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The MIT bag model for hadrons is treated in the static cavity approximation. The adiabatic deformation of 
a six-quark hadron with quantum numbers of the deuteron is studied in a configuration which permits the 
separation of two triplets with quantum numbers of the neutron and proton. The energy of the system is 
computed to second order in the gluon coupling and presented as a function of two choices of a single 
collective variable: a separation parameter for the nucleons and the baryonic quadrupole moment. The 
present study considers only interactions at short and intermediate range in a state with nuclear spins aligned 
in parallel along the deformation axis. It does not treat effects depending on nucleon momenta. The energy, 
when expressed in terms of a nuclear separation parameter, exhibits a soft repulsive core at short range due 
to a color-magnetic gluon interaction, and strong attraction in intermediate range due to a color-electric 
interaction.

I. INTRODUCTION

The two-nucleon force is  probably the m ost 
studied of a ll hadronic interactions. Since it was 
fir s t  proposed in 1935, the Yukawa model of m es
on exchange1 has served  as the organizing princi
ple for theoretical efforts to understand the two- 
nucleon interaction. Highly sophisticated m odels 
involving severa l m eson sp ecies and multiple 
m eson exchange have been proposed to account 
for the observed low -energy-scattering data.2 
However w ell these m odels succeed in account
ing for the long- range aspects of the interaction, 
there is  no reason to believe that their usefulness  
extends to short range; indeed practical m odels 
abandon theory and draw from  experim ent for in
form ation about the interaction in this regim e .3 
Because of the extended nature of the nucleons, 
it is  c lear  that at short d istances a two-body wave 
function must fa il to describe adequately the com 
plexity of a two-nucleon system .

Present-day approaches to the understanding 
of the structure of the nucleon have progressed  
considerably from  the early picture of a single 
elem entary ferm ion surrounded by a cloud of m e
son s. Obviously our understanding of the two- 
nucleon interaction should keep abreast of these  
developm ents. Accordingly, we have taken a 
model which has been quite su ccessfu l in account
ing for the static properties of the light m esons 
and baryons, nam ely, the MIT bag m odel,4 and 
have applied it in an effort to understand the short - 
distance interaction of the two-nucleon system .5

The MIT bag model d escrib es hadrons in term s  
of the currently fashionable color-SU(3) gauge 
theory of quarks and gluons. These elem entary  
constituents are confined to a finite volume by a 
uniform external p ressu re, a key innovation of the

m odel. Taken in the static cavity approximation6 
the model is  perhaps the only one currently avail
able in which calculations of the type presented  
here are feasib le .

In the static cavity approximation the nucleon 
is  regarded as a collection  of three quarks (we 
do not take into account mixing with states with 
gluons or extra quark-antiquark pairs) interacting  
via gluon exchange and confined to a volume with 
fixed w alls. The two-nucleon interaction a r ises  
when two such cavities join and the quarks inter
m ingle, altering the effects of gluon exchange. 
When the cavities are separated, no interaction  
occurs. C learly, this approach can give no infor
mation about the long-range effects of pion ex
change, for exam ple, which presumably would be 
associated  with a proper treatment of quantum su r
face fluctuations in which quark-antiquark pair 
creation is  involved.6 Thus we have devoted our 
attention to the short-range properties of the in
teraction. Here the cavity assum es a nearly 
spherical outline. Since this is  a lso  the shape 
which is  assum ed by the noninteracting hadrons, 
whose static properties have been studied with 
considerable su c c e ss ,7 we trust that our computa
tions w ill have comparable validity in this regim e.

It is  conceivable that the m eson-exchange p ic
ture and the quark-interchange picture of the bag- 
model are com plem entary over som e intermediate 
range. The quark-interchange diagram viewed 
from  the point of view  of the crossed  channel ap
pears as the exchange of a quark-antiquark pair, 
from  which m esons are constructed. However, 
the correspondence between the crossed-channel 
spectrum  and the direct-channel interaction energy 
is  made obscure by the static cavity approxima
tion.

The bag m odel, in present form , does not take
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into account the p rocess of creation and annihila
tion of the bags th em se lves. Thus what is  obtained 
from the present calculation is  m ore properly re 
garded as a potential from  which a unitary sca tter
ing m atrix is  to be constructed.

Our approach to the two-nucleon interaction in
volves studying the adiabatic deformation of a bag 
containing s ix  quarks into two bags containing 
three each. Norm ally the shape of the cavity is  
determined by the condition that the internal field  
p ressure be a constant on the surface. Thus the 
ground state of the six-quark system  in the static 
cavity approximation is ,  strictly  speaking, the 
state of minimum energy which achieves this p res
sure balance. This state is  the sem ic la ss ica l deu
teron, and in the present calculation it is  a single  
nearly spherical cavity containing s ix  quarks with 
a binding energy of ~190 MeV. However, quantum 
fluctuations about this minimum energy, in par
ticular fluctuations altering the shape, modify 
both the energy and the description of the state.
The approach we have adopted in order to follow  
these fluctuations is  one quite analogous to that 
of the Born-Oppenheimer approximation for the 
interaction energy of two hydrogen atom s.8 There, 
a single collective variable, namely, the inter- 
nuclear separation is  fixed and the orbital energy 
of the electrons is  computed. What em erges is  an 
effective central potential for a two-body system , 
which is  then used to obtain vibrational and rota
tional lev e ls  of the hydrogen m olecule. The justi
fication for this approach lie s  in the notion that 
the nuceli, which are far m ore m assive than the 
electrons, move with very sm all velocities com 
pared to those of the electrons. Thus the impact 
of their motion upon the electron orbitals can be 
treated adiabatically and c la ssica lly . In the p res
ent application there is  no analog to the m assive  
pointlike positive charges. However, it is  felt  
that any g ross collective variable which describes  
the bulk conformation of the six-quark system  must 
vary slow ly on a tim e sca le  characteristic of the 
motion of the essen tia lly  m a ssle ss  quarks. We 
have two cr iter ia  in mind which estab lish  qualita
tive lim its on this approximation: F ir s t, the cav
ity energies of the quarks must be sm all compared 
to the overall m ass involved in the collective mo
tion. Second, the kinetic energies involved in the 
collective motion must be sm all compared to this 
m ass. We believe that these criteria  are fulfilled  
in the two-nucleon system  near threshold. How
ever, considerable care would be needed in order 
to apply this method to resonance decays in which 
large kinetic en ergies are encountered, or to de
cays involving the ir m eson in which m asses com 
parable to the quark-cavity energies are encoun
tered.

We study the energy of the six-quark system  as 
a function of the collective variable by fixing the 
expectation value of this variable by adding a con
straint to the Hamiltonian:

H - H - c ge

where ce is  a Lagrange m ultiplier and 0 is  the 
operator defining the co llective variable. Two 
variables are chosen. One is  a param eter which 
m easures the separation of the three-quark sy s 
tem s. The second is  the baryonic quadrupole mo
ment. In order to interpret the resulting curves 
as representing potential energies som e care must 
be exerc ised . F ir st, one must find som e way of 
sp licing together the short-range information from  
the bag m odel and the long-range information from  
m eson exchange. Second, one must deal with at 
least the rudimentary question of defining a m ass  
param eter to be associated  with the collective co
ordinate. This problem can be compared to ad
vantage with the analogous problem in the theory 
of nuclear collective m otion.9 Presum ably sim 
ilar techniques would work here. The objective 
of such a study would be to obtain a probability 
amplitude at a given energy for a given value of 
the co llective coordinate. Thus, for exam ple, 
the deuteron would be regarded as a quantum 
superposition of states of a six-quark nature 
at c lose  range and two-nucleon nature at long 
range. Whether a single co llective variable suf
f ice s  at c lose  range or m ore than one m ust be 
considered is ,  of course, a question which must 
be kept in mind in future work.

The present work represents the f ir s t  serious  
effort at applying a consistent model of confined 
quarks to the two-nucleon problem . It is  not meant 
to be exhaustive. We have not studied the spin 
and isospin  dependence of the interaction, although 
th is can readily be done with sim ilar  m ethods. We 
do not study dynamical effects which would lead to 
a construction of the two-nucleon wave function 
and a determination of static properties of the 
deuteron. These questions are left to subsequent 
work. We explore here the details and subtleties 
of the model and use it as a theoretical laboratory 
in an attempt to iso late the important phenomena 
which control the interaction.

