader
is referred to fl. 41 for more details.

In VisTrails, as a user constructs a visualization, the entire history of
manipulation is transparently stored in the version tree (the term vistrail
is used interchangeably). Each action / that modifies the pipeline
(e.g.. adding or deleting a module, connecting modules, or changing

1564 SCHEIDEGGER ET AL: QUERYING AND CREATING VISUALIZATIONS BY ANALOGY

Fig. 4. Example of an analogy between pipelines where there is no
perfect module matching. The difference in the left pipeline pair is
transferred to the right pipeline pair. Note, however, that the module
names are not the same— the system must find the most likely pairing
based on the similarity measure described in Section 5.3.

a parameter) is represented explicitly as a function / : V —► V, where
V is the space of all possible visualizations. A pipeline is then the
composition of these functions and is materialized by applying the
resulting function to the empty visualization.

5.1 Pipeline Differences
In a vistrail. the straightforward application of the action-based for
malism allows the computation of simple differences. When pa < pj,,
MPa-Pb) is the sequence of actions from pa to pi, which can be read
directly from the vistrail. In addition, we have implemented the inverse
operation of / for each type of operation in VisTrails so 8i,a is also
easily constructed. However, it is likely that we wish to compute a dif
ference between pipelines that are not related in such a simple manner.
Specifically, suppose that pa pi, and pi, pa. Note that there exists
some pc (possibly the empty pipeline, which is in general the least
common ancestor of both pa and p/,) such that pc < pa and pc < p
Then,

8nh *5- h 8,.., 8, I°cb

Thus, we can find A(p,.pj) for any two pipelines, even if they are not
directly related.

5.2 Pipeline Updates
Pipeline updates are also easily computed by taking the action-based
representation of a pipeline and appending the new actions given by
a 8. Although it is always possible to append the new actions in a
vistrail. the resulting sequence of actions may be invalid. As noted
earlier, this update can fail if the domain context of 8 does match pa.
More specifically, each operation in 8 can succeed or fail based on
whether the elements to be modified or deleted exist in pa.

5.3 Pipeline Matching
In our matching algorithm, we use the standard graph representation
where vertices correspond to modules and edges to connections. In
addition, even though we still discriminate between input and output
ports, we do not enforce directionality on the edges so that we can
diffuse similarity along them.

Recall that our goal in pipeline matching is to determine a mapping
from the context o f one pipeline to another. To do so. we convert the
pipelines to labeled graphs and define a scoring function for nodes
based on their labels. With a graph for each pipeline, we compute the
mapping by pairing nodes that score well and enforcing connectivity
constraints between these pairs.

Let Ga and G/, be the graphs corresponding to pa and p/,. For our
implementation, we define modules as vertices and connections as
edges. Denote a connection between two vertices a and b as a ~ b and
define the scoring function that measures the pairwise compatibility of
vertices by

_ _ [ports(vQ) l~l ports(Vj,) [
C | ports(v„)| + |ports(v/,)|

Fig. 5. Example matching generated by the pipeline matching algorithm.
Thicker edges correspond to stronger correspondences. Notice that the
correspondences get progressively better as the algorithm iterates. This
matching corresponds to Example 2 in Section 6.

where ports(v) denotes the ports of the module corresponding to the
vertex v. This measure emphasizes port matching: it gives higher scores
to modules that can be more easily substituted for each other. Such a
substitution depends solely on the compatibility of the input and output
ports and not on module name or functionality. Figure 4 shows an
example of such an approximate matching.

Notice that this scoring function is defined only for nodes, and there
fore. it does not help us in comparing the topologies of the pipelines.
While a simple maximum bipartite matching [6] between nodes may
succeed in finding a map between nodes, we would like to enforce
some connectivity constraints on the graphs. Intuitively, we want to
define the similarity between vertices as a weighted average between
how compatible the modules are and how similar their neighborhoods
are. The similarity score strikes a balance between the locality of pair
wise compatibility and the overall similarity of the neighborhood. This
definition seems circular, but. surprisingly, it leads to a very simple and
elegant matching technique based on the dominant eigenvector of a
Markov chain [191.

