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Adaptive Volterra Filters 
U sing Orthogonal Structures 

V. John Mathews, Senior Member. IEEE 

Ahstract-This paper presents an adaptive Volterra filter that 
empolys a recently developed orthogonalization procedure of 
Gaussian signals for Volterra system identification. The algorithm 
is capable of handling arbitrary orders of nonlinearity P as well 
as arbitrary lengths of memory N for the system model. The 
adaptive filter consists of a linear lattice predictor of order N, a 
set of Gram-Schmidt orthogonalizers for N vectors of size P+ 1 
elements each, and a joint process estimator in which each coef­
ficient is adapted individually. The complexity of implementing 
this adaptive filter is comparable to the complexity of the system 
model when N is much larger than P, a condition that is true 
in many practical situations. Experimental results demonstrating 
the capabilities of the algorithm are also presented in the paper. 

I. INTRODUCTION 

TRUNCATED Volterra series models have become very 
popular in adaptive nonlinear filtering applications [3]. 

Several stochastic gradient (SG) and recursive least-squares 
(RLS) adaptive Volterra filters have been developed in the last 
fifteen years or so [2]-[4], [6]. The SG algorithms are, in gen­
eral, easy to derive and implement. However, they show slow 
and input-signal-dependent convergence characteristics. The 
RLS algorithms, on the other hand, exhibit fast convergence 
characteristics that are more or less independent of the input 
signal statistics. However, unlike their linear counterparts, 
even the most efficient RLS Volterra filters have significantly 
larger computational complexity than the SG Volterra filters. 

One approach to improving the convergence characteristics 
of the SG adaptive filters is to employ structures that orthog­
onalize the input signal. Unfortunately, the lattice realizations 
of Volterra systems for arbitrary inputs are over-parameterized 
[4]. For example, the lattice realization of a second-order 
Volterra system with N-sample memory requires O(N3) pa­
rameters, even though the system model itself has only O(N2) 
parameters. Consequently, SG adaptive filters employing such 
structures have computational complexity that is comparable 
to the RLS algorithms. This paper presents an approach for 
developing adaptive lattice Volterra filters with computational 
complexity comparable to that of the system model when the 
input signal is Gaussian distributed. The derivations utilize a 
recently developed method for orthogonalizing Gaussian input 
signals for Volterra system identification tasks [5]. 
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II. ORTHOGONALIZATION OF GUASSIAN SIGNALS 

FOR VOLTERRA SYSTEM IDENTIFICATION 

Consider a finite-memory and finite order Volterra system 
represented by the input-output relationship 

p 

y(n) = ho + I)ip[x(n)] (1) 
p=l 

where x(n) is the input signal to the system, y(n) is the output 
of the system, and 

N-l N-l N-l 

hp[x(n)] = L L L hp(~1,~2"" ,~p) 

x x(n - ~dx(n - ~2)'" x(n - ~p). (2) 

The above model incorporates the kernel symmetry without 
any loss of generality. The coefficients of the expression in 
(1) can be uniquely estimated under some mild conditions on 
the input signal. 

All the products of input signal samples employed in (2) 
belong to the set 

{xml(n)xm2(n -1) . .. xmN(n - N + 1)1 

~l + ~2 + ... ~N :S P}. (3) 

The problem considered in this section is the orthogonalization 
of the elements of the input signal set in (3). The orthogonality 
is in the minimum mean-square error sense. We assume that 
the input signal is stationary and Gaussian with zero-mean 
value. The assumption that the input signal has zero mean 
value is not restrictive, since the mean value can be removed 
from any signal and the bias term ho in (1) can account for any 
contribution from the nonzero mean value of the input signal. 

