
Synchronous Elasticization: Considerations For Correct
Implementation and MiniMIPS Case Study

Eliyah Kilada, Shomit Das, Kenneth Stevens
University of Utah

{Eliyah.Kilada, Shomit.Das}@utah.edu, kstevens@ece.utah.edu

Abstract—Latency insensitivity is a promising design paradigm in the
nanometer era since it has potential benefits of increased modularity
and robustness to variations. Synchronous elasticization is one approach
(among others) of transforming an ordinary clocked circuit into a
latency insensitive design. This paper presents practical considerations
of elasticizing reconvergent fanouts. It also investigates the suitability of
previously published as well as new join and fork implementations for
usage in the elastic control network. We demonstrate that elasticization
comes at a cost. Measurements of a MiniMIPS processor fabricated in
a 0.5 fim node show that elasticization results in area and dynamic and
idle power penalties of 29%, 13% and 58.3%, respectively, without any
loss in performance. These measurements do not exploit the capability of
pipeline bubbles that occur if one needs to have unpredictable interface
latency, or to insert extra bubbles into a pipeline due to wire delays. We
finally show the architectural performance advantage of eager over lazy
protocols in the presence of bubbles in the MiniMIPS.

Index Terms—SOC, Synchronous Elasticity, Latency Insensitive De
sign, MiniMIPS.

I. I n t r o d u c t io n

Any system on chip (SOC) consists of a set of modules that not
only perform individual functions, but also need to communicate with
other modules. This communication may be in the form of either data
or control signals. Sometimes, the communicating modules may be
quite distant on the chip. The conventional synchronous circuit reads
inputs and writes outputs at every clock cycle. The basic assumption
is that computation and data transfer must be completed in exactly
one clock cycle [1]. This places a very rigid timing constraint on
the system, especially in the case where very long interconnects are
involved. It is well known that metal wires do not scale as well as
semiconductor gates. In fact, the resistance capacitance (RC) delay
for metal wires per unit length is degrading with every new process
generation [2], [3], [4], This, in turn, increases the percentage of the
clock cycle consumed in interconnect delays. Interconnect latency is
affected by its dimensions as well as metal layers used, crosstalk
(mainly determined by interconnect position in the chip), and power
supply drop variations, among other layout specific factors [4]. This
means that accurately evaluating the actual latency between modules
is an issue that can only be resolved late in the design process.
Moreover, over compensating for the delay due to wire effects can
lead to sub-optimal designs [4],

Latency insensitive (LI) design tackles this issue by separating
the computation and communication paradigms by creating a flexible
protocol for communication between modules [5]. LI designs are able
to tolerate interconnect latency variations without affecting the system
functionality. This facilitates IP reuse and also ensures that system
functionality depends only on modular correctness and not on the
timing of the communication channels.

Synchronous elasticization is one approach (among others) of
transforming an ordinary clocked circuit into an LI design [6], [7],
[8], This paper focuses on a clocked elastic protocol called the
Synchronous Elastic Flow (SELF) protocol [6]. Synchronous elastic
circuits are comparable to asynchronous designs in that they are

Fig. 1. An EB implementation.

robust to arbitrary channel latencies. Besides, they can be easily
designed with conventional design flows using static timing analysis

A. Contribution

Practical considerations of elasticizing reconvergent fanouts are
introduced. The suitability of different published, as well as new, join
and fork implementations for usage in the elastic control networks are
investigated. The cost of elasticizing a small microprocessor design is
measured from fabricated chips, comparing area and power penalties.
The performance of the elasticized MiniMIPS microprocessor is
demonstrated when bubbles are inserted into the pipeline for different
lazy and eager fork and join protocols.

II. Sy n c h r o n o u s E l a s t ic A r c h it e c t u r e s

An elastic system comprises elastic modules and elastic channels.
Elastic modules are implemented using Elastic Buffers (EB) as
counterparts to the flip-flops in conventional clocked systems. There
are two parts to an EB implementation (Fig. 1), namely, data and
control planes. EBs can be broken down into two Elastic Half Buffers
(EHB) the same way a flip-flop can be replaced by a pair of master-
slave latches [8].

An elastic channel uses a pair of control wires, ‘valid’ in the
forward direction and ‘stall’ in the backward direction. These wires
implement handshaking between the source and destination entities
similar to the request/acknowledge wires in asynchronous systems
[9]. Valid is asserted by the source when it holds valid data. Stall is
asserted by the destination when it is not able to receive the data.
Hence, in the SELF protocol, the two control signals valid (V) and
stall (S) determine three possible channel states [6]:

• Transfer (V & !S) : The source sends valid data and the
destination can receive it.

