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Abstract

We propose a novel technique fo r  modeling and verify­
ing timed circuits based on the notion o f  generalized rela­
tive timing. Generalized relative timing constraints can ex­
press not just a relative ordering between events, but also 
some form s o f  metric timing constraints. Circuits modeled 
using generalized relative timing constraints are formally 
encoded as timed automata. Novel, fu lly  symbolic verifica­
tion algorithms fo r  timed automata are then used to ei­
ther verify a temporal logic property or to check confor­
mance against an untimed specification. The combination 
o f our new modeling technique with fu lly  symbolic verifica­
tion methods enables us to verify larger circuits than has 
been possible with other approaches. We present case stud­
ies to demonstrate our approach, including a self-timed cir­
cuit used in the integer unit o f  the Intel® Pentium® 4 pro­
cessor.

1. Introduction

Timing assumptions are commonly used in the de­
sign of both asynchronous and synchronous circuits in 
order to improve performance. Examples include the 
GasP circuits [30], the Global STP circuit in the Intel® 
Pentium®4 processor [12], and the RAPPID instruc­
tion decoder [29]. However, the use of timing assumptions 
comes at an added verification cost: The circuit behav­
ior must be verified under these constraints, and further­
more, the constraints must themselves be verified pre- and 
post-layout.

A promising recent approach to this verification problem is 
to use a design methodology based on relative timing [28]. 
In the relative timing (RT) paradigm, timing assumptions 
are made explicit, by adding to an untimed design con­
straints on the relative ordering of signal transitions. In con­
trast, other methods use implicit timing assumptions, where 
the timing assumptions are either implicit in a design style 
(such as Burst-Mode techniques, e.g. [22]) or imposed at 
the gate-level in the circuit model (such as metric timed cir­
cuit design [19]). Using the RT paradigm, verification pro­
ceeds in two steps:

1. Checking correctness under timing constraints: RT 
constraints are identified and the correct operation of 
the circuit is verified under those constraints. Typi­
cally, one either checks that the implemented circuit

I  only exhibits behaviors of a specification S , or that 
it satisfies a specific property tp formulated in a suit­
able temporal logic.

2. Verifying that the circuit obeys timing constraints: The 
identified RT constraints are themselves verified us­
ing standard simulation or static timing analysis tech­
niques. The constraints can be verified pre-layout to 
ensure that they have sufficient margin based on ex­
pected design parameters. The constraints also must be 
validated post-layout with extracted data to ensure that 
place and route, sizing, and buffer insertion have not 
skewed the delays beyond acceptable values.

The RT approach of explicitly stating timing constraints has 
the advantage that it applies to many asynchronous design 
styles [28]. It supports a design philosophy of adding timing 
constraints incrementally and of giving the designer flex­
ibility in using timing constraints. Also, unlike gate-level 
metric timing, it does not rely on conservatively set min- 
max bounds on gate delays.

However, current RT-based verification techniques 
(e.g., [24, 13]) fall short in three respects. First, not all 
timing constraints can be expressed as the relative or­
dering of signal transitions. Secondly, current verifica­
tion tools are yet to scale up to relatively large circuits and 
achieve the success obtained by symbolic methods for un­
timed systems (e.g., [5]). Finally, previous work on relative 
timing-based verification [24, 13] does not satisfacto­
rily address the problem of verifying that the circuit obeys 
the constraints.

In this paper, we address these shortcomings by making the 
following novel contributions:

•  A generalized notion o f  relative timing: We introduce 
the concept of a generalized relative timing (GRT) 
constraint, one that specifies a relative ordering not 
just between events, but between the time intervals 
between pairs of events. This generalization adds the 
capability to model some metric timing information 
which is formally modeled using real-valued clock 
variables. The resulting circuit model, in general, is a 
timed automaton. However, since metric timing con­
straints are typically far fewer than non-metric GRT 
constraints, we employ relatively few clock variables.

•  Application o f  fu lly  symbolic verification methods: We 
use new fully symbolic verification techniques based
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on Boolean encoding methods [26] to verify the result­
ing timed automaton. The term fully symbolic means 
that the verifier represents both timed and untimed 
parts o f the state space in a unified, symbolic repre­
sentation. Along with the modeling methodology de­
scribed above, we can verify circuits that are signifi­
cantly larger than those verifiable with other methods. 
As an example we have efficiently analyzed the Global 
STP circuit [12], finding an error in the published cir­
cuit, and then successfully verifying a fixed version.

Related work. Several techniques have been proposed in 
the past 15 years to model timing constraints in circuit de­
sign. A common approach is to specify upper and lower 
bounds on the delay between when a transition is enabled 
and when it fires. Formalisms such as timed transition 
systems [10], timed Petri nets [25] and timed event and 
event/level structures [19, 4, 17] are used for this purpose, 
and the constraints are referred to as gate-level metric tim­
ing constraints. This is an intuitive model, but since the tim­
ing information is provided at the gate-level, verification 
tools based on this model are restricted to relatively small 
circuits. Even with the use of partial order reduction meth­
ods (e.g., [4, 17]), the size of the untimed state space still 
presents a performance bottleneck. Furthermore, designers 
must be relatively conservative on how they set the bounds, 
since these can rely on post-layout information.

Another formalism for modeling timed systems is that of 
timed automata [1], which is more expressive than timed 
transition systems [2], in that it can model “more global” 
timing constraints. Maler and Pnueli [14] model asyn­
chronous circuits using timed automata, but their model 
is also at the gate-level, requiring one clock variable 
per gate. Thus, it suffers from the same scaling prob­
lems as the afore-mentioned metric timing methods. Our 
work also uses timed automata as the modeling formal­
ism, but in an entirely different way: We model timing 
constraints at a higher level of abstraction, and intro­
duce clock variables only where necessary.