We create a graph G = Ga x G/, that combines both Ga and G/,- In
this graph, we define a vertex va b for each pair of vertices va £ Va. vb £
Vb- Similarly, an edge vjj ~ vk i: exists when v; ~ v* in Ga and vj ~ v/
in G/,■ (G is the graph categorical product of Ga and G*.) Notice
that the connectivity of G encodes the pairwise neighborhoods of the
vertices in Ga and G/,. We now want to translate our intuitive algorithm
from the previous paragraph into an iterative algorithm. First, we need
the following notation:

• 7lk(G) is the measure of pairwise similarity after k steps
• A(G) is the adjacency matrix of G normalized so that the sum of

each row is one (a row with sum zero is modified to be uniformly
distributed)

• c(G) is the normalized vector whose elements are the scores for
the paired vertices in G: c(G) = (c(va.v*).va £ Ca.v/, £ C/,)

• a is a user-defined parameter that determines the trade-off be
tween pairwise scoring and connectivity

To iteratively refine our estimate, we diffuse the neighborhood similarity
according to the following formula:

xk+l = aA{G)izk + { 1 -a)c (G)
= MCKk

(1)

The final pairwise similarity between modules is given by te*, =
limA.JOO nk. For our purposes, c(G) gives a good measure of similarity
so A(G) is used mainly to break ties between two alternatives. Thus,
we choose a small weight for the neighborhood in our implementation
(a = 0.15). Though this formulation makes intuitive sense, we want to
ensure that repeated iteration always converges and does so quickly.

It is clear that Mq in Equation l i s a linear operator: therefore, if n
converges, it does so to an eigenvector. The theory of Markov chains
tells us that because of the special structure of Mq. it has spectrum

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2007 1565

Analogy Tunptw* Analogy T ttgti flnutt

Fig. 7. Switching the rendering technique by analogy. The analogy
template on the left specifies that volume rendering modules should be
replaced by isosurfacing ones. The analogy target and the resulting
pipeline are shown, together with the resulting visualization.

(1, a, a 2, ■ ■ ■) f 191. and so the iteration is exactly the power method
[81 for eigenvalue calculation. Hence, the iteration will converge to
the single dominant eigenvector, and each iteration will improve the
estimate linearly by 1 — a. Since we are using a small a , this ensures
quick convcrgcncc. From this iteration, wc obtain m*. which contains
the relative probabilities of va e Ca and vj, e Gj, matching for each
possible pair. For cach vertex in va. the vertex in vj, whose pair has the
maximum value in will be considered the match. Figure 5 illustrates
how the matchings are refined as the mapping algorithm iterates.

5.4 Query-by-example
Recall that the benefit of query-by-example is that users do not have to
learn a query language or a new interface to find matching pipelines.
Our implementation presents the same interface used in building a
pipeline as it does for querying an ensemble of pipelines, as shown in
Figure 1. A user constructs a query pipeline by dragging modules from
a list of available modules or copying and pasting pieces of existing
pipelines. Parameters and connections can also be specified in a similar
manner. When the user executes the query, the system searches the
current version tree for all pipelines that match that query.

As discussed in Section 4, we want to find pipelines that contain the
query pipeline. Currently, this matching is computed on a per pipeline
basis. Specifically, for cach pipeline, wc topologically sort the vertices
of the graph induced by the pipeline and match the vertices of the query
graph. If all vertices match, we return the candidate pipeline as a match.
All matches are selected and highlighted in the version tree so that
users can quickly see query results. Selecting a version will display
the pipeline with the portion of the pipeline that matched the query
highlighted.