• Idle (IV) : The source does not send valid data.
• Retr\> (V & S) : The source sends valid data, but the destination

can not receive it. The source sustains the valid data until the
destination is able to store the data.

Note that in the Retry state, the channel is allowed to stay in the
same state or move to the Transfer state. In particular, a transition

978-l-4244-6471-5/10/$26.00 ©2010 IEEE 7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276285956?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kstevens@ece.utah.edu

Fig. 2. F.lasticization of reconvergent fanouts.

from the Retry to the Idle state is not allowed in the protocol. Note,
also, the destination can stall even if the source does not send valid
data.

Similarly, an EB can be in one of three states depending on the
number of data tokens it holds. Following are the different states as
well as the corresponding values of the EB output control signals
(i.e., Vr and SI as in Fig. 1):

• Empty (!Vr & !SI) : The EB (or its two latches) holds no valid
data. An EB in the Empty state is frequently referred to as a
bubble.

. H alffV r & !SI) : The EB holds one data token.
• Full (Vr & SI) : The EB holds two data tokens.

An EB can be initialized in any of the above states based on its reset
wiring.

The first step in synchronous elasticization is to replace each
flip-flop in the original design with an EB. Latches can similarly
be replaced by EHBs. Following this step, communication between
registers of the original design are analyzed. Each register-to-register
data communication must be accompanied by a control channel
consisting of the valid and stall signals. A network of control channels
is then designed that reflects the data network. Join components are
used to join control channels targeting the same destination register
from multiple source registers. Fork components are employed when
a single source register communicates with multiple destination
registers. In this paper join and fork modules are designated with
the 0 and Q symbols, respectively.

Consider the reconvergent fanout between two registers A and B in
Fig. 2. Datapaths are drawn in solid lines while control channels (the
stall and valid signals pairs) are drawn in dotted lines. There are dif
ferent ways of elasticizing such a register-to-register communication.
Only one control channel is used for three reconvergent datapaths in
Fig. 2a. This design is optimum in terms of the total number of used
join and fork components (zero in this case).

However, modifications to the circuit of Fig. 2a are required when
one (or more) bubbles are inserted into the datapaths. For example,
consider the case when a bubble is required to be inserted at datapath
2. The circuit of Fig. 2a is modified in Fig. 2b by adding a bubble
into datapath 2 with its associated controller placed in series without
forks or joins. In this case, the control plane doesn't have sufficient
information to control the data flow in all three paths. Hence, the
circuit of Fig. 2b will malfunction.

In general, there is a need for one control channel for each datapath
where a bubble may be inserted. Thus a conservative, but correct,
way to elasticize reconvergent fanouts is to have a separate control
channel corresponding to each datapath. This way, bubbles can be
arbitrarily inserted in the design. A more efficient way - sufficient
for this example - is to have only two control channels to represent
the three datapaths; the first to control datapath 2 with the bubble, and
the other to control datapaths 1 and 3. This is illustrated in Fig. 2c.

Fig. 3 shows an example from our case study, the MiniMIPS
processor. MiniMIPS has four 8-bit instruction registers 11,12,13 and
14. These four registers are fed from the memory one at a time based
on the enable signal IRWrite. IRWrite is generated by the MiniMIPS
controller. Let ExMem and C be the names of the control channels
corresponding to the memory output data and the IRWrite signal,
respectively. Fig. 3b and 3c show two possible elasticization schemes
of that circuit. Fig. 3c is the optimum solution in terms of the total
number of join and fork components.

However, potential modifications to the circuit of Fig. 3c could be
required when one (or more) bubbles are to be inserted in one (or
more) datapaths. For example, consider the case when a bubble is
required to be inserted just before the data input D of 13 (on the
data wire x shown in Fig. 3a). For the circuit in Fig. 3b, that bubble
(or more accurately, its bubble controller) will be directly inserted
at the control channel x1. Yet, for the circuit in Fig. 3c, there is no
control channel in the control plane that corresponds to data wire x.
Thus inserting a bubble controller at channel x2 results in incorrect
functionality because it affects the control channels corresponding
to the datapaths of both MemData and IRWrite to 13. However, the
requested bubble at x is only in the datapath of MemData to 13
(i.e., IRWrite-13 datapath should not be affected). Hence, circuit of
Fig. 3c must be modified so that insertion of the required bubble (and
its controller) is possible. The modification is shown in Fig. 3d. The
bubble controller can now be directly inserted at control channel x3.
In conclusion, caution is required while trying to optimize control
channels when bubbles may need to be inserted.

