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The emission spectrum of a dipole embedded in a semi-infinite photonic crystal is calculated. For simplicity

we study the case in which the dielectric function is sinusoidally modulated only along the direction perpen-

dicular to the boundary surface plane. In addition to oscillations of the emission rate with the distance of the

dipole from the interface, we also observed that the shape of the emission spectrum srongly depends on the

initial phase of the dielectric modulation. When the direction of light propagation inside the periodic structure

is not normal to the boundary surface plane, we observed aditional singularities in the emission spectrum,

which arise due to different angle dependence of the Bragg stop band for TE and TM polarizations.

I. INTRODUCTION

It is well known that the fluorescence lifiteme of an atom

can be drastically changed when placed in an inhomogenous

medium. In his pioneering work Purcell1 predicted a strong

enhancement of the radiative decay rate of an emitter placed

inside a resonant microcavity. In contrast, it was also

suggested2 that spontaneous emission can be totally inhibited

if the emitter transition frequency lies below that of the fun-

damental resonator mode. This effect can be understood in

terms of redistribution of photonic density-of-states �DOS✁

caused by inhomogeneity and/or nontrivial boundary condi-

tions imposed on the radiative field. During the years the

spontaneous emission of a dipole coupled to various optical

enviroments such as metallic cavities,3 Fabry-Perot two-

mirror cavities,4 dielectric microspheres,5 and nanobubbles,6

has been a subject of extensive theoretical and experimental

studies.7

Recently there has been a growing interest in studies of

radiative properties of fluorescent molecules inside periodic

dielectric structures, the so-called photonic crystals �PC✁.8,9

The Bragg diffraction of light that occurs in these systems

opens up a spectral gap10 �or a pseudogap✁ in the photonic

DOS in analogy with electronic energy gaps in semiconduc-
tors. A quantum electrodynamical approach for the radiative
decay inside PC has revealed physical phenomena such as
strong suppression of spontaneous emission within the gap
and the formation of photon-atom bound states,11–14 with the
localization of superradiant modes near the band edges,15 etc.
Calculations of emission spectra within the framework of
classical theory were performed for a one-dimensional
Kronig-Penny-type model16 as well as for three-dimensional
fcc lattice structures.17 It has been established that inhibition
of spontaneous emission within the gap is accompanied with
strong enhancement at the band edges.16,17 It was also shown
that the emission spectrum strongly depends on the position
of the emiter within the unit cell,16,17 as well as on its
orientation.17 Experimental observations of inhibited sponta-
neous emission have been reported for different periodic
structures.18–23

So far, the exsisting theoretical studies have considered

infinite periodic structures. As a result, the emission power
was identically zero within the gap.16,17 In the
experiments,18–23 however, the photonic gap appears as a
drop by a factor of ❀2 in the emission power within a cer-
tain spectral interval. This points at the important role of the
boundary between the photonic crystal and the air, which is
studied in the present paper. As we will show below, ac-
counting for a nearby interface results in a nontrivial depen-
dence of the emission spectrum on the initial phase of the
dielectric modulation. If the distance of the dipole from the
boundary surface plane and the dielectric modulation period
are, respectively, d and a, then one might expect that the
dependence of the emission spectrum on the initial phase be
small in the parameter a/d . On the contrary, we found that
the strong dependence of the emission spectrum on the initial
phase persists even in the limit d/a✂❵ �provided there is no
absorption in the system✁. We illustrate this effect in the
frame of the simplest possible model. Namely, we choose the
dielectric modulation to be �i✁ weak, �ii✁ one-dimensional,
and �iii✁ sinusoidal. To quantitavely study the effect of a
plane boundary we generalize the standard calculations of
the emission rate in periodic media for the case of semi-
infinite geometry �Sec. II✁. In Sec. III we present numerical
results for emission spectra illustrating the role of the initial

phase. Discussion of our results and their relevance to recent
measurements is presented in Sec. IV.