The details of the model and computational m e
thod are set forth in the previous artic le10 (here
after refered  to as I). In the in terest of com plete
n ess , a brief review  of the construction of the ef
fective Hamiltonian is  given in Sec. II. The six -  
quark configuration is  defined in Sec. HI and the 
computation of the “configuration factors” of the 
effective Hamiltonian is  described in the Appendix. 
The only essen tia l difference between the computa
tion for the quark-antiquark state in I and the
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six-quark state appears in the configuration fac
to rs. A tw o-orbital approximation to the cavity 
Lamb shift (quark self-energy) is  developed in 
Sec. IV, and the resu lts are presented and d is
cussed in Sec. V.

II. REVIEW OF THE MODEL

In the in terest of com pleteness we give a brief 
review  of the methods of I (Ref. 10), mentioning 
the few novel features which em erge in the two- 
nucleon problem . The reader is referred to I for 
a m ore complete d iscussion .

The energy of the bag is  computed variationally  
in the static-cavity  approximation using a Lagrange 
constraint to fix  the expectation value of a co llec
tive variable. The variational expression  is

(Hf -  cbG)+BV,  (2.1)

where Hr  is  the Hamiltonian for the fields for a 
given cavity shape; 0  is  the operator defining the 
collective variable; V  is  the cavity volume and 
cg and B  are constants. Minimization of (2.1) 
with respect to the cavity shape determ ines the 
shape itse lf, and as c0 is  varied, one obtains an 
expression  for the energy

E  = {Hf )+B V  (2.2)

as a function of (0). Only axially sym m etric cav
itie s with reflection sym m etry about the equatorial 
plane are considered. The surface is  defined by the 
three-param eter formula in cylindrical coordin
ates:

p2 = «2( l - z 2/ d 2)(l  + az2/ d 2). (2.3)

Although this param eterization perm its a wide 
variety of shapes, it does not perm it fission  with 
a sharply indented neck. Since the fissioning  
regim e was in any event considered to be beyond 
the range of validity of the computation, we did 
not undertake an improvement of the param eter
ization (2.3). It is  quite adequate for the short 
and interm ediate range where the departure from  
sphericity is  slight.

The separation of the quark trip lets is  described  
in term s of two orbitals, left and right (L and R),  
which are expressed  as a linear combination of or
thogonal orb itals, one sym m etric and one anti
sym m etric (S and A)  with respect to the replace
ment z — z ,  where the z  axis is the deformation 
ax is . Thus the spatial part of the fermion spinors 
is  written as

dL=ds-^qA, (2A)

Qr =9s +V~m" <Ja ,

where n  varies in the interval [0 ,1] for minimal 
to maximal orbital separation.

Two choices of constraint are considered here. 
One is  a m easure of the distance between the two 
orbitals. We have chosen the sam e m easure as 
used in I, namely,

0 = 2'̂ i / ~ /  4® < 7 a( * ) ^ -  (2-5)

(There is  no legitim ate operator corresponding 
to 6, so  it is  treated as a c number.) The other 
is  the quadrupole moment defined with respect 
to baryon number density, namely,

Q=ns Qs +nAQA, (2.6)

where ns and n A are the operators giving the quark 
occupation number in the sym m etric and antisym 
m etric states and

Q s = i  f  q U s ( 3 z 2 - r 2 ) dV ,
(2.7)

q \ q A(3z2 - r 2)dV.

These are norm alized so that when jj. = 1 (so that ns 
=wA) and the orbitals are well separated, Q~ 62 
~ r l22 where r12 is  the two-nucleon separation. 
Whether m ore than one collective variable should 
be used and which one is  the proper choice are 
questions which can be answered only in a dynam
ica l study of the collective motion of the system .

The effective Hamiltonian giving the field energy 
to second order in the gluon-coupling constant g  
restricted  to states with quarks is  given by

HF = j  dV :qt ( - i a ° ' V  + f3m)q'-

+ J  + (B“)2 ] -  + E0(V),

(2 .8)

where in the static lim it 

J l  = g : W r uQ :,

V • E° =<70a, F x Ba = J“ in V (2.9)

w°Ea = 0, w x B“ = 0 on S

and E0(V) is  the finite part of the zero-point ener
gy of the f ie ld s . With only two orbitals under con
sideration the quark-field operator becom es

q(x) = £  [qscfm(x)bScfme' ius‘ 
c , / ,m

+ ?^ /m (x )& W r i “V ]> (2 -10)
where the b ’s  are annihilation operators for the 
quark-cavity eigenm odes in the absence of gluons 
and c,  / ,  and m  are color, flavor, and spin quan
tum num bers. The unperturbed-cavity eigenmodes 
are defined by the equations
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(-ia  • V + fim)qn(x) = ay?„(x) in V, 

i a  • rlq„(x) = - y 0q„(x) on S .
(2 . 11)

When the field  is  inserted into the effective Ham
iltonian we obtain term s both bilinear and quadri- 
linear in the quark creation and annihilation oper

ators, which are depicted graphically in F ig . 1. 
The Hamiltonian may be written as a sum of term s  
each involving a c number configuration-indepen
dent energy, and an operator which depends on 
color, spin, flavor, and orbital quantum numbers. 
Its expectation value on a particular quark con
figuration gives the field  energy

EF=ns u)s +nAU}A+WUSz Cs*+ + W  h a s  +  ^rkAxCJu) + (^ « s a i ^ s  a *  + ^ m s  a i ^ s  a l  +  WbdCd)

i)CXli + (WMXl. + WEXz)CXlli + (WBX + WMX)CXd]+ [(W W + W W
+ [(Wj/jri ^ exi) C xw + (WMXie + WEXz)CXta + {WEX + WjjX)CX0] + E l; + E0. (2 .12 )

The eight term s (not counting the zero-point ener
gy E0) have been grouped in order so as to cor
respond to the eight types of diagram s in F ig . 1. 
The four se lf-energy  diagram s are a ll grouped in 
E»»if The term s cos , u A, WMSl, etc. are shape-de
pendent, configuration-independent energies and 
the coefficients ws , nA, CSt, CS1, etc . are config
uration-dependent numbers which we call the 
“configuration f a c t o r s T h e  various energy con
tributions appearing in (2.12) are determined by 
solving the Dirac and Maxwell equations variation
ally according to procedures described in I. We 
give a brief account of the steps leading from
(2.8) to (2.12):

The term s denoted by W represent contributions 
from the gluon fie ld s, of which there are three 
types corresponding to the three types of currents: 
two “diagonal” currents S-S and A- A ,  and one 
transition current S-A.  Consider the S-S fie ld s. 
The magnetic field operator can be written in a 
two-component b asis for the spin as

^SS = £  ^SS

(2.13)

where the index i  on the c-num ber fields refers to 
the spinor b a sis , not the Euclidean b asis of the 
field . When the field  operator is  inserted into the 
Hamiltonian and integrated over the volume of the 
cavity, som e sim plification occurs due to the azi
muthal sym m etry of the fields and the cavity with 
the result

i  J  Bis-$ isdv- j  J|s -Sjsdv

= - i f  BSs - S §sdV

= WJiscbfs a3xabs bts ° 3xabs 

+ Wus ib's t \ ° b s - b l n ^ b s , (2.14)

where we have suppressed the spin, flavor, and 
color labels and used the notation

5 1=<r l e1 + a 2e2. (2.15)

The commutator resulting from  the ordering of
(2.14) contributes to the se lf-en ergy . The normal 
ordered expression  represents the exchange of a 
gluon [diagram (c) of F ig . 1], and involves a pos
sib le  interchange of spins and colors between the 
quarks. The other quantities in (2.12) are defined 
in a sim ilar  fashion:

/  & A Af d V  = WUM ( b \ a ^ b Af  + WMAl( b \ d W A)*,

-j  J  B j S  • B̂ dV =  WUSAl(b\a^bA)(blM$)

+ * ms ■ ( b ' s d ^ b ,.),

+%xi (b fAZ ̂ abs ) - ( b \ d ^ b A), (2.16)

* J  (2|s+2°AA)2̂ =-i /  (Ss-SjW^X^)
* K ^ a)

= - W EDb \ \ ° bs b \ \ ° b A,

5 /  |® 3 j 2dV = WBXe( b \ o 3\°bs )(b's o * \ ‘bA)

+ w Bx S . b ' j r ^ b s ) ( , b \ d ^ b A)

+ WEX(b \ \ °bs )(b's \ °b A).