IV. Fo r k A n d J o in Im pl e m e n t a t io n C h o ic e s

In this section, we present some existing, as well as, new fork and
join designs and discuss the correctness of combining them during
an elasticization flow.

A. Lazy Fork

The lazy fork does not propagate a (valid) data token from its stem
to its ready branches until all its branches are ready to receive it. We

III. Elasticization Of Reconvergent Fanouts

8 2010 18th IEEE/IFIP International Conference on VLSI and System -on-Chip (VLSI-SoC 2010)

Fig. 3. Control channels optimization example.

(a) A 1-to-n LFork. (b) A l-to-2 LKFork.

Fig. 4. Two lazy fork implementations.

say a branch is ready if its corresponding stall signal is zero. Besides,
the stem stalls if any of the branches stalls.

The lazy fork can be implemented in different ways. Fig. 4a shows
an implementation of LFork similar to the one reported in [6], [8].
We propose another implementation of the lazy fork in Fig. 4b. We
refer to it as LKFork. The valid signal of each channel is controlled
separately unlike the LFork. The valid signal on channel i. Vri, of
the 1-to-n LKFork is given by the following equation:

Vri = Vl. n S~ri
J I -.1 / '

while the stall on the source channel, Si. is defined as follows:

Si =] T Sr

(1)

(2)

Fig. 5. A 1-to-n eager fork EFork.

(a) An n-to-1 LJoin. (b) An n-to-1 LKJoin.

Fig. 6. Two lazy join implementations.

B. Eager Fork

The eager fork {EFork) will propagate valid tokens independently
on each output channel, while stalling the input channel, until all
output channels have accepted the data. Thus, when a (valid) data
token is available at EFork stem, it will immediately pass the token
to all its branches that are ready (i.e., not stalled), giving them an
early start. Fig. 5 shows an n output extension of the EFork in [6],
Because of the early start provided by EFork, it may result in some
performance advantage on the architecture level. However, this comes
at the expense of more area and power consumption.

C. Lazy Join

The lazy join must wait for all its input channels to carry valid
data until it asserts its output channel valid signal. Fig. 6a shows an
n-input lazy join (we refer to it as LJoin) proposed in [8]. Note that
LJoin doesn’t propagate a stall backward on any of its input channels
unless that channel holds a valid control signal. This is done by using
an output AND gate for each of the output stalls. We also propose
another lazy join implementation in Fig. 6b. We refer to it as LKJoin.
It avoids using the individual stall output AND gates.

2010 18th IEEE/IF IP International Conference on VLSI and System -on-Chip (VLSI-SoC 2010) 9

_B] |_Cj-

Fig. 7. An example of fork and join combination.

Fig. 8. LFork and LJoin combination.

I). Fork And Join Combinations
1) LFork-LJoin: If an LFork branch feeds an LJoin input, a

logically unstable loop can be formed. This occurs when a logical
cycle contains an odd number of inverting elements. Hence, this
combination is not generally suitable for use in the SELF protocol.

To illustrate this point, assume four elastic buffers, A, B, C and D
are connected as in Fig. 7. For simplicity, we draw only one line to
represent the two wires of each control channel (valid and stall). The
direction of a control channel is taken to be the same as the direction
of the valid signal.

The circuit implementation of this connection using LFork and
LJoin is shown in Fig. 8. Assume that elastic buffer C holds a bubble
(i.e., its output valid signal is zero), while A holds data. Assume
also that SA2 is zero (B is not stalled). This connection will form a
loop (shown in dotted lines in Fig. 8). The loop is logically unstable
since it has an odd number of inverting elements. This results in an
oscillation inside the loop as well as on the SA wire.

2) LFork-LKJoin: If an LFork branch feeds an LKJoin input,
the combination can cause a deadlock in the control network of a
synchronous elastic design. Hence, this combination is not generally
suitable for use in the SELF protocol.

We use the same block diagram of Fig. 7 to illustrate the point. The
circuit implementation of this connection using LFork and LKJoin is
shown in Fig. 9. It can be easily shown that if VA is zero, VA1 must
also be zero and VAC be zero. This will force SA1 to be one, SA to be
one and VA1 to be zero. Apparently, the loop shown in dotted lines
forms a latch, since all its wires can simultaneously carry controlling

Fig. 9. LFork and LKJoin combination.