The observation that enables us to selectively use clock 
variables is that most timing constraints are on pairs of 
events that have a common start event, i.e., a “point-of- 
divergence”. A similar observation was made by Negulescu 
and Peeters [20, 21], who present the notion of a chain 
constraint, which specifies that one sequence of transitions 
must occur before another with both sequences sharing a 
common prefix. A “point-of-divergence” constraint is more 
restrictive than a chain constraint in a logical sense (it spec­
ifies a relative ordering for all intermediate sequences of 
transitions between the start and end events), but for the 
same reason, it is more compact to specify. Moreover, we 
can model more general kinds of constraints, as we describe 
in Section 2.

There has been prior work on RT-based verification, with 
a focus on automatically generating constraints. Pena et 
al. [24] present an approach based on the notion of lazy 
transition systems. Their approach automatically and iter­

atively generates RT constraints to rule out spurious coun­
terexamples; however, the process of adding RT constraints 
relies on knowing min-max bounds on gate delays. Kim et 
al. [13] present a verification methodology based on a dif­
ferent technique of automatically generating RT constraints, 
but do not address the problem of verifying that the circuit 
obeys the constraints. While we do not automatically gen­
erate timing constraints, our work targets a more general 
class of timing constraints, and provides ways of verifying 
that the constraints hold for the circuit.

Clariso and Cortadella [6] present a gate-level modeling ap­
proach that represents gate delays by symbols, rather than 
by constant bounds. Thus, this model is more expressive 
than metric timing. However, the verification problem is 
even harder than for timed transition systems, and the ap­
proach is restricted to small circuits.

Another contribution of our paper is in the application of 
novel fully symbolic verification techniques to timed cir­
cuits. These techniques are based on our earlier paper on 
using Boolean methods in quantifier elimination in quanti­
fied separation logic (QSL) [26]; we refer the reader to that 
paper for a detailed comparison of model checking meth­
ods for timed automata. In the context of asynchronous cir­
cuits, there has been significant work on model checking al­
gorithms; see, for example, the work by Myers, Yoneda, et 
al.(e.g., [19, 4, 34, 17]). The main difference with our work 
is that these methods are symbolic in the real-valued part, 
but explicit-state in the Boolean part; hence, in spite of in­
corporating partial-order reduction, large circuits are often 
outside their capacity. We also extend the ideas of our pre­
vious paper to perform fully symbolic simulation checking. 
Simulation checking has been explored earlier in the con­
text of timed systems, for example, by Tasiran et al. [32],

There has been significant work on methods that use com­
positional reasoning or abstraction to achieve better scala­
bility (e.g., [35]). Our focus, in this paper, is on demonstrat­
ing scalability without using compositional reasoning or ab­
straction; however, nothing precludes using the techniques 
presented herein along with such methods.

Paper outline. We introduce the idea of generalized relative 
timing in Section 2. In Section 3, we describe how timed cir­
cuits are formalized as timed automata, and in Section 4, we 
outline fully symbolic verification algorithms for timed au­
tomata. Case studies are presented in Section 5.

2. Modeling Timed Circuits

A timed circuit is a triple (V .'R -.T ), where V is a 
set {vi. v-2, . . .  , v n} of circuit signals, R. is a set 
{ r i . r 2. . . . .  rm } of rules, and T  is a set { n . t -2 . . . .  . r p} 
of timing constraints. The set of initial values of sig­
nals in V is specified as a Boolean formula Jy.

The circuit signals, which are the state variables of the sys­
tem, are comprised of inputs, outputs, and intermediate sig­
nals. A transition (also referred to as event) is a change in 
logic level of a signal. Transition V ;t corresponds to the
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transition of v, from 0 to 1, and Vj-J- to the transition from
1 to 0. We will use the symbol e, to refer to either transi­
tion for signal v,.

The untimed circuit behavior is defined by the set of rules 
'R, which comprises m  = 2n  mles, one for each signal tran­
sition.1 The 2 mles for the ith signal v, are written as

£vft Vi f  and ^  w, 4-

where £Ci is a Boolean formula over V indicating the en­
abling condition for transition e; to fire.

Although we have only introduced two events per sig­
nal (corresponding to up and down transitions), it would 
be straightforward to add finitely-many instances of each 
event. That is, for a given event we can keep track of 
not only each instance of but also every second, third, 
..., k ih instances of e, for a constant k, with the use of ad­
ditional state bits to keep track of a “count.” However, we 
have rarely needed to track more than one instance of each 
event.

We will assume an inertial gate model (but without bounds 
on gate delays). Thus, it is allowed for a transition that was 
enabled to become disabled without having fired, as long 
as the circuit satisfies its specification. In the absence of an 
explicit timing constraint involving transition the time 
taken for e, to fire after being enabled can be any value in 
[0. oc); i.e., rules, by themselves, are purely untimed.

2.1. Generalized Relative Timing
The novel aspect of how we model circuits is in the formula­
tion of generalized relative timing constraints, which com­
bine relative timing with a capability to incorporate some 
metric timing information.

Let A (e i ,e j)  denote the time interval between an occur­
rence of Rj and the occurrence of e; immediately preceding 
it.

The following definition formalizes the notion of general­
ized relative timing (GRT):

Definition 1 Let be four transitions such that
Rj ^  Rk- Then, a generalized relative timing constraint on 
Ri, R'i, Rj, Rk is o f  the form:
For all occurrences of transitions Rj and e*,

M ,c ,.c j)  <  A (e - ,Rk ) + d 

where d is a rational constant.
It is sometimes useful to use a non-strict inequality (< ) in­
stead of the strict inequality used above, or to drop one of 
the A(-. •) terms in the inequality so as to impose an up­
per or lower bound on the time interval between events.