A ll of these term s enter in the effective Hamil
tonian (2.8). The configuration factors in (2.12) 
a r ise  from taking the expectation value of the var
ious operators (2.16) on the state defined in Sec.
HI below. They are
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ns n A ~ ^ / p A }

C Sz = (: brs a 3Xab s brs <y3Xab s : >, 
CSi = <:&ts ff1X‘&s &t$i X‘&s :>, 

C ^ i i b ^ b J ^ X ' b ^ . ) ,  

CjU-< :6 » 9 iX«6A6 t 9 i x-6A:>,

■'S Ac

•"SAL

= 2<:&tAa 3X“6A6ts a 3X“6s :>,

= 2 ( :6 tA5 iX<'6A.6 ts5 1X<-6s :), (2.17)

Cxli  = 2 { - . b \ a ^ b s b ^ X - b A -.),

CXLd = 2 ( : b \ d ^ ° b s ’ b's Z ^ b A -.),

Cxi = 2(-.b'A\*bs b \ \*bA -.),

CX m = 2 { : b \ a ^ b s b \ a ^ b s :),

Cx m =2{:  b \ 9 W ab \ 9 M s :),

CXo = 2 (: &AX“&S bAX“&S:),

CD = - { : b rs Xabs bfAXabA: ).

The se lf-en ergy  contribution from the S and A 
orbitals alone is  given by

• ® a elf =  WS *  +  W U S  J.WS i )

+  ( W MA* ” CA * +  W MALnCA ± ) +  ( W « .  +  W M * ) ( « 5 u  +  » ! * )  

+  ( W * x i  +  W b x J W a x + w Si) +  ( W E X  +  W u x ) { n eA + n % ) ,

(2.18)

where the f ir st two term s grouped in parenthesis 
are represented by the S-S-S  and A - A - A  “diagon
a l” graphs in F ig . 1(h) and the remaining term s  
collect contributions from the off-diagonal graphs 
S-A-S  and A- S -A .  In writing (2.12) and (2.18) we

LJ s
(a) s ------* -

( b )  a -

A ■

( d)

ouA
—H—

( f )

( h )

A

S

-S

■ A

• A 

•A

■ S 

-A

S ■

S •

s •

A

A

A

S

• s

(c)

(e)

(g)

j C ls s — —  s

j C X .

have made use of the co lor-sin g let property of the 
state which provides that the e lec tr ic  part of the 
graphs F ig s . 1(c), 1(d), and 1(e) and the e lectr ic  
parts of the diagonal se lf-energy  graphs F ig. 1(h) 
combine to give the term  WEDCD in (2.12) (see the 
discussion  in the Appendix). The configuration 
factors in (2.18) are defined by

ncs t =(bfs (xa<j3)2bs ), ncSL = {brs (\'td 1-)2bs )

< u =  K ( \ ° a 3)2bA), »■̂  = ( b \ ( \ * d ^ b A) (2.19)

n's =(b's ( \ ° f b s ), ncA T (b\{X‘f b A).

These are all sim ply proportional to the resp ec
tive occupation numbers ns and nA. With our nor
m alization for the m atrices Xa,

n%z~ zns l~n% =Vws> (2 20)

« ^  = i« CAl=WA=T WA-
The expression  for the se lf-energy  actually used 
in the computation (4 .5),(4 .6) d iffers from (2.18), 
as d iscussed  in Sec. IV.

III. SIX-QUARK-CONFIGURATION INTERN AL-SYMMETRY 
COEFFICIENTS

In Sec. n  we presented an effective Hamiltonian 
for the state containing only quarks. We now pro
ceed to define the state upon which its  expectation  
value is  to be evaluated. It w ill then be possible  
to evaluate explicitly the configuration factors 
(2.17).

We shall consider a co lor-sin g let configuration 
of s ix  nonstrange quarks with a definite total spin 
S and isospin  I. If all quarks are found in the 
sam e spatial orbital, then the values I, S, and 
m s specify the state uniquely. If we use the nota
tion (r , y , b ) for the quark co lors, (+, I) for the 
quark-spin projections, and (u,d)  for the quark 
fla v o rs , then the com pletely antisym m etrized
wave function fo r  /  = 0, S = 1, = 1 is  given
by the antisym m etric part of a d irect product 
of Young tableaux11 as

t t t t

1 I

u u u

d d d

FIG. 1. Diagrams representing term s in the effective  
Hamiltonian.

(3.1)
We want to consider the separation of the quarks 

into two spatial orbitals labeled L and R,  each 
containing three quarks in a co lor-sin g let state.
(A separation into noncolor-singlet states would 
be energetically  unfavorable because of the strong
ly attractive co lor-electrosta tic  force.) There are 
two p ossib ilitie s for nonstrange quarks. Either 
the separation resu lts in two nucleons or in two
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A(1236) resonances. For a static calculation the 
state sym m etric under the interchange of left and 
right spatial coordinates is  appropriate, sin ce it 
is  convenient for generating the even partial waves 
in the two-baryon channel. For the spatial part of 
the wave function there are two Young tableaux with 
this property, namely,

(3.2)

The f irst tableau is  the only one which survives 
in the lim it that all quarks appear in the sam e or
bital, i .e . ,  w h e n X - i? . In general, however, both 
spatial configurations may contribute. This ar
b itrariness in the choice of spatial wave function 
is  related to the arbitrariness in choosing a sep
aration resulting in two nucleons or two A ’s 

For present purposes we consider only the sep
aration into two nucleons, thereby specifying the 
state uniquely. Of course the resulting configura
tion w ill n ecessar ily  overlap with the two-A con
figuration as long as the L  and R  orbitals are not 
orthogonal. Since we do not attempt to diagonalize

the Hamiltonian on the two-baryon b a sis , we can
not d iscu ss subtler effects caused by the interac
tion of these two channels, such as the question of 
how much AA component there is  in the deuteron. 
This question can be answered by a sm all exten
sion of the present calculation.

The quark trip let with the quantum numbers of 
the proton and m s =5 is  created by the linear com
bination of quark-creation operators (in obvious 
notation)

( l S ^ y  (♦) =2< (tK „(0< *;(0  + 2«t(»)dt,(* K (» )

+ 2 d ;(0 < (+ K (0  -  <(♦)«;(♦)<*;(♦) 

- W ( t K ( t ) - W * M W  (3.3)

-  «*(♦)«*(♦)<*»(♦) -  ?4(+)^(+K(*-)

-  ^ (* K ,( !K (* ) -

We have written «,(♦) in place of 6ur<, e tc . for 
ease in reading. The corresponding expression  
for the neutron is  obtained by replacing u — d  and 
d —- u .  If we label the spatial orbitals by L  and 
R,  the six-quark configuration with quantum num
b ers 1=0,  S = l ,  | m s | = 1, which we study in the 
present work, is  given by the unnormalized expres-

TABLE I. Configuration-dependent coefficients for the six-quark system  with 1=0, S = 1, 
| m s | =1 as a function of the configuration-m ixing param eter defined by (3.6) in the text. 
The labels over the column headings refer  to the relevant graph in F ig . 1.

a b c d cde
M «s n A C S z Cax Qd

0 . 0 6 . 0 0 0 . 0 0 8.53 -13.87 0 . 0 0 0 . 0 0 0 . 0 0

0 . 1 5.76 0.24 8.04 -12.56 0.16 0.33 1.06
0 . 2 5.25 0.74 7.03 -9 .9 0 0.50 0.92 3.19
0.3 4.77 1.23 6.07 -7 .4 3 0.87 1.30 5.06
0.4 4.37 1.63 5.31 -5 .5 5 1.23 1.40 6.35
0.5 4.05 1.95 4 .71 -4 .1 6 1.56 1.27 7.17
0 . 6 3.78 2 . 2 2 4.24 -3 .1 0 1 . 8 8 0.99 7.69
0.7 3.55 2.44 3.84 -2 .2 7 2.18 0.64 8 . 0 0