5.5 Visualization by analogy
There are two steps involved in applying an analogy to a pipeline. First,
the user defines the analogy template by selecting the two pipelines
whose difference is to applied to another pipeline. Second, the user
selects another pipeline and applies the analogy to that pipeline, creating
a new pipeline. In VisTrails. these operations can be executed in
either the version tree pane of the builder window or the visualization
spreadsheet. In either case, the application of the analogy creates a new
version in the vistrail.

In the version tree, an analogy is defined by dragging the version
representing initial pipeline to the version representing the desired
result. This operation displays the difference between the pipelines
and the user is able to click a button to create an analogy from these
pipelines. To apply the analogy, the user right-clicks on the version
representing the pipeline and selects the desired analogy.

Creating and applying analogies in the VisTrails Spreadsheet is
similar but even easier to use. The spreadsheet supports a viewing
mode and a composition mode. In the composition mode, a user can
create an analogy by dragging one cell into another cell. To apply the
analogy, the user drags the pipeline to be modified to a new cell, at
which point the analogy is applied and the new visualization displayed.

The computation of the analogy mirrors the algorithm described
in Section 4.3. More concretely, for pipelines pa and pi, defining the
analogy and the pipeline to be updated pc. we derive 8ai, using the
version tree. We then match Ca and Cc using the algorithm described
in Section 5.3 to obtain mapat, and use this function to compute 8*b
which can then be applied to pc to produce a new pipeline p(j.

6 C a s e St u d ie s

We present three examples that illustrate the proposed primitives.

Example 1: Updating Inputs in Multiple Pipelines In this sce
nario. we want to compare different isosurface extraction techniques.
In particular, we wish to investigate how resilient the techniques are
to subsampled or oversampled data. Typically, the techniques are first
compared using raw inputs. The task. then, is to update the pipelines
with the new test data.

There arc several ways to address this problem. The most straight
forward one is to develop a preprocessing script that converts the files.
Although this is feasible, it is not desirable since it puts the burden to
manage the data on the user. At the least, it requires explicit manage
ment of intermediate files, and it docs not provide an explicit record of
the desired experiment, A better alternative is to directly create new
dataflows that exercise the test regime. It is clear, however, that this can
be time consuming if the specialist must first examine each pipeline to
determine whether it needs to be updated and only then perform the
required modifications.

It is therefore desirable to automate this process. With query-by-
example. we can find all matching pipelines with one operation. With
analogies, we can perform the desired update once, capture that change
as an analogy and apply it to the matching pipelines. Not only does this
save time and effort, but it ensures that all pipelines are updated. In
addition, cach update is done in a similar manner; the possibility that
the updates are inconsistent is reduced.

In this example, we construct a query template by copying the
relevant portion of the pipeline onto the Query Canvas. This procedure
returns a set of pipelines (highlighted in Figure 3) which we need
to update. We first update one of the pipelines by directly adding the
resampling step. Then, we define an analogy template using the original
pipeline and the updated one. We apply this analogy to automatically
update the other pipelines that match the query. As result, several new
results are produced without requiring the user to manually update each
individual pipeline.

Example 2: Changing a rendering algorithm In this example,
we show a moderately complex change in a pipeline that replaces an
entire rendering technique with another. When designing an effective
visualization, one algorithm tends to perform better than the alternatives.
It is natural, then, that a single visualization will be tried with different
algorithms. When the best result is identified, the user must change the
other visualizations to reflect this. In this example, we show that it is
possible to replace an entire algorithm by analogy.

The visualization portrayed in Figure 7 renders an ITK [10] scalar
field in VTK [27], using the Teem tools [14] to generate the appropriate
data format. While in the original change, there was only one generated
view, in the analogy target there are two renderings, so the system must
correctly decide the proper one to modify.

Example 3: Chaining Analogies We have discussed that one can
modify a pipeline by analogy as a single update operation. However,
one can also use analogies to quickly combine multiple examples. In
this example, illustrated in Figure 6. we show how three different
techniques can be combined to transform a very simple pipeline into a
visualization that is not only more complicated but also more useful.