Point-of-divergence constraint. An extremely common 
sub-class of GRT constraints are those such that e; =  e ', 
d = 0, and the same occurrence of Ri immediately precedes

all occurrences of both Rj and e*. In this case, the timing 
constraint specifies that measuring time from the point Ri 
occurs, Rj must always occur before e*. We will refer to this 
special case as a point-of-divergence (POD) constraint. (The 
name comes from the divergence in two paths starting from 
transition Rj.) We write a POD constraint as Rj —¥ Rj < Ru- 
Typically, Rj and e* causally depend on However, note 

that this need not be the case! By the definition of A ( r , . R j), 
the point-of-divergence in the constraint is simply the oc­
currence of Ri that is closest in time to Rj and e*, which 
need not have caused either of them.
Note also that the concept of a POD constraints is essen­

tially the same as that of the original RT constraint, since, 
in order to implement a relative ordering between events, 
one would have to trace them back to a point-of-divergence; 
hence the name generalized relative timing.

Metric timing constraints. The presence of d  in the defi­
nition allows us to express a limited form of metric timing 
constraints. In particular, we can express constraints of the 
form d\ < M e ,.<■;} < d-2- Note, however, that we cannot 
directly specify the min-max timing assumptions used in 
timed transition systems [10] and related formalisms, since 
that would require constraining the delay between when a 
transition is enabled and when it fires.2

Compound timing constraints. In some cases, such as the 
Global STP circuit that is our primary case study, we have 
observed the need for compound timing constraints formed 
as an x o r  of two (simple) timing constraints. Such a con­
straint is written as r* x o r  Tj. We have needed such com­
pound constraints to reason about relative ordering between 
instances of events from different cycles of circuit opera­
tion. Further discussion of such constraints is deferred to 
the case study in Section 5.1.

In all our case studies to date, we have found the class of 
generalized relative timing constraints to be sufficient. In 
fact, most constraints tend to be simple (i.e., not compound) 
POD constraints. Metric timing constraints are used only 
when there is explicit use of delay values in the design.

2.1.1. Examples. We present two examples to illustrate 
our methodology for modeling timing constraints.

Figure 1. Im plem entation o f a C-element

First, consider the implementation of a C-element using 
three AND gates and an OR gate, as shown in Figure 1. a 
and b denote the input signals, and c is the output. It is easy 
to see that in order to work correctly, it is sufficient for the

1 Notice that this is similar to the language of production rales [15].
2 However, note that the formalism that we use, viz. timed automata, is 

general enough to express such constraints [2J.
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circuit in Figure 1 to respect the following two fundamen­
tal mode constraints, formulated here as POD constraints:
c f  —̂ a c f  -K b 4- and  ̂ be*!" -K

While POD constraints suffice for the preceding example, in 
general, we might need a more expressive timing constraint. 
Figure 2 depicts a simple buffer stage element generated 
from the CASH compiler that compiles ANSI-C. programs 
into asynchronous circuits [33]. For correct operation, this 
circuit relies on two timing assumptions: data transfers be­
tween stages use a bundled data protocol, and a stage incor­
porates a matched delay element.

req_in 1—o £

v

data in aux

Figure 2. Buffer stage from  CASH com pile r

The matched delay can be formalized with the following 
two timing assumptions r f ASU and r f ASU:

A ( d a t a _ i n f .  d a ta _ in _ a u x f )  <  A ( e n a b l e f .  t r i g g e r f )  
A (d a ta _ in 4 - , d a ta_ in _ au x 4 -) <  A ( e n a b l e f .  t r i g g e r f )

(rfASH)
(t?ash)

To ensure that the stage respects the bundled data protocol, 
we additionally need to impose two POD constraints: 
e n a b le f  —̂ d a ta _ o u tf  -< re q _ o u tf , and 
e n a b le f  —̂ d a ta .o u t j .  -< re q _ o u tf .

Note that the matched delay assumptions r f ASU and r f ASU of 
a stage can be reformulated as POD constraints by tracing 
back to the e n a b le  signal of the previous stage. However, 
this breaks modularity, since the timing constraints involv­
ing signals of a module reference internal signals of another 
module. In general, we have found that while it is often pos­
sible to reformulate metric timing constraints as POD con­
straints, it is at the cost of modularity.

2.2. Verifying Timing Constraints
The verification methods presented in this paper prove that 
the timed circuit design is correct given the set of timing 
constraints T . However, it does not prove that the con­
straints actually hold given the true delays in the design. 
Timing constraints can be constructed that do not hold in 
a design, as will be shown later in Section 5.1. Therefore, 
these must be proven outside the symbolic verification en­
vironment. We briefly describe this process to show a con­
sistent design flow exists based on this tool.

Given a POD constraint e, —̂ Rj ■< e* we must prove that 
any sequence of events from e; to Rj always occurs before

the events from e; to e*. This is accomplished by tracing 
and timing the maximum and minimum delay paths from 
the POD to the end points, and comparing the results. We 
compute the maximum delay of the left path (e, Rj) and 
the minimum delay for the right path (e, e*). This en­
sures that no combination of delays will cause e* to occur 
before Rj. The same conditions exist for the general form 
of constraints M e ,.<■;} < <•/.) +  d  where the trac­
ing may occur to different starting points, and a constant 
delay is added when the path delays are compared.

We illustrate static timing validation using the circuit in Fig­
ure 1. There are two POD constraints, the first of which 
is c f  a c f  -< bj-. Validating this constraint requires 
evaluation of the max-delay path from c f  to a c f .  This 
is simply the maximum rise delay through the gate cor­
responding to ac since signal a  is already asserted. Simi­
larly, the minimum delay path from c f  to bj., which de­
pends on how the gate is connected to its environment, is 
calculated and compared with the maximum rising delay of 
the gate ac to validate this constraint. The second constraint 
c f  —̂ b c f  -< a  J. is similarly validated.

The capability of automatically tracing and timing maxi­
mum and minimum delay paths, and comparing the results 
is supported in most commercial timing tools such as Prime­
Time [31]. Therefore, it is possible to automatically vali­
date all the constraints in T . However, some complications 
arise in automatically tracing signals through sequential el­
ements (such as the C-element of Figure 1), since static 
tools may not correctly cut feedbacks that exist solely to re­
tain state. Fully automatic translation and validation of GRT 
constraints using static timing tools is left to future work.