0 . 8 3.35 2.65 3.51 -1 .6 0 2.46 0.24 8.18
0.9 3.16 2.84 3.22 -1 .0 5 2.72 -0 .1 8 8.27
1 . 0 3.00 3.00 2.96 -0 .5 9 2.96 -0 .5 9 8.30

e f g
M PsA z Gs a l C X ±  i C X d QlO CxzO Qto

0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0
0 . 1 0.60 2 . 8 8 -0 .1 5 0.76 -1 .9 7 10.33 2.33 -5 .9 4
0 . 2 1.82 8 . 6 6 -0 .4 6 2.28 -5 .9 2 16.71 3.73 -1 0 .0 3
0.3 2.90 13.74 -0 .7 2 3.61 -9 .4 0 19.69 4.34 -1 2 .4 4
0.4 3.62 17.24 -0 .9 1 4.54 -1 1 .7 9 2 1 . 0 2 4.57 -1 3 .9 3
0.5 4.10 19.48 - 1 . 0 2 5.12 -1 3 .3 2 21.69 4.66 -1 4 .9 4
0 . 6 4.40 2 0 . 8 6 - 1 . 1 0 5.49 -1 4 .2 8 22.06 4.70 -1 5 .6 3
0.7 4.58 21.72 -1 .1 4 5.72 -1 4 .8 6 22.30 4.72 -1 6 .1 1
0 . 8 4.68 2 2 . 2 0 -1 .1 7 5.84 -1 5 .1 9 22.43 4.73 -1 6 .4 0
0.9 4.72 22.44 -1 .1 8 5.91 -1 5 .3 6 22.50 4.74 -1 6 .5 5
1 . 0 4.74 22.52 -1 .1 9 5.93 -1 5 .4 1 22.52 4.74 -1 6 .5 9
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sion

i*t (+ 1) =p\(*)nfL(i)  +p\(i)n'R{t). (3.4)

The use of the algebra of creation operators s im 
p lifies the notation for the antisym m etrization of 
the state.

To define the contribution to the Hamiltonian it 
is  useful to express the left and right orbitals in 
term s of the orthogonal sym m etric (S) and anti
sym m etric (A) orbitals introduced in Sec. n . Thus, 
introducing a subscript for the spatial orbital, we 
have

«r£(+) =u\ s W  -  

Mr*(* ) =wtrs( + ) + VJTm^U),
(3.5)

and sim ilarly  for all other operators. The resu lt
ing configuration, sym m etrized under L ~ ~ R  con
s is ts  of a linear combination of the orbital occupa
tions S6, S4A 2, S2A 4, and A e', with weights deter
mined uniquely by pi and the internal sym m etry  
quantum num bers. As p. varies on the interval 
[0 ,1] a definite path in configuration space has

been chosen. Since the nucleons are the lightest 
of the baryons, we suspect that path is  the one 
which g ives the best estim ate of the ground-state 
energy.

Having defined the sta te , what rem ains is  to 
compute the expectation value on this state of the 
various operators in the effective Hamiltonian
(2.8) both bilinear and quadrilinear in the creation  
and annihilation operators for the quarks. The re
sulting expectation values give the configuration 
factors denoted by ns , n A, and C in the expression  
for the field  energy of the cavity (2.11). As far 
as we know, there is  no sim ple and straightforward  
procedure for finding a ll these quantities, although 
individual coefficients and combinations of coef
ficients can be found. The source of this difficulty 
lie s  chiefly with the introduction of a spatial degree 
of freedom  with two permutation sym m etries (3.2). 
We have accordingly made use of a high-speed  
computer to calculate these m atrix elem ents e s 
sentially by brute force. The method is  described  
in the Appendix.

We obtain the following resu lt for the state with 
7 = 0, S = l ,  I m* 1 = 1:

N =  5+67()i2 - tV ) + 5n6 ,

ns = (30 + 268/x2 + 134fi4)/JV , nA = 6 -  ns = (30^6 + 268|i4 +134/i2)/Ar ,

CSz = (128 + 896/j.2 +256ji4)/3N  , CSJ_ = (-208  -  608,u.2 + 560|i4)/3jV ,

CA2 = (128pi6 +896/J.4 +256ji2)/3JV , CAJ. = (-208/j.6 -  608^4 + 560/u.2)/3JV , 

Cxzo = 2[192(jj. + ji5)+640jj.3]/3AT , CX10 = 2[848(/i +m5)+ 3168(x3]/3JV , 

Cxo ~ —2[480(/i +/j.5) +2624/j.3]/3AT , CXzi =2x640(jj.2 + li 4) /3N  ,

CXLt = -2  x 128(ji2 + n 4)/3N  , Cxl  = -2  x 1664(/j2 + n 4) / 3 N ,

CSA,  = 2 x 512(/x2 + ii4) /3N  , CSA1 = 2 x 2432(n2 + n 4) /3N ,

CD = 1792(p.2 + ^ i ) /3N .

These factors are listed  for a few values of /i in Table I.

(3.6)

IV. QUARK SELF-ENERGY

We now have available essen tia lly  all of the 
term s required to evaluate the field-energy of the 
cavity (2.12): the configuration factors given by
(3.6) and the configuration-independent ferm ion en
erg ies o)s and cl)a and the gluon-field energies de
noted by W,  computed according to the variational 
procedure given in I. The se lf-en ergy  contribution 
•Eseif requires special treatm ent, which we describe  
here. The sam e treatm ent was adopted in I.

The complete quark se lf-en ergy  to second-order  
in the color coupling constant is evaluated by sum 
ming diagram s of the type [Fig. 1(h)] for all p o ss i
ble interm ediate sta tes. The quark self-energy

contributions perform three important functions in 
the bag:

(i) They provide the co lo r-e lectr ic  field compo
nent needed for the co lo r-e lectr ic  field  to satisfy  
the linear boundary condition. This component 
a r ises  from the diagram in which the ferm ion o r
bital rem ains unchanged in the interm ediate state.

(ii) For m assive ferm ions they generate an in
finite m ass renorm alization. This infinite term  
a r ises  from the short-distance free-fie ld  singular
ity in the ferm ion and gluon cavity propagators. 
(For m a ssle ss  quarks this infinite term is  absent.)

(iii) They produce a fin ite-cavity  Lamb shift 
which is  orbital, m ass, and shape dependent.

Previous phenomenological work in the sta tic-
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cavity approximation7 has made use of only the 
f ir st two of these functions for computations with 
spherical cav ities. In the work of Ref. 7 the f i 
nite part of the zero-point energy of the field s in a 
sphere of radius R  is  introduced with a term

E 0 = - Z j R  , (4.1)

where Z 0 is  determined phenomenologically by ad
justing the m asses of the states. For m a ssle ss  
quarks, the cavity Lamb shift has the sam e form . 
Thus, one might say in partial defense of the pro
cedure of Ref. 7, that the Lamb shift has already 
been absorbed in the determination of Z 0; what was 
called the zero-point energy is , in fact, a com bi
nation of zero-point energy and Lamb shift:

- Z 0/ R  = - Z '0/ R  + J 2 ^ i 5« i  . (4-2)i

where n t is  the quark-occupation number of orbital
i, 5 o i j  is  the corresponding Lamb shift, and Z 0 is  
the true zero-point energy param eter for the 
sphere. Thus the effective value of Z 0 could well 
be different for m esons and nucleons which have 
different quark numbers. Although choosing d iffer
ent values for these two sp ec ies might w ell im 
prove the m ass calculations, there is  no com pell
ing reason to do so, given the nature of other ap
proxim ations of the model. A phenomenological 
determination of 5cl>; is  not called  for at present.

To compute the finite Lamb shift theoretically  
involves a summation over all interm ediate fe r 
mion and gluon states, a task which is apparently 
not possib le in closed  form for the sphere, and all 
the m ore hopeless for cavities of general shape. 
However, som e ingenuity12 may provide an indica
tion of the shape dependence of these term s.

We have explored the possib ility  of evaluating 
the spherical-cavity  Lamb shift for the two orbitals 
of present in terest by summing over a few lowest - 
energy ferm ion interm ediate states. The se r ie s  
does not appear to converge very rapidly in the co 
variant gauge although it was felt that in this gauge 
convergence would be m ore rapid than in others.13 
However, an interesting qualitative feature 
em erges which is  relevant to the two-orbital treat
ment of quark separation. The substantial negative 
m agnetic-dipole term s in the diagonal transition  
S i / 2-S i / z -S l j 2 are nearly cancelled by the electric  
dipole and magnetic-quadrupole term s in S l /2- P 3f 2- 
S l/2 when all perm issible values = |  and \  occur 
in the interm ediate state. The corresponding 
statem ent is a lso  true for the P 3/2 level. Thus if 
only these two orbitals appear, the resu lting cavity  
Lamb shift is  le s s  than 10% of the magnitude of the 
individual term s. (Of course higher contributions 
may w ell alter this resu lt.) Thus for want of any 
better procedure short of an exhaustive study of

this problem, in what follow s, we shall restr ic t  
our attention to these two orbitals and assum e this 
cancellation takes place in the sphere. We may 
then accept the param eterization of the zero-point 
energy of Ref. 7 (and the other param eters) at face  
values and put

6ws(sphere) = 0 , ^

5a>jl(sphere) = 0 ,

so that Z 0 is  the sam e for both m esons and bary
ons.