Fig. 10. LKFork and LKJoin combination.

values to all the gates in the loop. Hence, after a zero on VA, the
system will deadlock. VA2, VAC, SC and SA will be stuck at zero,
zero, one and one, respectively.

3) LKFork-LKJoin: Through similar argument to Section IV-D2,
we can show that LKFork-LKJoin combination can result in a
deadlock. Consider, for example, the network structure of Fig. 10.
Assume that we use LKFork and LKJoin to implement all the forks
and joins in the figure. The boxes above the channel line represent
valid signal values, and below are stall values. Once VA is zero, VA1,
VA2, VAB, VAC, VAB2, VAC1 and VABC will also be zero. This,
in turn, will cause SAB2 and SAC1 to be one (through join JABC)
and SAB, SAC, SA1, SA2 and SA to be asserted. Again, the dotted
loop will stuck at these values whatever the control network inputs
are. Hence, this combination is not generally suitable for use in the
SELF protocol.

4) LKFork-LIoin: In all the network structures we examined, the
loops formed by LKFork-LJoin combination are logically stable (i.e.,
have even number of inverting elements). However, since there are no
state holding elements (e.g., flip-flops) in these loops, any glitches can
dangerously oscillate back and forth in a complex control network.
Consider for example the LJoin in Fig. 6a. If VI1 does a zero to one
transition while all the other input valids are one. Without appropriate
delay matching inside the join, a short positive glitch will propagate
on Sll. Besides, if zero and one values are simultaneously injected
at different points in a loop, the two values can race around that loop
causing oscillation. We also noticed that deadlock can occur under
certain values of the input arrival times and gate delays in some
structures. Research is in progress to determine the sufficient timing
constraints and device sizing that can eliminate such oscillations and
possible deadlocks.

5) EFork-LJoin/LKJoin: Eager forks inherently cut the cycles
through the flip-flops used at each of its outputs. Hence, they do not
suffer from any of the loop problems mentioned above. An EFork-
LKJoin can show slight area and power advantage over an EFork-
LJoin (due to the removal of one AND gate from each join input
channel).

V. C a se S t u d y : M in iM IPS

MIPS (Microprocessor without Interlocked Pipeline Stages) is a
32-bit architecture with 32 registers, first designed by Hennessy [10],
The MiniMIPS is an 8-bit subset of MIPS, fully described in [11], The
MiniMIPS uses an 8-bit datapath. Only 8 registers are implemented
and the program counter is also 8-bit long.

The MiniMIPS is used for a case study of elasticization. Fig. 11
shows a block diagram of the ordinary clocked MiniMIPS. The
MiniMIPS has a total of 12 synchronization points (i.e., registers),
shown as rectangles in Fig. 11: P (program counter), C (controller),

10 2010 I8th JEEE/JFJP International Conference on VLSI and System-on-Chip (VLSI-SoC 2010)

Fig. 11. Block diagram view of the ordinary clocked MiniMIPS. Adapted
from [12], [11 j with permission from Elsevier and Pearson Education.

__ABCI4LP________ _

Fig. 12. Control network of the elastic clocked MiniMIPS.

I I , 1 2 ,13 ,14 (four instruction registers), ,4, D and L (ALU two input
and one output registers, respectively), M (memory data register),
R (register file) and M em (memory). To perform elasticization,
each register is replaced by an EB. Then, the register to register
data communications in the MiniMIPS are analyzed. The following
registers pass data to both A ,D : R , and to R : C , 12 ,13, L , M ,
and to C : C, I I , and to I I , 1 2 ,13 ,14 : (M em . and to
L : A , D , C , 14, P , and to M : M em , and to M em : D ,C ,L ,P ,
and to P : A ,D ,C , 1 4 ,1 , P . Then, for each register to register data
communication there must be a corresponding control channel. The
resultant control network can be implemented in different ways. We
tried to manually construct such a network with the minimum total
number of joins and forks (to reduce area and power consumption).
The resultant control network of the elastic MiniMIPS is shown
in Fig. 12. From the control point of view, the register file (R) in
a microprocessor could be considered as combinational units [6],
Hence, we did not incorporate a separate EB for the register file (R)
in Fig. 12. The chip was fabricated in a 0.5 f im process without the
memory module.