Consider the input vector 

XL(n) = [x(n),x(n - 1)"" ,x(n - N + l)f (4) 

which consists only of the linear components in the input 
signal set in (3). We can find an orthonormal basis set for 
the elements of XL ( n) using a normalized lattice predictor 
[1]. Let ui(n); i = 1,2",', N represent the orthogonal basis 
signals generated by the linear lattice predictor. Then 

(5) 

where 8(n) represents the Dirac delta function. 
Now, let us define a vector U P,i (n) as 

U P,i( n) = [1, ui(n), u;(n), ... , u; (n)]T. (6) 

1070-9908/96$05.00 © 1996 IEEE 



308 

Let Q P be a lower triangular, (P + 1) x (P + 1) element matrix 
that orthogonalize U P,i (n). Since all Ui (n)' s have identical 
distributions, the same Qp will orthogonalize U p,i(n) for all 
values of i. Let V P,i be an orthogonalized vector obtained as 

V P,i = QpU P,i. (7) 

Let Vp,i,j denote the jth element of Vp,i. 
Theorem 1: 

{VP,l,ffil (n )VP,2, ffi2 (n) ... Vp,N,ffiN (n)\ 

ml + m2 + ... + mN ::::; P} 

is an orthogonal basis set for the signal set in (3). Note that 
Vp,i,o(n) = 1 for all i and that each mi takes values from 

° ::; mi ::::; P. 
A proof for this theorem may be found in [5]. The lattice 

structure for second-order Volterra filters that was presented 
in [2] is a special case of the above procedure. 

III. AN EFFICIENT ADAPTIVE LATTICE 

FILTER FOR GAUSSIAN SIGNALS 

Let x(n) and d(n) represent the input and desired response 
signals, respectively, of an adaptive filter. The objective of the 
adaptive Volterra filter is to model the relationship between 
x( n) and d( n) adaptively using the truncated Volterra series 
representation of (1) and the orthogonal structure described in 
the previous section. 

The adaptive lattice Volterra filter consists of three stages. 
The first stage is an (N - 1 )-stage adaptive linear lattice 
predictor for the input signal x(n). A normalized LMS lattice 
linear predictor can be realized using the following equations: 

fi(n) = fi-1(n) - Pi(n)bi- 1(n - 1) (8) 

bi(n) = bi-1(n - 1) - Pi(n)fi-l(n) (9) 

fL 
Pi(n + 1) = pi(n) + ~( ) {fi(n)bi-1(n - 1) 

O'i_1 n 

+ bi(n)li-l(n)} (10) 

and 

a-r(n) = (3Crr(n - 1) + (1 - (3)U?(n) + b;(n - I)}. (11) 

In the above equations, fi (n) and bi (n) represent the ith­
order forward prediction error and backward prediction error 
values, respectively, at time n, Pi (n) is the ith reflection 
coefficient at time n, and fL is a small positive constant that 
controls the rate of convergence of the various stages of the 
lattice predictor. The parameter {3 is bounded above and below 
by 1 and 0, respectively, and controls the behavior of the 
adaptive power estimators. Usually, {3 is chosen as (1 - p,). 
The prediction error signals Ii (n) and bi (n) do not, in general, 
have unit variance. The iterations in (8) and (9) are initialized 
using fo(n) = bo(n) = x(n). The reflection coefficients are 
initialized using some arbitrary values bounded by one. The 
prediction error power estimates CrT (n) are initialized to some 
small, positive quantities. 

The second stage of the adaptive lattice Volterra filter creates 
N vectors of P + 1 elements each as 
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As discussed in the previous section, it is possible to design a 
Gram-Schmidt orthogonalizer for B P,i (n) that is independent 
of the signal statistics when the input signals are Gaussian. 
However, to account for potential variations from the Gaussian 
distribution of the elements of B P,i (n), we employ adaptive 
Gram-Schmidt orthogonalizers for each B P,i (n). Let Ui,j,O (n) 
denote the jth element of B P,i (n), i.e., 

Ui,j,O(n) = b{(n). (13) 

Then, the equations that describe the Gram-Schmidt orthog­
onalizers that employ a normalized least mean-square (LMS) 
adaptation algorithm are as follows: 

Ui,l,m(n) =Ui,l,m-l(n) - Cti,l,m-l(n)ui,m-l,m-l(n) 
l = m + 1, ... ,P (14) 

1r,m(n) = (31T,m(n -1) + (1- (3)u;,m(n) (15) 

and 

fL 
Cti,l,m(n + 1) = Cti,l,m(n) + 12 (n)Ui,l,m(n)Ui,m,m(n). 