II. DERIVATION OF THE POWER EMISSION

SPECTRUM

We schematically depict the system under consideration
in Fig. 1. The dielectric function for the left half-space is
constant and equals ➠0, whereas for x✳0 is given by

➠✄x☎✺➠1✶❞➠ cos✄sx✶❢☎ , �1✁

where ❢ is the initial phase of the dielectric modulation, s
✺2♣ /a is the modulation wave vector, and ❞➠ is the ampli-
tude of the modulation. Below we assume ❞➠✆➠1. The wave
equations for the electric and magnetic fields are
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➇2E⑦r✦✷➇❅➇E⑦r✦★✶ ✈2

c2
➠⑦x✦E⑦r✦✺ i

4♣✈
c2

J⑦r✦, �2✁

➇2B⑦r✦✷➇❅ ln ➠⑦x✦★✸➇✸B⑦r✦✶ ✈2

c2
➠⑦x✦B⑦r✦

✺✷ 4♣
c

➇✸J⑦r✦ , �3✁

where the radiation source J(r)✺j❞(r✷r0) is located at
point r0✺(d ,0,0). We note that the term proportional to ❞➠
has been neglected in the right-hand sides of Eq. �3✁. The
time averaged radiative power per unit solid angle is given
by

dP

d❱✺ c

8♣Re❅r
2n⑦E✸B*✦★ , �4✁

where B* is the complex conjugate of B, r✺✉r✉ , and n

✺r/r is the unit radius vector. Without any loss of generality
we choose nz✺0 �see Fig. 1✁. Then it is very convenient to
separately treat two possible orientations of the dipole. In-
deed, one can easily check that the current density compo-
nents Jz and Jx ,Jy give rise to electro-magnetic �EM✁ radia-
tion with, respectively, electric �TE polarization✁ and
magnetic �TM polarization✁ fields polarized in the z direc-
tion. Since these two modes do not interfere, their contribu-
tions to the radiation power are additive. The corresponding
EM wave equations for the two polarizations are obtained
from the z components of Eqs. �2✁ and �3✁ by taking the
Fourier transform with respect to the y and z coordinates:

d2Ez

dx2
✶ ✈2

c2
➠⑦x✦✷ky

2 Ez✺
4♣ i✈
c2

j z❞⑦x✷d✦ ⑦TE✦ ,
�5✁

d2Bz

dx2
✷❙

❪ ln ➠
❪x ❉

dBz

dx
✶ ✈2

c2
➠⑦x✦✷ky

2 Bz

✺✷ 4♣
c

❙
❪ j y
❪x ✷ iky jx❉ ❞⑦x✷d✦ ⑦TM✦, �6✁

where ky is the y component of the wave vector

❅Ez(x;ky),Bz(x;ky)⑥e ikyy★ . Since we want to calculate the
power emmited in the xy plane, we have set kz✺0 in Eqs.
�5✁ and (6). The solution of the corresponding homogenous
equations may be written as a sum of incident, reflected, and
transmitted EM waves, with two linearly independent terms
E1(x), E2(x) and B1(x), B2(x) corresponding to the inci-
dent EM wave from the right and left, respectively �see inset
of Fig. 1✁. To solve Eqs. �5✁ and �6✁ we employ the variation
of a constant method. We seek solution in the form:

Ez⑦x✦✺C1
E⑦x✦E1⑦x✦✶C2

E⑦x✦E2⑦x✦,

Bz⑦x✦✺C1
B⑦x✦B1⑦x✦✶C2

B⑦x✦B2⑦x✦. �7✁
Upon substituting Eq. �7✁ into Eqs. �5✁ and �6✁ we find for
the variational coefficients

C1,2
E ⑦x✦✺ i✈ 4♣

c2
WE
✂1

X1,2
E

x

dx✽ E2,1⑦x✽✦ j z❞⑦x✽✷d✦, �8✁

C1,2
B ⑦x✦✺✷ 4♣

c
WB
✂1

X1,2
B

x

dx✽ B2,1⑦x✽✦

✸ ❪ j y
❪x✽ ✷ iky jx ❞⑦x✽✷d✦ , �9✁

where WE , WB are the Wronskians

WE✺E1

dE2

dx
✷E2

dE1

dx
, WB✺B1

dB2

dx
✷B2

dB1

dx
�10✁

and X1,2
E , X1,2

B in the lower integration limits are constants of

integration. They are determined from the boundary condi-

tions that there are no incoming EM waves, implying X1
E

✺X1
B✺❵ , X2

E✺X2
B✺✷❵ . Hence, the solutions of Eqs. �5✁

and �6✁ for large negative x, which satisfy the boundary con-
ditions, can be written as follows:

Ez⑦x✦✺ i✈ 4♣
c2

WE
✂1 j zE1⑦d✦E2⑦x✦ , �11✁

Bz⑦x✦✺
4♣
c

WB
✂1✄ j y

dB1

dx x☎d✶ iky jxB1⑦d✦ ✆B2⑦x ✦.
�12✁

It can be easily shown that for negative x one has

WE
✂1E2(x)✺WB

✂1B2(x)✺ ie✂ ikxx/2kx . Thus, the remaining

task is to find E1(d), B1(d), and (dB1 /dx)x☎d .
The solution of the homogeneous equations for the left

half-space can be written as a sum of two plane waves,

E1⑦x ✦✺e✂ ikxx✶REe
ikxx, B1⑦x✦✺e✂ ikxx✶RBe

ikxx,
�13✁

where RE , RB are the optical reflection coefficients for TE
and TM polarizations, respectively. For the right half-space
one may use the Bloch theorem to find the solution

E1⑦x✦✺e iqEx ✭
n☎✂✝
✝

An
Ee isnx, B1⑦x✦✺e iqBx ✭

n☎✂✝
✝

An
Be isnx.

�14✁

FIG. 1. Schematic representation of our PC system. The emitter

is located on the x axis at a distance d from the interface. The unit

vector n lies in the xy plane. Inset: Illustration of two linearly

independent solutions of the homogenous equations discussed in the

text.
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When substituting Eq. ⑦14✦ into Eqs. ⑦5✦ and ⑦6✦ we obtain
two infinite systems of linear, homogenous equations for the

coefficents An
E , An

B :

✈2

c2
➠1✷ky

2✷�qE✶ns✁2 An
E✶✈2

c2

❞➠
2
�e i❢An✂1

E

✶e✂ i❢An✄1
E ✁✺0, ⑦15✦

✈2

c2
➠1✷ky

2✷�qB✶ns✁2 An
B

✶ ❞➠
2➠1

e i❢ ✈2

c2
➠1✶s❅qB✶�n✷1✁s★ An✂1

B

✶ ❞➠
2➠1

e✂ i❢ ✈2

c2
➠1✷s❅qB✶�n✶1✁s★ An✄1

B ✺0.

⑦16✦
We note that the initial phase ☎ explicitly enters into these
equations.

Near the Bragg resonance that occurs at qE ,B✬s/2, the
main coefficents that contribute to the sums in Eq. ⑦14✦ are
A0
E , A0

B and A✂1
E , A✂1

B since the rest of An
E ,B are small in the

parameter ❞➠/➠1. In this approximation the equation systems
⑦15✦ and ⑦16✦ may be simplified into two 2✸2 matrix equa-
tions. Requiring the determinants of these matrices to vanish,
one finds the dispersion relations for the two EM polariza-
tions near resonance

❞qE✺
s
2❦ ❙

❞✈
✈0

❉
2

✷✆2, ⑦17✦

❞qB✺
s
2❦ ❙

❞✈
✈0

❉
2

✷✆2�1✷2❦✁2, ⑦18✦

where we have introduced ✆✺❞➠ /4➠1 , qE ,B✷s/2✺❞qE ,B

✝s/2, ✈✷✈0✺❞✈✝✈0 , ❦✺s2c2/4✈0
2❡1, and the

ky-dependent resonant frequency ✈0 is given by

✈0✺
c

➠1

❆s2/4✶ky
2. ⑦19✦

Equations ⑦17✦ and ⑦18✦ show that there is a spectral gap for
EM waves propagating in the system centered at ✈0. For
both TE and TM polarizations the central gap position shifts
to higher frequencies with increasing ky ⑦which also deter-
mines the propagation direction of the radiative field✦. For
TE polarization the gap broadens with increasing angle ✉✽
⑦see Fig. 1✦ whereas for TM polarization the gap narrows and
disappears at 2❦✺1, which corresponds to the propagation
direction for which ky✺s/2. This can be defined as a Brew-
ster angle for Bragg diffraction. If one increases ky further,
then the gap reopens again.