From the elastic control point of view, even the MiniMIPS con
troller signals (e.g., RegWrite, IRWrite, ..etc) are considered part of
the data plane and they need their own control channels. Mapping
between datapath signals in the clocked MiniMIPS and the control
channels in the elastic MiniMIPS should be self explanatory for

TABLE I
Ci.ockhi) and Elastic MiniMIPS chips rhsui.ts. Mhasurhmhnts

ARH DOM- AT 5V AND 30°

Clocked MiniMIPS Elastic MiniMIPS Penalty
Area (;/m X ;/m) 1246.765 X 615.91 1284.1 X 771.54 29%

P,lyn @80 MHz ImW) 330 373 13%
Pi,He (lW) 16.3 25.8 58.3%

f ma., (MHz) 91.7 92.2 -0.5%

most signals. RFWrite, in Fig. 12, is the register-file-write control
channel. RFWrite_valid must be active if data is going to be written
in the register file. Therefore, RFWrite_valid has been ANDed with
RegWrite inside the register file.

VI. Ver ific a tio n , Fabrica tio n A nd Perfo rm a n ce
E valuation

Both the clocked and elastic (without bubbles) MiniMIPS have
been synthesized, placed, routed and fabricated in a 0.5 /./.m technol
ogy. The functionality of the fabricated processors have been verified
on Verigy’s V93000 SOC tester using the testbench in [11], The
EFork and LJoin circuits (of Fig. 5 and 6a) have been used in the
elastic MiniMIPS. Table I summarizes chips measurements. It shows
that elasticizing the MiniMIPS has area and dynamic and idle power
penalties of 29%, 13% and 58.3%, respectively. For accurate idle
power comparison, both designs have been set to the same state
(through a test vector) before measuring the average idle supply
current.

On the other hand, there is no performance loss due to elasticiza
tion. Both MiniMIPS have been fabricated without the memory block.
Memory values have been programmed inside the tester. Hence, we
had to make an assumption about the memory access time, and
the assumptions affect the maximum operating frequency of both
MiniMIPS in the same way. Therefore, the actual value of memory
access time would minimally affect the performance comparison.
Hence, we chose an arbitrary value of zero for memory access time
for both designs. Shmoo plots for both clocked and elastic MiniMIPS
are shown in Fig. 13.

The noticeable area and power overheads of the elastic MiniMIPS
are mainly due to the usage of eager forks. EFork has one flip-flop
per each branch that consumes power every cycle. Add to this, its
gate complexity. This motivated the research toward less complex
implementations of eager forks or switching to lazy protocols.

Note that these measurements do not take advantage of bubbles
problems that occur if one needs to have flexible interface latencies or
extra pipeline stages inserted. In the presence of bubbles, eager forks
can enjoy performance advantage over lazy protocols. To measure this
advantage, we inserted a different number of bubbles at the register
file outputs (i.e., before registers A and B, simultaneously). Table II
compares the number of cycles required to run simulations of lazy and
eager protocol implementations using the testbench in [11], For the
lazy protocol, we used LKFork-LJoin combination. The behavioral
simulations used some timing constraints enforced to avoid possible
oscillations, see Sec. IV-D4. Table II shows that, in this case, there is
an advantage for using eager forks, specially with a large number of
bubbles in the system. The table also shows that there is no runtime
penalties due to elasticization in the absence of bubbles.

The runtime advantage of the eager versus lazy designs (see
Sec. IV-B) is illustrated in the following example. Fig. 14 shows
a simplified part of the MiniMIPS control network. We added one
bubble before the A register, and another one before the B register,
labeled 61 and 62 respectively. Consider the clock cycle when V A

2010 18th TEEE/TFTP International Conference on VLSI and System -on-Chip (VLSI-SoC 2010) 11

TABLE II
Simulation runtime (in terms of #cycles) of the testbench in

[11] in case of lazy and eager protocols. Bubbles are inserted
at the register file outputs.

(a) Shmoo plot for clocked MiniMIPS.

Fork/Join Combination 0 Bubbles 1 Bubble 3 Bubbles
Lazy Protocol: LKFork-LJoin 98 195 389
Eager Protocol: EFork-LJoin 98 147 245

Clocked MiniMIPS 98 - -

(b) Shmoo plot for elastic MiniMIPS.

Fig. 13. Fabricated chips shmoo plots. Red boxes are for failed tests, while
green are for passed ones.