The timing constraints used in this paper were identified 
manually, many with the assistance of a relative-timing en­
hanced verification engine [27], Automatic generation of 
GRT constraints is left to future work.

3. From Circuits to Timed Automata

We now describe how we translate a timed circuit (V. 'R. T )  
into a timed automaton. The technical details in Section 4 
will be based on the timed automaton model.

3.1. Preliminaries
A timed automaton [1] is a generalization of a finite au­
tomaton with a set of real-valued clock variables. A state of 
a timed automaton is a concatenation of a vector of Boolean 
values, corresponding to finite-state variables, and a vector 
of real values, corresponding to real-valued clock variables.
A set of states of a timed automaton can be represented 
symbolically as a formula in a quantifier-free fragment of 
first-order logic called separation logic (SL), also known 
as difference logic. This formula is the characteristic func­
tion o f the set of states. A formula (j) in separation logic 
is a Boolean combination of Boolean variables and sep­
aration predicates (also known as difference-bound con­
straints) involving real-valued variables, as given by the fol-
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4> ::= t ru e  | false | v | -><f> \ <f>i A fa  \ x i > x -2 + d \ x i > x -2 + d

We use a special variable x Q to denote the constant 0; this 
allows us to express bounds of the form x  > d. We de­
note Boolean variables by v, v i , v 2,- ■ ■, real variables by 
x , X1.X 2, • • •, and SL formulas by <j>, f a , fa , ■ ■ • • Note that 
Boolean operators like V and can be constructed from 
-1 and A.  Similarly, the relations >  and >  suffice to repre­
sent equalities and other inequalities. Deciding the satisfia­
bility of a SL formula is NP-complete [11].

For ease of presentation, we will use a definition of timed 
automata that is intuitive in our context. This definition is 
equivalent to the guarded-command real-time program no­
tation used by Henzinger et al. [ I I ] .3

D efinition 2 A timed automaton is a quintuple 
A  = {V ,X ,C J,1 A , fa )  where:

V is a set o f Boolean state variables;

X  is a set o f dock variables taking values in E - ° ;

Q is a set o f  guarded commands o f the form ip .4, 
where ip is a guard condition (a SL formula over V and 
X ), and .4 is a set o f  assignments, i.e., a set o f tran­
sitions o f Boolean state variables and resets o f  clock 
variables to 0;

I 4 is a SL formula over V and X  expressing an invariant 
condition on all states o f  A ; and

fa  is a SL formula over V and X  characterizing the set o f  
initial states.

The set of guarded commands Q represents the transition re­
lation of the automaton. The semantics of a guarded com­
mand 'if-' = >  -4 is as follows. If ip is true in a state <7 , then 
the guarded command is enabled in that state. Any guarded 
command that is enabled in a state a  can execute in <7 . The 
time a system can spend in a state can be any non-negative 
amount allowed by the invariant I 4 .

Note that timed automata differ from models commonly 
used in the asynchronous circuits literature, such as timed 
transition systems [10] or timed Petri nets [25], in that the 
time interval between an arbitrary pair of events can be di­
rectly expressed. This expressiveness is key for modeling 
the class of timing constraints described in Section 2.1.

3.2. Translation
The translation of a timed circuit (V ,'R ,T )  to a timed au­
tomaton A  is performed in three steps.

In itia liza tion . The set of Boolean state variables of A  is ini­
tialized to be the set of signals V, while the set of clock vari­
ables X  is initialized to 0.

lowing grammar:

3 The only difference with the standard definition given by Alur and 
Dill [1] is that our definition has no notion of accepting states.

Each rule of the timed circuit gets translated to a corre­
sponding guarded command of the timed automaton; thus, 
there is exactly one guarded command for each transition r . 

For transition e with corresponding rule £c e, we initial­
ize its guarded command to be £c = e.

The invariant I 4 is initialized to be t r u e ,  and fa  is set to 
be Jy (the set of initial signal values).

Adding auxiliary variables. For each timing constraint, we 
add an additional Boolean or clock variable to store timing 
information.

Let Tj be the ith timing constraint.

If Tj is a POD constraint, we only introduce a fresh Boolean 
state variable bj into V.

Suppose Tj is not a POD constraint, and is of the form 
M e ,■<■;} < A(<-'. <•/.) +  d. Then we not only introduce 
a fresh Boolean state variable bj into V, but also add two 
clock variables x CUCj and x (:>, ^ . k  to X .

Encoding timing constraints. We encode tim­
ing constraints in sequence, running through the set 
T  = { t i , t - 2, ■ ■ ■ ,TP}. As we encounter timing con­
straints containing a transition e, we update the guarded 
command corresponding to it.

Suppose we are encoding timing constraint n ,  which men­
tions transition e. Let the current form of the guarded com­
mand 7  for e be ip .4.

How we modify 7  depends on whether the timing constraint 
is a POD constraint or not, and on the role of e in the con­
straint, as elaborated below:

•  POD constraint: Suppose the constraint is of the form 
dj Rj < Ru- There are three cases, with 7  being 
modified differently in each case:

Case e = dj-. 7  :=  ip .4', 
where .4' =  .4 U f} .

Case e  =  R f  7  : =  ip = = > * A ', 
where .4' =  .4 U {btA }-

Case r = Rk' 7  :=  ip' ==>* -4, 
where ip' = ip A -1 bL.

The intuition is that we take the product of the timed 
automaton (constructed so far) with a two-state mon­
itor automaton as shown in Figure 3(a) to enforce the 
ordering specified by the POD constraint. The variable 
b), encodes the states of this automaton. Transition e* 
can only occur in the state labeled i.e., the state in 
which hi is fa lse .

•  Non-POD constraint: Suppose the constraint is of the 
form A ( R j , R j )  <  A ( c ' . <■/ . } +  d. To encode this con­
straint, we introduce a non-negative constant d' such 
that A (( ,.(  ,) <  d '+  (Iand d' <  The value 
of d,' is usually known at design time since a non-POD 
constraint arises only in design styles that make use 
of some form of metric timing, such the matched de­
lay assumption used in the circuit in Figure 2.