Having established a procedure for treating a 
spherical cavity, let us consider other shapes. 
Obviously, if the cavity should divide into two 
spheres, for consistency, the descriptions should 
correspond in each sphere to what we have already  
established for one. Here an interesting and im 
portant constraint on the handling of se lf-en erg ie s  
em erges. When the cavity divides into two spheres, 
the orbitals S and A become degenerate linear 
combinations of S-type orbitals for the left and 
right sp heres. Let us ca ll these individual orbitals 
S^andSjj. Obviously, the electric-m onopole term s  
in the se lf-en ergy  diagram s SL-SL -SL and SR-SR-SR 
are needed in order to sa tisfy  the linear-boundary  
condition for the color-electric fields in the indi
vidual spheres. If we reexp ress these contribu
tions in term s of the orbitals S and A we discover  
that we are actually computing the e lec tr ic  part of 
the off-diagonal se lf-en ergy  term s S-A -S an dA -  
S-A together with the diagonal contributions. Thus, 
for the fissioning cavities, the e lec tr ic  part of the 
S - A - S  andA -S-A  se lf-en ergy  term s are essent ial  
in providing for the confinement of co lor-electric  
flux. Notice also , that the magnetic term s in the 
diagonal contribution SL-SL -SL and S R-SR-SR must 
now, according to our prescription for the sphere, 
be cancelled by higher term s of the type SL-AL -SL, 
etc . These new interm ediate states correspond  
in the language of the single cavity to s t ill  higher 
orbitals with more modes which we have not con
sidered.

Further evidence for the physical importance of 
the e lectr ic  term s in S - A - S  and A -S-A  may be 
found by considering the separation of a quark and 
antiquark in a long cavity as d iscussed  in I. In this 
configuration one might expect that for large se p 
arations of the quarks, the c la ss ic a l resu lt would 
be obtained—namely, that the field  energy is that 
of two opposite c la ss ic a l charges separated by an 
appropriate distance, with field  lin es confined to 
the cavity. If the charge distribution is  described  
in term s of the orbitals S and A , a careful exerc ise  
in bookkeeping reveals that only half of the r e 
quired field  energy a r ise s  from gluon-exchange 
diagram s.10 The other half com es from the s e lf 
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energy term s—in particular, the e lec tr ic  term s  
in S -A -S and A -S - A .

To sum m arize, therefore, in the notation of 
(2.18) we must have in the two-bag lim it

5u>s = Cwx- “ Wm  . (4.4)

Having established the two lim its (4.3) and (4.4), 
we seek  a smooth interpolation between them.
Since we have not carried  out the full quantitative 
analysis of the se lf-energy  se r ie s , we make what 
appears to be the m ost straightforward interpola
tion based upon a truncation of the se r ie s  at the 
low est two orbitals, regarding these orbitals as 
essen tia lly  degenerate. We shall find that with 
only minor m odifications the two-orbital exp res
sion (2.18) can be used for the interpolation. The 
m odifications which we require involve enforcing
(4.3) explicitly , and arranging for the spherical 
Symmetry of the S1/2 Lamb shift. These are now 
d iscussed .

Our analysis of the gluon fields provides con
tributions from the four transitions S-S-S , S-A-S,  
A - A - A ,  and A -S -A  in which the interm ediate quark 
orbital has a magnetic quantum number | m s | 
and in which the states S and A are taken to be 
degenerate. In the sphere, the state A is  inden- 
tified with P 3/2 and there are two other states  
with |m ,| =1 with which it is  exactly degenerate.
As the sphere is  distorted into a prolate ellipsoid  
the magnetic term s in S-S-S  and A - A - A  fall off. 
This can be seen  in F ig. 2, curve (a) where the 
quantity - ( ^ St+ 2WUSL) /a  is  displayed for cav
itie s  of ellipsoidal shape with unit equatorial radius 
and a range of values of the polar radius d. This 
quantity is  proportional to the negative of the con
tribution from  the magnetic term s in S-S-S. The 
curve (b) displays ~(WMAt+ 2WMA1) /a  correspond
ing to the negative of the magnetic term s in A -A-A.  
The spin-independent £ 1>0 electr ic  term s in S-A-S  
and A -S-A  grow quite rapidly, because they rep
resent the field  produced by the separation of two 
opposite charges towards the poles of the ellipsoid . 
This term  is  displayed in the form (WEX+ WMX) /a  
as curve (c) of F ig. 2. The Eul  field produced 
by the transition S-A3/2-S,  i .e . ,  to the low est anti
sym m etric state with \ n i j l  = f ,  is  not computed. 
However, we can get som e feeling for the qualita
tive shape dependence of its  energy by resorting  
to the following argument: The form  of the trans
ition charge density is  that of two charges separ
ating lengthwise (parallel to the deformation axis) 
along the ellipsoid . Thus the field energy should 
fall with increasing length for long cav ities of 
fixed equatorial radius. For spherical shapes it 
can be shown that the total contribution from  in
term ediate states of all magnetic quantum num
b ers should exert a spherically sym m etric p res-

FIG. 2. Components of the se lf-en ergy  evaluated in 
the approximation of degenerate orbital energies for 
cavities of ellipsoidal shape with unit equatorial radius 
and of polar radius d (see  Sec. IV for details).

sure for the S1/2 leve l. The sam e is  not true for 
the P 3/2 level, however. Thus the derivative of the 
leve l shift for the S orbital with resp ect to length 
should vanish for spherical shapes. Our estim ate 
of the contribution from  this term  is  shown for 
ellipsoidal cav ities in F ig. 2(d) and the resulting  
total contribution Fig. 2(e) of F igs. 2(c) and 2(d) 
is  seen  to have minimum at the spherical shape 
d = l .

Since the se lf-en ergy  contributions that we can 
compute and estim ate already have nearly the de
sired  qualitative behavior, we take them with 
sm all modification and w rite the se lf-energy  (cav
ity Lamb shift) as follows:

5 ws =^[(W £ x + WMX) +Cl«/rf2/e0

+ {Wu s ,+ 2Wusl )xc2], (4.5a)

Sa>A= $  [(Wex+ Wmx) + (WMAa+ 2WUAl)xc3 , (4.5b)

x -  1 -  (1 - n / d f  . (4.5c)

The term s WEX, WMX, etc . are defined in Sec. II. 
The leve l shift for the S orbital is  com prised of 
three parts gr6uped in [4.5(a)]. The first term  
gives the positive, spin-independent contribution 
from the S-A-S  transition and corresponds to the 
£ li0 component in the sphere [Fig. 2(c)]. The se c 
ond term  estim ates the contribution from  the other 
term s, including those corresponding to the £ x>1 
and components in the sphere [Fig. 2(d)],
[We have omitted severa l sm all term s in (2.18).] 
The geom etrical param eters n and d are defined 
in Sec. II. The param eter R0 is  the maximum value 
attained by p on the surface (2.3). The constant 
cL is  adjusted so that 6E s is  minimum for the 
sphere, as d iscussed  above ( c ^  0.081). The third 
term  in [4.5(a)] represents the magnetic contribu
tion from  the diagonal S-S-S  transition [Fig. 2(a)] 
with a coefficient x  which supp resses this term  as
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fiss ion  takes place (« /d  —0). The constant c2 is  
adjusted so  that the level shift vanishes exactly  
for the sphere (c2 = 1.34). The level shift for the 
A  orbital is  constructed in such a way that it a lso  
vanishes for the sphere (c3 = 0.93). Both constants, 
c2 and c3, are nearly equal to unity sin ce the de
sired  cancellation is  nearly automatic. The net 
contribution to the field energy of the cavity is  
weighted by the occupation number. Thus

Est i! = ns 5u s + nA6wA , (4.6)

together with (4.5) takes the place of (2.18).
We fee l that this treatm ent of the level shift 

represents the m ost straightforward approach 
which provides an expression  consistent with our 
qualitative expectations for the behavior of the 
self-energy  and with the d esire for a minimum of 
com plication. Of all contributions explicitly in
corporated into the model it  is  the m ost uncertain, 
and it offers the greatest theoretical challenge.