In many scientific fields, the amount of data and the need for inter
action between researchers across the world has led to the creation of
online databases that store much of the domain information required.
Scientists are concerned not only with using data from these centralized
repositories but also publishing their own results for others to view. In
this example, we show how analogies can be used to modify a sim
ple pipeline that visualizes protein data stored in a local file to obtain

1566 SCHEIDEGGER ET AL: QUERYING AND CREATING VISUALIZATIONS BY ANALOGY

Fig. 6. Creating complex pipelines by chaining simple analogies. From three simple examples, the user creates a complex visualization that creates
a web page with enhanced molecule rendering, whose results are fetched from the Protein Database, an online macromolecular database.

data from an online database, create an enhanced visualization for that
protein, and finally publish the results as an HTML report.

We begin with a vistrail that contains pipelines that accomplish
each of the individual tasks outlined above. Specifically, we have a
simple pipeline po that reads a file with protein data and generates a
visualization of that data. We also have pipelines p\ and p\ where the
difference between the two is that p\ reads a local file and p\ reads
data from an online database, pipelines pi and p'-, where pi features
a simple line-based rendering and p'2 improves the rendering to use
a ball-and-stick model. Finally, pi displays a visualization while p3
generates an HTML report that contains the visualized image.

To create the new pipeline, we compute the analogy between p\ and
p', and apply it to po- Then, we compute the analogy between pi and
p2 and apply that the result of the previous step. Finally, we compute
the analogy between p$ and p3 and apply it. The new pipeline p^
prompts the user for a protein name, uses that information to download
the data for that protein, creates a ball-and-stick visualization of the
data, and embeds that image in an HTML report.

The benefits of using analogies to generate this new pipeline not
only include faster results but also a lower level of knowledge needed to
modify pipelines. One can imagine a scientist who executes a pipeline
to crcatc a visualization downloading a pipeline which publishes data
to the web and adding the same capability to their pipeline via analogy.
Instead of trying to find the correct modules and manually modifying
the pipeline, the scientist can use the analogy from the example pipeline
to add the new feature automatically.

7 D is c u s s io n

We argue that both query-by-example and visualization by analogy are
useful operations that provide efficient solutions for what are otherwise
manual, time-consuming tasks. The basic operations introduced in
Section 3 rely both on the graph structure of pipelines and on pipeline
modification history. As discussed, global comparisons of graphs are
intractable in general, but the fact that visualization pipelines translate
to labeled graphs where the nodes are largely distinct allows us to
define effective heuristics. We believe that this framework can be used
to develop additional primitives that significantly reduce the amount of
work required to maintain and integrate ensembles of visualizations.

The proposed primitives can be easily implemented in dataflow-
based visualization systems that provide undo/redo capabilities. As
long as undo/redo operations are represented explicitly in the system
(for example, using the Command design pattern [7]), a straightforward
serialization of these would achieve the wanted capabilities. Module
and connection representations may vary across systems, but the frame
work and techniques apply as long as the elements can be translated to

E

Arukigy Template

■ j n l z :

Produced r« u lt Enpecttd remit

Fig. 8. A situation where creating pipelines by analogy fails. The in
tended effect when defining the analogy was to replace the raw file with
a preprocessing step. Note, however, that there still is one lingering
connection, highlighted in red.

labeled graphs.
As with most heuristics-based approaches, our approach to matching

is not foolproof, and there are cases where it may fail to produce the
results a user expects. For example, if a user applies an analogy to
a pipeline that shares little or no similarity with the starting pipeline,
the matching algorithm will return a mapping which is likely to be
meaningless. However, when application of an analogy fails or produce
poor results, the user can either discard or refine the resulting pipeline:
analogies always construct new pipelines—they do not modify existing
pipelines.