We have four cases to consider:
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(a) POD (b) Non-POD

F ig u re  3. M onitor a u to m a ta  fo r tim in g

Case a =  e,:
:= 0 } .

where .4' =  .4 U { x c 
7  :=  ip =Case e =  Rj\

7  :=  ip =>■ -4' 
where .4' =  .4 U {bL f .  x Ci 

Case r = p\ :  7  :=  ip .4',

== »!•
=► -4', 

where .4' =  .4 U { h i } .
Case r = Rk- 7  :=  '<P' ==^ -4, 

where ip' = ip A . r , , >  d1.
In addition, we update the invariant I 4 of the timed 
automaton by conjoining the current invariant with the 
SL formula bL .r, :J <  d +  d '.

The intuition behind this translation is as follows. 
First, notice that the Boolean variable bL encodes, as 
before, the state of a monitor automaton, depicted in 
Figure 3(b). However, in this case, when bL is t r u e ,  
x Ci,Cj cannot progress beyond d + d', as enforced by 
the invariant 1 ^ .  Since the clock variable . r , i s  re­
set when Ri fires, this forces Rj to occur within d + d' 
time units of e;. Secondly, clock variable , is re­
set when e' fires, and the augmented guard for e* en­
sures that Rk can only fire d' time units after e '. The 
above two mechanisms, in conjunction, ensure that the 
timing constraint n  is enforced.

The extension of the translation to handle compound timing 
constraints is straightforward; a XOR of two constraints can 
be encoded by making a non-deterministic choice to either 
monitor one constraint or the other. We omit the details.

3.3. Example
Consider the circuit in Figure 2. The rule corresponding to 
the transition t r i g g e r f  is

- " t r ig g e r  A e n a b le  t r i g g e r f

Timing constraints r f ASH and ASH both mention the tran­
sition t r i g g e r f .

Following the translation scheme described in this sec­
tion, we introduce 3 clock variables .'t'enabief,triggerf,
•^data.itff ,data_in_auxf, and -Idata_inv,data_in_auxv ■ The fi­
lial guarded command for t r i g g e r f  is

-■ triggerA enableA (.T enabi«r,triggerf >  d') =>■ t r i g g e r f

where d' is the delay corresponding to the delay element in 
the figure.
The invariant 2 .4  is the Boolean formula

{bl =?> •̂ dsts_inl\dsts_in_suxV d )A(&2 =*> -̂ 'dsts_inl. ,dsts_in_sui:l. ^  )

b 1 and b-2 are set by d a ta _ in f  and d a ta _ in f  respectively, 
and are reset by d a ta _ in _ a u x f and d a ta _ in _ a u x f respec­
tively. Thus, our encoding simply formalizes the constraint 
that the delay through the buffer is less than that of the de­
lay element.

4. Fully Symbolic Verification Techniques

We now outline the algorithms for fully symbolic verifica­
tion of timed automata. Since the algorithms in themselves 
are not the main contribution of this paper, we omit back­
ground material and details of the algorithms; these can be 
found in [7, 26],

4.1. Quantified Separation Logic

There are two key operations in fully symbolic verification 
of timed automata, both of which are expressible in quan­
tified separation logic (QSL), the extension of separation 
logic with quantifiers. The first operation is to decide the 
satisfiability of SL formulas. The second (and harder) oper­
ation is to eliminate quantifiers from a QSL formula.

Formally, a QSL formula u  is generated by the following 
grammar: u  ::= <j> \ -w  | wi A u-> \ 3x.u \ 3v.u

In previous work [26], we show how to perform both oper­
ations using Boolean methods. In particular, we transform 
the problem of eliminating quantifiers on real-valued clock 
variables to one of eliminating quantifiers on Boolean vari­
ables. Given a QSL formula u  with quantifiers over real­
valued variables, we transform it to an equivalent QSL for­
mula uJbooi that has quantifiers only over Boolean variables. 
These quantifiers can then be eliminated using standard 
Boolean techniques (e.g., [5, 16]) that are based on Binary 
Decision Diagrams (BDDs) or Boolean satisfiability (SAT) 
solvers. Moreover, for a special class of QSL formulas oc­
curring in model checking of timed automata, the transfor­
mation can be greatly optimized. The resulting quantifier 
elimination technique can yield improvements over other 
methods [26],

For brevity, we omit the details of how we eliminate quanti­
fiers over clock variables. We illustrate the main ideas using 
the following example.

Let uja =  3 x a.<j> where <j) =  x a < x Q A x.\ >  x a A x-2 < 
x a A 3, and 3  is a complicated Boolean formula represent­
ing many circuit states (evaluations of circuit signals). Our 
goal is to eliminate variable x a to obtain a SL formula that 
is logically equivalent to u a.

The first step is to introduce Boolean variables for each sep­
aration predicate in u;Q that involves x a. Let b fjc represent 
the predicate Xi > Xj + c. Replacing predicates with their
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corresponding Boolean variables, we obtain the Boolean 
encoding <j>abool = A A b fg  A 3.

The second step is to construct a SL formula that represents 
the arithmetic information lost in the above Boolean encod­
ing. This formula, denoted by <̂“ons, is the conjunction of 
the following two SL formulas:

1. f  A .To >  t 2
2. b r ’° A =>■ Ti >  t 2

Finally, we construct the SL

°0,a ■
’>,0 A <j>\bool J

formula u ^o / =  
The only quantified

variables in this formula are Boolean. The remaining sepa­
ration predicates can now be replaced with dummy Boolean 
variables (retaining a mapping of predicates to dummy vari­
ables), and the resulting quantified Boolean formula (QBF) 
can be simplified using Boolean techniques (e.g., BDDs) to 
a Boolean formula. Replacing the dummy variables, we ob­
tain the final result: To >  x -2 A Xi > x,2 A 3.