",m 
(16) 

The third stage of the adaptive filter is the joint process es­
timator. The signal set that is used for joint process estimation 
is obtained by nonlinearly combining the various Vi,m(n) as 

Si 1 ,i2,·,iN(n) = V1,il (n)v2,i2(n) .. ,vN,iN(n); 

i1 + i2 + ... + iN ::; P. (17) 

According to Theorem 1, the elements of the set described 
by the above equation will be orthogonal, or at least close to 
orthogonal, when the adaptive filter has converged to nearly 
optimal values and the input signal is Gaussian. Therefore, 
it is reasonable to develop the adaptive filter by individually 
adapting the coefficients of Si 1 ,i2,. .. ,iN(n). Let {zk(n); k = 
1,2, ... ,M} represent an ordered arrangement of all signals 
Si 1 ,i2, ... ,iN (n) involved in the joint process estimation. Here, 
M represents the total number of coefficients in the joint 
process estimator. The following equations represent a nor­
malized LMS joint process estimator for the adaptive lattice 
Volterra filter. 

k 

ek(n) = d(n) - L wi(n)zi(n) 
i=1 

= ek-1(n) - wk(n)zk(n) (18) 

K~(n) = (3K~(n - 1) + (1 - (3)z~(n) (19) 

and 

Bp,i(n) = [1, bi(n), b;(n),. ", b; (n)]T 

i = 0, 1"", N - 1. 
The recursive calculation of the error signal ek (n) in (18) is 

(12) initialized using eo(n) = d(n). 
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IV. EXPERIMENTAL RESULTS 

The results presented in this section are ensemble averages 
over 50 independent simulations of a system identification 
problem. The unknown system was a second-order Volterra 
filter described by the following input-output relationship: 

y(n) = -0.78x(n) - 1.48x(n - 1) -+- 1.39x(n - 2) 

-+- 0.04x(n - 3) + 0.54x2 (n) + 3.72x(n)x(n - 2) 
-+- 1.86x(n)x(n - 2) - 0.76x(n)x(n - 3) 
- 1.62x2(n - 1) + 0.76x(n - l)x(n - 2) 
- 0.12x(n - l)x(n - 3) + 1l.41x2(n - 2) 

- 1.52x(n - 2)x(n - 3) - 0.13x2(n - 3). (21) 

Four different types of input signals were used in the simula­
tions. Each signal set was generated as the output of a linear 
system with input-output relationship 

x(n) = bx(n - 1) + Vi - b2~(n) (22) 

where ~(n) was zero-mean and white Gaussian noise with 
unit variance and b was a parameter between 0 and 1 that 
determined the level of correlation between adjacent samples 
of the process x(n). Experiments were conducted with b 
set to 0.00, 0.50, 0.90, and 0.99. When b = 0, the input 
signal is white. As the parameter b approaches 1, the signal 
characteristics become highly lowpass in nature. The desired 
response signals were generated by passing the input signals 
described above through the unknown system and corrupting 
the output signals with additive zero-mean and Gaussian 
noise with variance 0.1. The measurement noise sequence and 
the input signal x( n) were mutually uncorrelated. In all the 
experiments, Jl and (3 were chosen to be 0.001 and 0.999, 
respectively. Fig. 1 displays overlaid plots of the squared 
estimation error signal averaged over the 50 runs. These error 
curves were further smoothed by time averaging over 10 
consecutive samples. It can be seen from the figure that the 
rate of convergence of the adaptive filter is reasonably close 
to each other in all cases, in spite of the fairly large disparity 
in the spectra of the signals employed. 

V. CONCLUDING REMARKS 

This paper presented an adaptive lattice Volterra filter. The 
filter is based on a recent result for orthogonalizing Gauss­
ian signals for Volterra system identification problems. The 
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Fig. 1. Mean-squared estimation error of the adaptive lattice Volterra filter 
for four different input signals. 

computational complexity of the adaptive filter is comparable 
to that of the system model when the system memory is 
much larger than the order of nonlinearity. The lattice filter is 
also appropriate for independent, identically distributed non­
Gaussian input signals. The linear lattice predictor of the 
first stage is not required in such cases. The results of a 
limited number of experiments presented indicate that the filter 
has good convergence characteristics. Further performance 
evaluations are necessary to understand the properties of the 
adaptive filter when higher order system models are employed 
and also when the input signals are not Gaussian distributed. 
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