V. RESULTS AND DISCUSSION

Calculations w ere carried  out following the sam e 
variational procedure as in I. For the co lor-cou 
pling constant and bag-pressure constant we have 
used the values ac = 0.54 and B l/4= 145 MeV, e s 
sentially the sam e as w ere used in Ref. 7. These 
and the constant norm alizing the zero-point energy 
d iscu ssed  in I give the correct m asses of the nu
cleon and A, a m atter of obvious importance to the 
present calculation.14

The present calculation re fers to a six-quark  
system  with total isospin  zero , spin one, and spin 
projection one on the deformation ax is. The result 
of m inimizing the energy at a fixed value of the 
separation param eter 6 (2.5) is  presented in Fig.
3 (solid  curve). The m ass of two noninteracting 
nucleons has been subtracted to give the interaction  
energy shown. The interaction is repulsive for 6 
s  0.35 fm and exhibits a “ soft” repulsive core at
taining a maximum repulsion of ~285 MeV at zero  
separation. The interaction is  attractive at in ter
mediate range 6 2 0.35 fm, with maximal attraction  
appearing at 6 = 0.8 fm at ~ -1 8 0  MeV. The energy 
r is e s  above that of two nucleons at 6 < 1.4 fm —this 
la st feature is  believed to be an artifact of the cav
ity geom etry (2.3) sin ce it occurs for cavity vol
um es considerably larger than that of two nucle
on s.15 (At 6 = 1.4, BV  «  600 MeV compared with 
B V  «  470 MeV for two nucleons.) The two-nucleon  
volume is reached at 6 « 1  fm when the cavity has 
a slightly nonspherical geom etry. The one-pion  
exchange potential16 for two pointlike nucleons sep 
arated by the distance 6 is  a lso  plotted in Fig. 3 
for com parison. It is  striking that in the region 1 
<6 < 1.2 fm both expressions for the interaction en-

S (fm)

FIG. 3. Two-nucleon interaction energy (MeV) vs 
separation param eter <5 (fm) for the six-quark system  
w it h /= 0 , S = l ,  \ms |= 1  (solid  line with c irc le s), com 
puted variationally at fixed separation. Shown for com 
parison are the one-pion-exchange potential (Ref. 16) 
(solid line) and the interaction energy computed varia
tionally at fixed quadrupole moment (dashed line and 
plus signs).

ergy are m ore or le s s  in agreem ent. Presum ably  
this value of 6 is  the best choice for the change
over from  the six-quark to the two-nucleon de
scriptions.

The existence of a repulsive core in the sin gle
orbital six-quark system  has already been noted 
for spherical sh apes.7 It is  due to a repulsive 
m agnetic-gluon interaction (the sam e repulsive  
effect that makes the A m ore m assive than the nu
cleon) in the configuration in which a ll quarks oc
cupy the sam e spatial orbital. The repulsive core  
a lso  depends critica lly  on the presence of a nega
tive zero-point energy as proposed in Ref. 7, since  
this term  serv es to lower the two-nucleon m ass  
relative to the energy of the spherical, s in g le -o r
bital six-quark system . The repulsion is  still 
greater in isotrip let states.

The interm ediate-range attraction obtained in the 
present calculation could not have been predicted  
without a quantitative calculation. Although the 
color-m agnetic repulsion of the single-orbital sy s 
tem is  expected to diminish, as separation into 
two orbitals takes place, this effect alone is  not 
strong enough to resu lt in attraction. Instead, an 
examination of the magnitudes of the various ener
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FIG. 4. Cavity geom etrical param eters (2.3) vs the 
constrained separation param eter 6.

CM
£*v-
o

8 ( f m)

FIG. 5. Configuration-mixing param eter (n) and 
baryonic quadrupole moment Q as a function of the con
strained separation param eter.

gy contributions suggests that the main cause of 
the effect is  a strong co lor-electrosta tic  attraction  
within the quark trip lets (see below).

The quark trip lets are quite w ell organized at 6 
= 1.2 fm with the configuration-mixing param eter 
H »0 .75  corresponding to a 25% overlap in left and 
right orbitals. Thus the dominating factor in the 
long-range interaction appears to be the cavity 
geom etry, as we have argued above, with quark 
interchange playing a secondary role.

We display the geom etrical factors for the cavity  
shape in Fig. 4. The expression  for the se lf-e n e r 
gy (4.5) has the tendency to make a negative 
(~ -0 .5 )  at zero  separation. This effects low ers  
the overall repulsive maximum by about 30 MeV. 
Since it was judged to be an artifact of the approxi
mation (4.5), and in any case within the error ex 
pected in the computation, we have for the sake of 
sim plicity forced a »  0. (In obtaining spherical 
sym m etry for the ^1/2 -sta te  Lamb shift, the a -d e 
pendence was not taken into account.) Thus for 
distances 6 & 0.5 fm the cavity shape rem ains 
spherical (to within 5% in the ratio of the major to 
minor radius) and shrinks in radius with in creas
ing 5. A nonspherical shape appears only when the 
energy is  c lo se  to minimum, after which the cav
ity becom es rapidly elongated. F ission  occurs 
when w — 0 and a — For values of a « 1, the max
imum cylindrical radius attained is  given by n.
The corresponding value for the nucleon is  about
1 fm, only slightly le s s  than that attained by the 
six-quark bag after reaching the energy minimum. 
It is  interesting to note that the cavity sem im ajor

axis d r is e s  above the bag-nucleon diameter (2 fm) 
at 5 = 1.2 fm, and is  consistent with our previous 
reasoning that with an improved cavity geometry, 
fission  would occur near this point.

In Fig. 5 we show the configuration-mixing pa
ram eter as a function of the separation param eter. 
It is  a m easure of the degree of separation of the 
left and right orbitals. It is  interesting that at the 
energy minimum it has already attained a value of
0.5 and r ise s  rapidly to 1. F ission  cannot take 
place until M = 1, since only then are the left and 
right c lu sters color sin glets. A lso  shown in Fig.
5 is  the baryonic quadrupole moment as a function 
of the constrained separation.

The baryon number density is shown in F igs.
6(a), 6(b), 6(c) for three choices of separation, and 
in Fig. 6(d) the density for two noninteracting 
spherical nucleons is  shown for comparison. The 
development of concentrations of quarks in the two 
halves is  w ell pronounced in Fig. 6(c).

The various contributions to the energy are ana
lyzed in F igs. 7 and 8 and Table II. The total field  
energy (exclusive of the zero-point energy) and 
volume energy follow rather c losely  the total ener
gy, with the volume energy (and therefore the vo l
ume) reaching a minimum at a sm aller separation  
than the total field  energy. The zero-point energy 
has a rather weak separation dependence but gen
era lly  d ecreases. The severa l contributions to the 
field  energy are shown in Fig. 8. The ferm ion k i
netic energy actually r ise s  steeply as the quark 
trip lets are localized  and the volume is  reduced in 
passing from the repulsive core to the minimum.
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FIG. 6 . Curves of equal baryon density (baryons/fm 3) in a full longitudinal cro ss  section of the six-quark bag 
at various constrained separations: (a) 6  = 0; (b) 6  = 0.8 fm, minimum energy; (c) 6  = 1.4 fm; (d) Two noninter
acting nucleons for com parison. Scale markings are in 0.5 fm.