The advantage of this approach is apparent when 3  corre­
sponds to a huge number of circuit states. An explicit-state 
technique would need to enumerate every such circuit state 
and perform the quantifier elimination for each.

4.2. Fully Symbolic Model Checking

The afore-mentioned Boolean methods for quantifier elim­
ination can be used with a model checking algorithm given 
by Henzinger et al. [11] for checking if a timed automa­
ton satisfies a property specified in the timed //-calculus 
(in which any property in Timed Computation Tree Logic, 
TCTL, can be expressed). Here we only describe, in brief, 
the algorithm for a simple but very useful case, that of com­
puting the set of reachable states of the timed automaton 
(checking safety properties). The general algorithm can be 
found inf26].

Consider a timed automaton A  = (V. X , Q ,< j> Q). The 
following algorithm computes a SL formula <Arach repre­
senting the set of reachable states of A .

L ^ n c  it: ■=  ^'}0  ■

2. Do
(&) fiold : =  ^ m ie

(b) (j>' := post|jme(<?W) {Let time e lapse}
(c) (j>" := postg(cj)') {Fire a  transition}
(d) <j)ncw :=  <j)old v  <t>" {Union of sets}

W hile (4>oid #  4>'ncw) {C heck term ination}

3. (breach :=

The symbolic “next-state” operators post|jme and postg are 
defined as follows:

post(ime(<r/>) =  3d'{<5 >  0 A (j) — 6 A Ve[0 < e < 6 =?• — e]}
(1)

where <j> — 6 denotes the formula obtained by subtract­
ing 6 from all clock variables occurring in <f>, computed as

(j>[xi—6/ x i ,  1 <  i < n], w h e r e t i . t 2. . . .  . t „  aretheclock 
variables in ^  (and similarly for I 4 — e).

Intuitively, 6 is the time elapsed since the last transition 
fired. The inner quantified formula in (1) above ensures that 
while allowing time to elapse, the values of clock variables 
must always respect the invariant I 4 . The formula obtained 
after eliminating quantifiers from postume(<̂ ) represents all 
states reachable from <j) by allowing some duration of time 
to elapse within the constraints imposed by I 4 .

The operation postg, when applied to a set of states <j>, re­
turns the set of states reached from (j) by firing some transi­
tion. Formally,

postg(<£)= \ J  ((j>Aip)[A]
(v=^A)eg

(2)

where <r/>[̂ 4] denotes the set of states reached from <j) after 
performing the signal transitions and clock resets in .4. For 
instance, if .4 =  Vjf, then <r/>[̂ 4] =  (3Vi.<j>) A v,. We omit 
the details for brevity.

Quantifier elimination is required in computing post(jme and 
postg. Checking satisfiability of SL formulas is required to 
check the termination condition. It is also needed for check­
ing if a error state is reachable: If <j>bad characterizes the set 
of error states, then an error state is reachable iff <?Wch A <j)bad 
is satisfiable.

4.3. Fully Symbolic Simulation Checking

Suppose we want to check if a circuit implementation 2 , 
modeled as a timed automaton, conforms to a specification 
S ,  also given as a timed automaton. Since language con­
tainment is undecidable for timed automata in general [1], 
we use the formal notion of simulation [18] as our notion of 
conformance. Furthermore, for ease of presentation, we will 
restrict our specifications to be untimed finite automata. For 
all the case studies presented in this paper, considering un­
timed finite-state specifications has sufficed.

Let S j  and S 5  be the sets of states of 1  and S  respectively. 
Let T { ( ) be t r u e  iff states ax  € S j  and a s  € S,s 
agree on the values of variables common to both X  and S . A 
binary relation R  C S j  x S 5  is a simulation relation iff for 
all ax  and ag  such that R (a x ■ a g ) holds, both the following 
conditions hold:

1. T { a x ,a s ) .
2. For every successor state a'x  of <tj, either there ex­

ists some successor <7^ of ag  such that R^a'j.a 'g) or 
R ia 'j-.a s).

This is a standard definition of simulation that allows the 
specification to “stutter”.

If for every initial state a x }o o f I  there is a corresponding 
initial state <750 of S  such that R (a x fi. o\s,oh then we say 
that 1  is simulated by S  and write 1  < S .

Fully symbolic simulation checking is done in two steps:

1. Compute simulation relation: We compute a symbolic 
representation of the simulation relation, starting with
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(a) Unfooted and footed (bottom) 
domino inverters (e) Overall top-level circuit

F ig u re  4. G lobal ST P c ircu it

an over-approximation and refining it iteratively. The 
symbolic representation is a SL formula <f>n over the 
Boolean variables Vr and clock variables X x  of X  and 
the Boolean variables Vs of the specification S .  We 
will abuse notation a little here to use (Vr, X x)  and Vs 
interchangeably with ax  and a s  respectively. Thus, we 
will write the symbolic representation as <j>n(ax■ a s) .

We set our initial approximation (fPR to be the for­
mula T { a x ,a s )  that equates the common state vari­
ables of 1  and S  for the reachable states.

Then, we compute the ilh approximation <j>lR , i >  1, 
as follows:

0R  :=  ^ r H v i ^ s ) a  [V a 'j-.T xiax^a 'j)  =>■ 
( ^ ( v ' n v s )  V 3a's :Ts (as ,a's ) A ^ i a ^ a ' g )  )]

Here T j  and Tg denote the transition relations of 1  and
S  respectively; the transition relation of the timed au­
tomaton 1  can be easily derived from the definitions of 
posttjme and postg given in Section 4.2.

This fixpoint computation is guaranteed to termi­
nate, say in AT steps, with the Arlh approximation be­
ing <j>R{cri, as ).