Fig. 14. A sample structure where eager protocol will have runtime advantage
over lazy.

and V B go low. S C I will go high through join J A B C H P . In F C
(assuming SC 2 is low), V C is high, S C I is high. A lazy F C will
invalidate the data at C 2 (i.e., dcasscrts VC2) until S C I goes low
again. Hence, no new data token can bc written at register 61 or 62
until the stall condition on C l is removed (i.e., S C I goes low again).
On the other hand, an eager F C will validate the data on C2 (i.e.,
asserts V C 2) for the first clock cycle giving C2 branch an early start.
Hence, new data tokens can bc written immediately in registers bl
and 62 in the following cycle.

VII. Con clu sio n

Synchronous elasticization is an approach of converting ordinary
clocked designs into latency insensitive implementations. Being la
tency insensitive, the synchronous clastic designs arc able to tolerate

interconnect, interface, and internal latency variations without affect
ing the system correctness. This allows for increased modularity and
facilitates IP reuse. We presented some practical considerations of
clasticizing reconvergent fanouts. We also investigated the suitability
of different published, as well as new, join and fork implementations
for usage in the clastic control network. We also demonstrated that
elasticization can bc expensive. Measurements of two MiniMIPS
processor chips in a 0.5 /u.m node showed that elasticization results in
area and dynamic and idle power penalties of 29%, 13% and 58.3%,
respectively, without any performance loss. These measurements,
nonetheless, do not take advantage of bubbles that occur if one
needs to have unpredictable interface latencies or extra pipeline
stages inserted. We finally demonstrated the possible architectural
performance advantage of eager over lazy protocols in the presence
of bubbles.

Acknow ledgm ents

This work was supported by the National Science Foundation under
grant CCF-0810408.

R eferen ces

[1] S. Krstic, J. Cortadella, M. Kishinevsky, and J. O’Leary, "Synchronous
elastic networks," in Forma! Methods in Computer Aided Design. 2006.
FMCAD '06. Nov. 2006, pp. 19-30.

[2] M. Bohr, "Interconnect scaling-the real limiter to high performance ulsi,"
in Electron Devices Meeting. 1995.. International. Dec 1995, pp. 241 —
244.

[3] R. IIo, K. Mai, II. Kapadia, and M. Horowitz, "Interconnect scaling
implications for cad," in Computer-Aided Design. 1999. Digest o f
Technical Papers. 1999 IEEE/ACM International Conference on. 1999,
pp. 425-429.

[4] L. Carloni and A. Sangiovanni-Vincentelli, "Coping with latency in soc
design," Micro. IEEE, vol. 22, no. 5, pp. 24-35, Sep/Oct 2002.

[5] L. Carloni, K. Mcmillan, and A. L. Sangiovanni-VincentelliR, "Theory
of latency insensitive design," in IEEE Transactions on CAD o f Inte
grated Circuits and Systems, vol. 20, no. 9, Sep 2001, pp. 1059-1076.

[6] J. Cortadella, M. Kishinevsky, and B. Grundmann, "Synthesis of syn
chronous elastic architectures," in ACM/IEEE Design Automation Con
ference, July 2006, pp. 657-662.

[7] J. Carmona, J. Cortadella, M. Kishinevsky, and A. Taubin, "Elastic
circuits," Computer-Aided Design o f Integrated Circuits and Systems.
IEEE Transactions on, vol. 28, no. 10, pp. 1437-1455, Oct. 2009.

[8] II. M. Jacobson, P. N. Kudva, P. Bose, P. W. Cook, S. E. Schuster, E. G.
Mercer, and C. J. Myers, "Synchronous interlocked pipelines," in 8th
International Symposium on Asynchronous Circuits and Systems, Apr.
2002, pp. 3-12.

[9] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou, "Desynchro
nization: Synthesis of asynchronous circuits from synchronous speci
fications," Computer-Aided Design o f Integrated Circuits and Systems.
IEEE Transactions on, vol. 25, no. 10, pp. 1904-1921, Oct. 2006.

[10] J. II. et al., "The MIPS Machine," in COMPCON, 1982, pp. 2-7.
[11] N. Weste and D. Harris, CMOS VLSI design: a circuit and systems

perspective, 2004.
[12] D. Patterson and J. Hennessy, Computer Organization and Design, 2004.

12 2010 18th IEEE/IFIP International Conference on VLSI and System -on-Chip (VLSI-SoC 2010)