The predominantly color-m agnetic contributions 
from the diagrams (c, d, and e) in Fig. 1, so la 
beled in F ig. 8, show a mild d ecrease, turning neg
ative, as they should for the nucleon configuration. 
The term s which drive the attraction are evidently 
the gluon-exchange diagrams of F igs. 1(f) and 1(g), 
shown in curves with the sam e labels in Fig. 1.
The dominant contribution to these term s a r ises  in 
turn from co lor-e lectr ic  fields generated by the 
A - S  transition. It is  p rec ise ly  the sam e term s 
which give r ise  to the strong attraction between 
quark and antiquark in I that produce the strong  
co lor-sin g let condensation here. As a sim ple i l 
lustration of this condensation phenomenon, con
sider the elem entary problem in quantum mechan
ics of two spherical infinite-potential w ells barely  
connected and containing two electrons and two 
positrons. The ground-state orbital is  nearly de
generate, consisting of one sym m etric and one 
antisym m etric spatial orbital. From these one 
may construct left and right orbitals as in (2.4).
All particles can be placed in the sym m etric orbit
al, or a positron and an electron can be placed in 
the left orbital and the other pair in the right orbit
al. The latter configuration has a lower e lectrosta t

ic energy because the attracting m em bers are more 
strongly correlated. A sim ilar effect occurs in a 
spherical cavity, but the lack of degeneracy in this 
case means that the increased electrostatic attrac
tion must compete with an increased kinetic energy 
due to the localization of the particles. In the s ix -  
quark bag the co lor-electrosta tic  attraction is  very  
strong and has no trouble in overcom ing the in
crease in kinetic energy due to the localization of 
the quarks as can be seen  in Fig. 8.

The se lf-en ergy  contribution (right sca le in Fig.
8) grows sharply as soon as the cavity elongates.
It is  zero for spherical shapes according to the 
prescription of Sec. in. Thus the shape of the 
curve of Fig. 3 up to separations of 0.5 fm is un
affected  by the approximation (4.5). If we restr ic t  
our attention to purely spherical shapes with no 
se lf-en ergy  included, an energy minimum occurs 
at about the sam e separation, but about 20 MeV 
higher. Varying the shape can only lower the r e 
sult. Thus we have established an upper bound on 
the interm ediate-range minimum at about -1 6 0  
MeV in keeping with the assumption (4.3) that no 
net Lamb shift occurs in the sphere. This result 
could be changed, however, if it develops that e i-
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FIG. 7. Total field energy (excluding zero-point ener
gy), volume energy, and zero-point energy of the s ix -  
quark bag as a function of constrained separation S.

ther orbital is shifted, since it obviously depends 
upon a rather important compensation between the 
orbital kinetic energy and the electrostatic in ter
action energy. However, there is  hope that the full 
Lamb shift can be evaluated more readily for 
spherical geom etries; in that event this method of 
obtaining an upper bound may well prove to be u se
ful. The behavior of the se lf-energy  at 62  0.5 fm 
has an important effect on the total energy: It is  
essen tia l to include it if f ission  is to take place. At 
the point of fission  n — 1, and the se lf-en ergy  con
tribution cancels the electrostatic contribution of 
graphs (f) and (g) of Fig. 1. To see  to what extent 
the cancellation is  taking place prior to fission  in 
our treatment, we present in Fig. 9 the total of all 
gluon contributions to second order. The value for 
two nucleons is  -3 1 0  MeV, or about 200 MeV above 
the values of Fig. 9 at the largest separations.

If we allow for a reasonable 30% error in the de
termination of the se lf-energy  from the approxima
tion (4.5) we see  that there could be an error of 
50-100  MeV in the resu lt for the energy at 52  1 fm 
but an error of S30 MeV for SS 0.7 fm . These e r 
rors are larger than the next largest expected con
tribution, namely, an error of approximately 10% 
in the variational determination of the gluon-ex
change en ergies, due to the neglect of the S-A en
ergy difference. (We do not attempt to estim ate  
errors due to the choice of the m odel—the sta tic-  
cavity approximation, the neglect of quark-anti- 
quark pairs, the effect of h igher-order gluon con-

8 ( f m )

FIG. 8 . Energy contributions corresponding to the 
graphs of Fig. 1 plotted vs constrained separation 6 . 
The labeling is  the sam e as in F ig . 1.

tributions, etc.)
When the sam e calculation is carried out at a 

fixed baryonic quadrupole moment (2.5) an inter
esting resu lt appears and is  shown in Fig. 10 and 
Table III. Because arbitrarily negative quadrupole 
moments may occur, a different aspect of the 
"short-range” interaction can be explored. In this 
case there appears to be an infinitely repulsive 
core (the computation was stopped when the curve 
reached about +1 GeV with no sign of a maximum). 
As the quadrupole moment is  decreased from zero, 
the separation param eter (at constrained values of 
the quadrupole moment) begins decreasing very  
slowly (possibly to a lim it) and the cavity develops 
an approximately oblate ellipsoidal shape. The 
larger negative values of the quadrupole moment 
are attained by a sim ple scaling-up of the bag di
m ensions. For oblate shapes there is  a natural 
negative quadrupole moment. The volume in creases  
accordingly and gives the large values for the energy.

It is  interesting to replot the quadrupole-con- 
straint curve as a function of the separation pa
ram eter. This is  done in Fig. 3 (the plus signs and 
dashed line). When this curve is compared with 
what was obtained using only the separation param 
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TABLE H. Energy contributions, baryonic quadrupole moment Q, and m ixing param eter  
H at various values of the constrained separation 6 for the six-quark state 1=0 ,  S = 1,
| m s | =1. A11 energ ies are in MeV. £  quark is the kinetic energy of the quarks, £  cde, £ f, £ g , 
£(,, the contributions of the graphs of the sam e label in F ig. 1, and £ 0) the zero-point energy. 
The la st line g ives the corresponding param eters for two nucleons.

6  (fm) Q ( f a 2) E  quark £  cde % £ g B V Eo E  to!

0.00 0 .00 0 .000 1853 39 0 0 - 5 537 - 2 7 8 2147
0.08 0 .00 0 .007 1863 40 0 - 1 5 - 5 529 - 2 7 9 2133
0.14 0.00 0.026 1902 40 - 3 -5 6 - 5 500 - 2 8 5 2093
0.24 0.02 0 .073 2013 36 - 2 2 -1 6 0 - 5 435 -2 9 8 2000
0.36 0.06 0 .159 2203 21 - 9 1 -3 1 8 - 5 370 -3 1 4 1866
0 .45 0 .10 0 .233 2297 5 - 1 5 5 - 4 0 2 - 5 362 -3 1 7 1786
0.50 0 .13 0 .284 2330 - 5 -1 9 1 - 4 3 6 - 4 370 - 3 1 5 1750
0 .62 0.28 0 .373 2387 - 1 7 - 2 6 1 -4 9 7 34 377 - 3 1 9 1704
0.70 0 .43 0 .434 2410 - 2 1 -3 0 7 - 5 3 5 78 384 -3 2 3 1686
0 .81 0 .61 0 .516 2386 - 2 6 - 3 4 7 -5 6 5 130 420 - 3 2 0 1679
0 .95 0 .87 0 .651 2345 - 2 7 -3 8 3 -5 8 2 190 478 -3 1 3 1708
1.11 1.27 0 .721 2297 - 2 7 -4 5 1 -6 3 6 367 527 -3 2 2 1756
1.25 1.76 0 .760 2258 - 3 2 -5 1 6 -6 8 7 553 570 -3 3 5 1810
1.38 2.22 0 .824 2251 - 3 0 - 5 8 9 -7 5 4 744 596 -3 5 1 1865
1.53 2 .75 0 .850 2208 - 2 2 -6 5 7 -8 1 0 929 644 - 3 6 4 1929
1.62 3.14 0 .872 2195 - 1 6 -7 3 0 - 8 8 1 1110 668 -3 7 9 1968

OO 1.000 2448 - 3 1 2 0 466 - 7 3 4 1868

eter as a constraint, we expect that the energy  
should be increased at a given value of 5 when the 
quadrupole constraint is  imposed in accordance 
with the variational principle. Indeed this resu lt 
is  obtained. But we also find a remarkable agree
ment between the two curves at large separation. 
Agreem ent should be exact at the overall minimum, 
since here no constraints are im posed. But the 
fact that this agreem ent p ers ists  to within 10-20  
MeV at a ll separations larger than the minimum  
suggests that the baryonic quadrupole moment and 
separation param eter may be regarded as equiv
alent variables in this range. For separations 6 
S 0.5 fm the variables depart drastically. A s im i
lar effect is  seen  when the points from the curve 
generated by constraining the separation are plot
ted as a function of quadrupole moment (see Fig. 
10). The curves agree for Q sO .l fm2, but the sep 
aration constrained points r ise  to 280 MeV at zero  
quadrupole moment.