2. Check initial states: Let <j>x,o and (j>s,o denote the set 
of initial states of 1  and S  respectively. By definition, 
we can conclude that 1  < S  iff the following formula 
is valid:

<fe,o(ox) =>■ [3as .<j)s}0(a s)  A <j>n{(Ti,(Ts)\
Both steps have the same key operations as for model 
checking, viz., quantifier elimination in QSL and satisfia­
bility (validity) checking of SL. We perform these using the 
Boolean methods as described in Section 4.1.

5. Case Studies

Our main case study is the Global STP circuit, a self-timed 
circuit used in the integer unit in the Intel® Pentium® 4 pro­

cessor [12]. Other case studies include the GasP FIFO con­
trol circuit [30], STA PL circuits [23], and the STARI cir­
cuit [9],

Experiments reported on here were run on a Linux work­
station with a 2 GHz Pentium®4 processor and 1 GB of 
memory. Our fully symbolic verification tool, called TMV, 
is BDD-based. TMV is written in O ’C.aml except for the 
BDD engine, for which we use the C.UDD package [8].

5.1. Global STP

Figure 4 is a hierarchical depiction of the Globally Reset 
Domino with Self-Terminating Precharge (Global STP) cir­
cuit. The circuit we discuss here is a gate-level depiction 
of the simplest form of the published circuit [12], with N- 
logic blocks replaced by wires, and static blocks replaced by 
inverters; our verification methods apply to the more gen­
eral circuits as well. The top-level circuit is shown in Fig­
ure 4(e), with the input ck being a 4-GHz clock and the out­
put being a delayed version of the same clock. In the be­
ginning of the clock cycle, the last footed domino gate is 
being reset, while the first three STP stages go through an 
evaluation. After the precharge of the last domino gate has 
been turned off, the evaluate signal propagates to the out­
put, where it is held until the next cycle. Interestingly, note 
that the three STP stages are reset in the same cycle in which 
they evaluate. The specification of this circuit, given purely 
in terms of its input signal ck and output signal o u t, is de­
picted as a state graph in Figure 5.

This circuit relies on a number of timing constraints to en­
sure correct operation. We were able to formulate all these 
timing constraints either as POD constraints or as a X O R  of
2 POD constraints. We discuss some of the more interest­
ing timing constraints here.

Consider the i lh STP stage, for all i £ {1 ,2 ,3}  (refer to Fig­
ure 4(b)). Short circuit current in the domino inverter must
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Finally, consider the domino inverter in the LP stage, de­
picted in Figure 4(d). To avoid a short-circuit in this inverter, 
the following constraint is necessary:

F ig u re  5. G lobal ST P sp e c if ic a tio n

be avoided by ensuring that the pullup and pulldown tran­
sistors are not both conducting. This is avoided with the fol­
lowing POD constraint that does not allow the pullup to as­
sert until after the pulldown has been turned off. This con­
straint states that for stage STP1, the delay of a clock phase 
must be shorter than the delay through the EES1 block:

( r f f p)

( r f TP)

To prevent incorrect overlap of the reset of the domino 
gate in each STP stage we need a constraint stat­
ing that S T P i.re s f  triggered by the previous rising 
edge of ck must occur before STPi.kpf triggered by 
the current rising edge of ck. This is a multi-cycle 
constraint, which when written in terms of a se­
quence of transitions, is ck fS T P i.restS T P i.res4 - < 
ck fckfckfS T P i.d infS T P i.do* .|.S T P i.kpf. We can 
rephrase this multi-cycle constraint as a compound tim­
ing constraint XOR r ^ TP, where and r,“ TP are 
two POD constraints given below:

c k f  STPi.resJ. -< STPi.kpf ( r £ f p)
c k f  S T P i.re s f  -< c k f  ( r ^ l?)

To see why this is so, let us perform a case analysis. The 
first case is when the second instance of transition c k f  oc­
curs before S T P i.re sf. In this case, the same instance of 
c k f  precedes both STPi.kpf and S T P i.re sf, and hence we 
can simply write it as the POD constraint r4 f ?. However, if 
the second instance of c k f  does not precede S T P i.re sf, it 
simply means that S T P i.re s f  occurs before c k f  fires again;
i.e., T5®tp holds, and so does the multi-cycle constraint.

( r f TP)

The pulse width of the outputs in the EES stage of Fig­
ure 4(c) are determined by the delay through the output 
buffers and the self-resetting loop. The following constrains 
the minimum pulse width on EES2.r2:

E E S 2 .r2 * f E E S 2 .r2 f  -< EES2.r2*J. ( t2gstp)

Next, consider the footed domino inverter in Figure 4(e).
The reset phase must terminate before the data is removed 
to guarantee the domino gate correctly latches data. Trac­
ing the paths from the clock, we can express this in terms 
of the following ordering between two sequences of tran­
sitions: ckfEESl.rlfLP.pch4-LP.pch*fLP.q4-LP.pchf -< 
ckfST Pl.doutfSTP2.doutfSTP3.do*4.STP3.kpfSTP3.resi.|. 
STP3.do*fSTP3.dout4- This is enforced with the follow­
ing constraint:

In all, we needed 33 timing constraints, as shown in Table 1 
(we count a compound timing constraint as a single con­
straint). We were able to prove that under these timing con­
straints, the circuit conforms to its specification. We also 
model checked the circuit to verify the absence of short- 
circuits in all the domino inverters. Run-times were within 
a few minutes (see Table 1) and memory consumption was 
less than 150 MB.

Next, we turned to verifying all the timing constraints, suc­
cessfully verifying all but one: Tq'st? . Consider this con­
straint. It takes only 5 gate delays going from c k f  to 
E E S l.r lf ,  while it takes 7 going from c k f  to LP.pch*4~ 
This means that the circuit, as described in the paper [12], 
has a short-circuit error.

To eliminate this error, we replaced the unfooted domino in­
verter in the LP stage by a footed domino inverter. With this 
replacement, constraint rg,STP becomes unnecessary. Cor­
rectness of the modified circuit was verified without using 
this constraint in about 4 minutes.