Analogies can be highly subjective. In some cases, applying an
analogy can lead to ambiguity and derive multiple results. Figure 8
shows an example of an analogy that is supposed to resample an input
file before continuing with the rest of the pipeline. Instead of removing

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2007 1567

a connection from the raw file to downstream modules, the application
keeps the old connection in addition to adding the new connection to
the resampling module. In this case, a user might have to “clean up”
the results of the pipeline. Our current pairwise similarity score tries to
establish a compromise in the absence of domain-specific knowledge
about modules. Formulating and incorporating such knowledge into
the matching is certainly possible and desirable. An interesting avenue
for future work is to investigate how to acquire this information in an
unobtrusive way, for example, by taking user feedback about derived
analogies into account, as an avenue for future work. Furthermore, our
current implementation finds the best mapping in a greedy fashion, on
a per-module basis. There are alternative ways of using 7E*., and this
investigation is part of future work.

One important consideration when introducing new manipulation
primitives is the impact on how users interact with them. Query-by-
example represents an intuitive way for users to query pipelines. One
could imagine a querying tool that narrows results as the query is built
(e.g., similar to auto-completion). Also, to extend our analogy tool,
users’ input could be used to guide the matching process, especially in
cases where the automatic construction fails. Constraint information
might be incorporated into the matching, allowing it to generate better
results in situations where the information in the pipeline definitions is
not sufficient. Along the same lines, it may be useful to allow users to
explore the results of many possible matchings.

8 C o n c l u s i o n s a n d F u t u r e W o r k

Wc have dcscribcd a new framework that leverages visualization prove
nance to simplify the construction of new visualizations. This frame
work provides sealable and easy-to-use primitives for querying pipeline
ensembles and for creating multiple visualizations by analogy. Wc have
also proposed efficient algorithms and intuitive interfaces for realizing
these primitives in a visualization system.

There arc many avenues for future work. The use of domain-specific
distance measures between pipelines and modules may be useful for
customizing analogy generation in some domains (for example, for
transfer function design and comparison). We are currently investigat
ing machine learning techniques for automatically determining com
mon pipeline operations on a large database of visualizations, allowing
templates to also be determined automatically.

A c k n o w l e d g m e n t s

We acknowledge the generous help of many colleagues and collabo
rators. Suresh Venkatasubramanian helped with discussions on graph
matching and complexity. Erik Anderson and Joao Comba graciously
provided their vistrails for this work. Chems Touati and Steven Calla
han helped produce the video and figures. This work uses a number of
existing open-source software and data repositories, including Teem
(httpy/teem.sourceforge.net), VTK (http://www.vtk.org), ITK (http://www.itk.org),
trimesh2 (http://www.cs.princeton.edu/gfx/proj/trimesh2/), and the RCSB Pro
tein Database. This work was funded by the National Science Founda
tion, the Department of Energy, and an IBM Faculty Award.

R e f e r e n c e s

[1] L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger, C. Silva, and
H. Vo. VisTrails: Enabling interactive, multiple-view visualizations. Tn
Proceedings o f IEEE Visualization, pages 135-142, 2005.

[2] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search
engine. Computer Networks and ISDN Systems, 30(1-7): 107-117, 1998.

[3] K. Brodlie, D. Duce, J. Gallop, M. Sagar, J. Walton, and J. Wood. Vi
sualization in grid computing environments. Tn Proceedings o f IEEE
Visualization, pages 155-162, 2004.

[4] S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva, and H. Vo.
Managing the evolution of dataflows with VisTrails. In IEEE Workshop
on Workflow and Data Flow fo r Scientific Applications (Sci Flow), 2006.

[5] H. Childs, E. S. Brugger, K. S. Bonnell, J. S. Meredith, M. Miller, B. J.
Whitlock, and N. Max. A contract-based system for large data visualiza
tion. In Proceedings o f IEEE Visualization, pages 190-198, 2005.

[6] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algo
rithms, chapter 26. MIT Press, 2001.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements o f reusable object-oriented software, chapter 5. Addison-Wesley,
1995.

[8] G. H. Golub and C. F. V. Loan. Matrix computations. Johns Hopkins
University Press, Baltimore, MD, USA, 3rd. edition, 1996.