Which of the two co llective variables to use (or 
whether both should be used) is  a m atter which can 
be answered only in a dynamical study. E ssentially  
what is  expected is  that in a many-param eter de
scription the variable which lie s  more nearly on 
the trajectory of “least resistan ce” as the system  
clim bs out of the potential minimum is the best 
candidate for a single collective coordinate. Since 
we have not carried  out the m ultiparam eter calcu l
ation, we cannot draw any firm  conclusions.

A number of future lines of research  are sug
gested by these resu lts:

(1) One is  the investigation of other channels.
With resu lts for 7 = 0, S = l ,  Ms = 0, and the isotrip 
let channel it should be possible to isolate the spin- 
spin, tensor, and central components of the two- 
nucleon interaction.

(2) There is  the interesting question of developing

8 (fm)

FIG. 9. The total contribution of gluon exchange and 
estim ated self-en ergy  to second order vs the constrained  
separation 6 .
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Q (fm 2)

FIG. 10. Two-nucleon interaction energy vs the con
strained baryonic quadrupole moment Q (fm2) for the 
six-quark system  with /=  0 , S= 1 , {ms |= 1  (solid line 
with c irc le s). Shown for com parison are the one-pion- 
exchange potential (Ref. 16) (solid line) and points from  
Fig. 3 plotted as a function of Q (dashed line and plus 
signs).

TABLE HI. G eom etrical param eters and total energy  
of the six-quark system  with I  = 0 , S = 1 , | m s | = l ,  com 
puted at a fixed value of the baryonic quadrupole mo
ment. G eom etrical param eters are defined in Sec. H.

Q (fm2) 6 (fm) £tot (MeV) d (fm) n (fm) a

-0 .7 2 0.48 2213 1.40 1.75 -0 .3
-0 .6 4 0.50 2162 1.36 1.70 - 0 . 2

-0 .6 0 0.49 2 1 2 1 1.32 1.65 - 0 . 2

-0 .1 3 0.53 1828 1 . 2 1 1.34 - 0 . 2

0.14 0.58 1724 1.19 1.19 - 0 . 1

0.19 0.65 1714 1 . 2 0 1 . 2 0 - 0 . 1

0.49 0.77 1686 1.28 1.17 0 . 0

1 . 2 1 1.05 1742 1.49 1.15 0 . 2

1.75 1 . 2 2 1812 1 . 6 8 1 . 2 0 0 . 2

2.32 1.39 1886 1.79 1 . 2 0 0.4
2.95 1.56 1951 1.91 1.19 0 . 6

3.54 1.69 2014 2 . 0 2 1.19 0 . 8

a dynamical description for the six-quark compo
nent of the deuteron at short range. From this the 
various static properties of the deuteron can be 
calculated.

(3) Adding the A A component could help to resolve  
the question of its significance in the two-nucleon 
interaction.

(4) The deep-inelastic structure function for 
electron scattering from deuterons depends very  
sensitively  upon the six-quark nature of the state11 
for values of the scaling variable in the range 1 
s * < 2 .  A better understanding of this component 
of the deuteron wave function may not help much 
in extracting information about the structure func
tion of the neutron, but could be used to make a 
direct com parison between theory and experiment 
for the structure of the deuteron.

(5) The strong co lor-electrosta tic  condensation 
observed in the six-quark bag is  undoubtedly of 
relevance to an understanding of the transition from  
high density to low density in neutron stars.

ACKNOW LEDGM ENTS

Prelim inary work was carried  out at the Stanford 
Linear A ccelerator Center and the Los Alamos 
Scientific Laboratory. The hospitality of the SLAC 
theory group and the LASL T -8  division is  grate
fully acknowledged. I would like to thank my p res
ent and past colleagues at the Center for Theoret
ical Physics, and in particular Alan Chodos, Bob 
Jaffe, Ken Johnson, Arthur Kerman, Jeffrey Man
dula, E rnest Moniz, John N egele, and Charles 
Thorn for d iscussions which contributed to many of 
the ideas behind this work.

APPENDIX: COMPUTATION OF CONFIGURATION 
FACTORS

We describe here the computational procedure 
used to evaluate the expectation value of the con
figuration dependent operators (2.17) on the s ix -  
quark state defined in Sec. III. Since we were 
unable to find a sim ple analytical approach that 
gave all of the desired m atrix elem ents, it was 
n ecessary  to use a high speed computer. The r e 
su lts are consistent with a number of sim ple tests .

The method of computation was essen tia lly  by 
direct use of the anticommutator algebra of the 
ferm ion creation and annihilation operators; this 
is  the m ost foolproof method. Computation was 
made more efficient through use of the following 
device: Products of spin and color generator ma
tr ices can be expressed  in term s of permutation 
operators

\ a\ a -  0 TD\ 2 (Al)
1 2  ~  12 “  3 *
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In each case the product of m atrices acts on a di
rect product b asis of spinors and the permutation 
operators P"2 and P*2 interchange spin and color 
labels of the spinors in the two b ases. Thus the 
internal sym m etry part of the matrix elem ents in
(2.17) can be evaluated in term s of the complete 
se t of operators

Pl2°l°l ,  P h ,  Pvt,  <7lV> 1 ■ (A2)

These, of course, are multiplied by the quark 
creation and annihilation operators which depend, 
in addition, on the spatial orb itals. The computa
tion proceeded by considering one by one the s ix -  
quark term s in the definition of the state (3.4). 
Since the operators (2.17) with the replacem ents 
(A2) m erely had the effect of rearranging orbital, 
spin, and color labels with a particular weighting, 
it was then a straightforward bookkeeping matter 
to compute the inner product of the rearranged  
term  with the full configuration and to tabulate the 
sum for a ll of the six-quark term s. The resu lts  
are given in Sec. Ill and Table I.

The following consistency checks may be applied 
to the resu lts:

(i) For general values of ( i, interchanging the 
ro les  of S and A is  equivalent to replacing pL — 1 / /x 
in all term s, including in the norm alization factor 
N.  This condition equates coefficients of ji" to co 
efficients of /j.6"1 between the pairs

(Csz, C Ai), (CS i, C Ax), (ns, nA) ,

and internally in a ll other term s in (3.6). When ix 
= 1 it follow s that

Csz — Ci Csi -  C t (A3)

(ii) Because the state is  a color singlet, the color 
Casim ir operator has the value

<(&sV & s + &IV&a)2>=0 . (A4)

No normal ordering is  intended here. Using sym 
m etry properties under S — A  it can be shown that

(bs \  bsb g \ abs) -  {b AX.ab AbA\ ab A)

= ~ibAXabAbs \ abs) (A5)

This resu lt, used in (2.16), ensures that only the 
difference in the e lec tr ic  fields and charge densit

ies for the S-S and A -A  transitions appears in the 
expression  for the energy.

(iii) In the lim it fi = 0 the s ix  quarks are all in 
the S orbital and the resu lts of Ref. 7 should hold. 
In particular

ns = 6 ,

Cst +Csi_ = -  ^  >
(A6)

and all other coefficients vanish. The latter iden
tity follows since the sum of the two coefficients 
gives the expectation value of 3 0 ^ ^ !  ° a2 as com 
puted by Ref. 7.

(iv) In the lim it fj. = 1 the six  quarks divide into 
two trip lets with quantum numbers of nucleons, 
each in orthogonal orbitals. The following identit
ie s  must hold in order that the computation repro
duce the resu lt for two nucleons:

ns = nA = 3 , (A7a)

Csi+Cjj. +CSA* +CSAi +CXz0+CXL0
+ CX2i +CXLd+ C A, + C AL= 2 X 1 6 ,  (A7b)

CX0+Cxd+G(f ) = 0 . (A7c)

The second identity follow s since the combination 
reproduces the sum of the expectation of 6aJa,“ct • a2 
on each “nucleon” . The third identity follows from  
the co lor-sin g let property of the two trip lets.

(v) When /j. =1 further identities follow from the 
co lor-sin g let property of the trip lets. If we write 
(suppressing internal-sym m etry labels)

- b . - i b r -  b a + be

then a single gluon cannot be exchanged between 
the two “nucleons” :

( : b l x acr3bLbl x ao3bR :) = 0 ,

( : b lx ao l bLb l \ aoLbR :) =0 ,

whence it follow s that for = 1

Csi +CAl. +CSAe — CX2i — CX, Q = 0 ,

Csj. +C al +CSA1 — CXLd — Cx±0 = 0 .

We do not claim  to have found an exhaustive lis t  
of identities, but those presented here served  as a 
useful consistency check for the computed resu lts .
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