5.2. Other Circuits

Among the other circuits we verified, we briefly report here 
on the modeling of two: the GasP control circuit [30] and 
the STAPL left-right buffer circuit [23]. A single stage of

F ig u re  6. G a sP  s ta g e
the GasP control circuit is depicted at the gate-level in Fig­
ure 6 with normally distributed pullup and pulldown col­
lapsed into the unfooted domino inverter. To ensure correct 
operation of this circuit, we needed to specify 4 POD con­
straints for each stage. A sample constraint is

PATH .lof P A T H .rif -< PATH.sf ( r1GASP)

We checked conformance of the circuit in Figure 6 to its 
specification. We also connected 10 stages together in a ring 
with exactly one full stage, and model checked it for ab­
sence of short circuits and to verify that exactly one stage 
was full at any given point o f time. Both verifications com­
pleted within a minute, as shown in Table 1.

The STAPL left-right buffer (see Figure 4.7 in [23]) is dif­
ferent from the other two circuits in that it uses metric tim­
ing constraints. For correct operation, the circuit employs
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two pulse generators with pulse-lengths less than constants 
otrue and o  false respectively, along with two correspond­
ing paths in the circuit that are respectively required to 
take longer than constants (true and (false. and an addi­
tional Constraint that (true ^true and (false ^  f^false- 
These timing constraints naturally lend themselves to being 
modeled as metric constraints with clock variables, with 2 
constraints (4 clock variables) per buffer stage. In addition 
to these constraints, each stage also requires 6 POD con­
straints. We checked conformance of this circuit with the 
specification given by Nystrom and Martin [23] and also 
model checked a ring of 3 buffers (for same properties as 
the GasP circuit); both verifications completed successfully 
within a few minutes.

5.3. Comparison with Other Tools

Table 1 summarizes our experimental results on the 3 cir­
cuits discussed so far.

As mentioned in Section 2, metric constraints can usually be 
reformulated as POD constraints, but at the cost of modular­
ity. Using the STARI circuit [9], we studied the relative per­
formance of TMV for two different ways of modeling con­
straints. (The reader is referred to Greenstreet’s thesis [9] 
for a description of the circuit.) All timing constraints for 
this circuit can be modeled as POD constraints, where the 
POD is the clock that is distributed to both sender and re­
ceiver modules. This breaks modularity, since timing con­
straints for each buffer stage between the sender and the 
receiver require tracing back to the global clock. One can 
also formulate these constraints as metric timing constraints 
specifying that, for each buffer stage, an output data bit and 
ack  must follow an input within a clock phase. In our cir­
cuit model, we abstracted the data-path to only one bit, and 
modeled only one of the two bits making up the dual rail en­
coding. Thus, each stage contributes two Boolean state vari­
ables. The resulting timed automaton has 4 clock variables 
(one per metric constraint) for every two stages.

Circuit 1 V| m Verif. Time (sec.)
POD XOR Metric Conf. MC

Global STP 28 27 6 0 215.14 66.32
GasP-10 60 40 0 0 0.02 26.10
STAPL-3 30 18 0 6 235.61 278.05

T able 1. S u m m a ry  o f e x p e rim e n ta l r e s u lts  
w ith  TMV. | v | is the number of signals, \T\ is the num­
ber of timing constraints with associated break-up into cat­
egories, “Conf.” is the time for conformance (simulation) 
checking, and “MC” is the time for model checking.

We compared the performance of TMV to ATACS [3], which 
is based on metric timing. ATACS uses model checking algo­
rithms that are explicit-state in the Boolean component and 
prune the search space using partial-order reduction meth­
ods.4 In modeling the Global STP (the corrected version) 
and STAPL circuits, we assigned min-max delay ranges to 
all gates so that timing is analogous to counting transitions, 
but for the GasP circuit we had to assign ranges more care­
fully so that all POD constraints were satisfied. For all three 
circuits, ATACS did not finish within an hour, running out of 
memory for the STAPL and Global STP circuits.

Our tool also outperforms the conformance checking tool 
ANALYZB [27] that was enhanced with the capability to 
model relative-timing constraints (but not metric timing). 
For example, for the Global STP circuit, ANALYZB was able 
to check conformance for individual modules (e.g., a single 
STP stage) in just a few seconds, but did not finish within 25 
days for the flat circuit. This illustrates the need for combin­
ing the GRT modeling methodology with a fully symbolic 
verification tool.

For the circuits discussed so far, most timing constraints are 
simple POD constraints, and very few constraints are met­
ric. Hence, we only needed to introduce few clock variables, 
if any. This enabled TMV to scale well on these circuits.

The results reported for ATACS are for the partial-order reduction op­
tion that yielded best results.

Number of STARI Stages

F ig u re  7. R e s u lts  fo r STARI c ircu it. Note that the 
Y-axis is on a log scale. A timeout of 3600 seconds was im­
posed on all runs.

We computed the set of reachable states for STARI circuits 
(initialized to be half-full) for increasing numbers of buffer 
stages and in three different ways: (1) using ATACS, (2) us­
ing TMV with purely POD constraints, and (3) using TMV 
with modularly specified metric constraints. The results are 
displayed in Figure 7. Using TMV with purely POD con­
straints is the most scalable approach, followed by ATACS. 
When used on a model with metric constraints, TMV scales 
very poorly. The reason for this appears to be that each 
clock zone has few corresponding Boolean states, thus re­
ducing the benefits of using fully symbolic Boolean meth­
ods of quantifier elimination. On the model based purely on 
POD constraints, TMV runs an order of magnitude faster 
than ATACS.

6 . Conclusions and Future Work

We have proposed a novel approach to modeling timing 
constraints in digital circuits, based on the notion of gener­
alized relative timing. Circuits with such timing constraints
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are formally encoded as timed automata, to which we ap­
ply fully symbolic verification techniques. Our approach is 
illustrated on real circuits, such as the Global STP circuit.

Possibilities for future work include automatically generat­
ing timing constraints, and applying compositional reason­
ing and abstraction methods to further scale up verification 
to larger circuits.
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