[9] J. Hastad. Clique is hard to approximate within « ’ E. Acta Mathematica,
182:105-142, 1999.

[10] L. Tbanez, W. Schroeder, L. Ng, and J. Cates. The ITK Software Guide.
Kitware, Inc. ISBN 1-930934-15-7, 2nd. edition, 2005.

[11] IBM. OpenDX. http://www.research.ibm.com/dx.
[12] T. Jankun-Kelly and K.-L. Ma. Visualization exploration and encapsulation

via a spreadsheet-like interface. IEEE Transactions on Visualization and
Computer Graphics, 7(3):275-287, July/September 2001.

[13] T. Jankun-Kelly, K.-L. Ma, and M. Gertz. A model and framework
for visualization exploration. IEEE Transactions on Visualization and
Computer Graphics, 13(2):357-369, March/April 2007.

[14] G. Kindlmann. Teem, http://teem.sourceforge.net.
[15] Kitware. ParaView. http://www.paraview.org.
[16] M. Kreuseler, T. Nocke, and H. Schumann. A history mechanism for

visual data mining. Tn Proceedings o f IEEE Information Visualization
Symposium, pages 49-56, 2004.

[17] D. Kurlander and E. A. Bier. Graphical search and replace. In Proceedings
o f SIGGRAPH 1988, pages 113-120, 1988.

[18] D. Kurlander and S. Feiner. A history-based macro by example system.
In Proceedings o f UI ST 1992, pages 99-106, 1992.

[19] A. N. Langville and C. D. Meyer. Google’s PageRank and Beyond: The
Science o f Search Engine Rankings. Princeton University Press, 2006.

[20] H. Lieberman, editor. Your Wish is My Command: Programming by
Example. Morgan Kaufmann, 2001.

[21] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versa
tile graph matching algorithm and its application to schema matching. In
Proceedings o f the 18th International Conference on Data Engineering,
pages 117-128, 2002.

[22] Mercury Computer Systems. Amira. httpy/www.amiravis.com.
[23] T. Munzner, C. Johnson, R. Moorhead, H. Pfister, P. Rheingans, and T. S.

Yoo. NIH-NSF visualization research challenges report summary. IEEE
Computer Graphics and Applications, 26(2):20-24, 2006.

[24] S. G. Parker and C. R. Johnson. SCIRun: a scientific programming envi
ronment for computational steering. In Proceedings o f the International
Conference fo r High Performance Computing, Networking, Storage and
Analysis (Supercomputing), 1995.

[25] Provenance challenge. http://twiki.ipaw.info/bin/view/Chaiienge.
[26] C. Scheidegger, D. Koop, E. Santos, H. Vo, S. Callahan, J. Freire, and

C. Silva. Tackling the provenance challenge one layer at a time. Concur
rency and Computation: Practice and Experience, 2007. To appear.

[27] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit.
Kitware Inc, 2007.

[28] D. Shasha, J. T.-L. Wang, and R. Giugno. Algorithmics and applications
of tree and graph searching. Tn Proceedings o f the ACM Symposium on
Principles o f Database Systems, 2002.

[29] C. Upson, J. Thomas Faulhaber, D. Kamins, D. Laidlaw, D. Schlegel,
J. Vroom, R. Gurwitz, and A. van Dam. The application visualization
system: A computational environment for scientific visualization. IEEE
Computer Graphics and Applications, 9(4):30-42, 1989.

[30] J. J. van Wijk. The value of visualization. Tn Proceedings o f IEEE
Visualization, pages 79-86, 2005.

[31] M. Zloof. Query-by-example: a data base language. IBM Systems Journal,
16(4):324-343, 1977.

http://www.vtk.org
http://www.itk.org
http://www.cs.princeton.edu/gfx/proj/trimesh2/
http://www.research.ibm.com/dx
http://teem.sourceforge.net
http://www.paraview.org
http://www.amiravis.com
http://twiki.ipaw.info/bin/view/Chaiienge