Using Eqs. ⑦15✦–⑦18✦ we obtain the following expressions
for the electric and magnetic fields for the right-half space:

E1�x✁✺A✂1
E e i✞qEx�e i✟x/2✷FEe

✂ i❢e✂ i✟x/2✁, ⑦20✦
B1�x✁✺A✂1

B e i✞qBx�e i✟x/2✷FBe
✂ i❢e✂ i✟x/2✁. ⑦21✦

Here the functions FE and FB describe the coupling between
incident and Bragg reflected waves and are defined as fol-
lows:

FE�❞✈ ,✉✁✺
1

✆ ✠ ❞✈✈0

✷ ❙
❞✈
✈0

❉
2

✷✆2✡ , ⑦22✦

FB�❞✈ ,✉✁✺
1

✆�1✷2❦✁ ✠
❞✈
✈0

✷ ❙
❞✈
✈0

❉
2

✷✆2�1✷2❦✁2✡ .
⑦23✦

Finally, we match the fields components and their derivatives
at x✺0, take the inverse Fourier transform with respect to
ky ,kz , and use Eq. ⑦4✦ to get the following expression for the
total radiated power dP/d❱ , normalized to the radiation
power when there is no dielectric modulation:

❙
dP

d❱❉
N

✺ j z
2T0E

2

j z
2T0E

2 ✶➠1 j1
2T0B

2

1✷FEe
✂ i(✟d✄❢)

1✷R0EFEe
✂ i❢ e i✞qEd

2

✶ ➠1 j1
2T0B

2

j1
2T0E

2 ✶➠1 j1
2T0B

2

1✷①FBe
✂ i(✟d✄❢)

1✷R0BFBe
✂ i❢ e i✞qBd

2

.

⑦24✦

Here T0E ,R0E and T0B ,R0B are the conventional
Fresnel’s transmission and reflection coefficients from the
dielectric interface without the dielectric modulation for the
amplitudes of TE and TM polarized waves, respectively, j1
✺ j ycos ✉✽✶jxsin ✉✽, where ✉✽ is related to the observation
angle ✉ by Snell’s law. The quantity ① , which depends on
the dipole orientation in the xy plane, is defined as ①✺( j y
✷ jxtan ✉✽)/( j y✶ jxtan ✉✽).

Equation ⑦24✦ is the main result of this paper. We note
that the phase ☎ is explicitly present in both the numerator
and denominator of Eq. ⑦24✦, indicating the important role of
the initial modulation phase at the boundary interface. In the
next section we numerically analyze the role of ☎ in the
emission spectrum for different situations.

III. NUMERICAL RESULTS

Before presenting our numerical results let us concentrate
on a particular experimental case of opals21,22 and opal
replica.22 These artificial photonic crystals consist of closely
packed SiO2 spheres forming an fcc structure that contains
fully interconnected voids. The opal replica is formed by
filling these voids with a precursor polymer solution and then
etching the SiO2 spheres after polymerization.22 The opals
and opal replica PC are infiltrated with various fluorescent
dye solutions to provide a radiation source inside the crystal.
Inhibited spontaneous emission of the dye molecules in such
PC have been recently studied by several groups.21,22 The
refractive index n of SiO2 is n✬1.46 and the refractive index
contrast ✆n between the SiO2 balls and the dye solution
ranges between ✆n✬0.1✷0.3. This is not sufficient for a
formation of a complete photonic band gap. Instead, the sys-
tem posseses pseudogaps ⑦or partial gaps✦ with an angle-
dependent central frequency. To compare our results to the
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experiments we have chosen in our model ❉✺❞➠ /4➠1✺0.1.
First, we consider the case when the emitter is many pe-

riods away from the interface (d✺5a).24 In Fig. 2 we show
the emission power averaged over the orientations of the
emitter as well as over its position within the unit cell ❅the
zero on the frequency axis in all plots corresponds to the

central gap frequency ❱0 at ✉✺0, where ❱0✺sc/(2❆➠1)★.
Inside the gap, the emission power is strongly suppressed. It
is seen, however, that even in the limit of large d/a the
features of the averaged emission power still depend on the
initial phase.

The evolution of (dP/d❱)N with ❢ outside the gap is
described as follows. At ❢✺0 there is a well-pronounced
singularity at the lower edge of the spectral gap. With in-
creasing ❢ , this singularity diminishes whereas another sin-
gularity starts to develop at the upper edge; the spectrum
becomes symmetric at ❢✺♣/2. Further increase of ❢ leads

to a gradual transformation of the initial curve into its mirror
image with respect to the central gap frequency, the singu-
larity now occuring at the upper band edge.

Figure 2 corresponds to ✉✺0. The sensitivity of the emis-
sion power to ❢ appears to be even more pronounced for ✉
Þ0. We illustrate this effect by plotting in Fig. 3 the aver-

aged (dP/d❱)N for ✉✺60° for the set of initial phases ❢
✺0,♣/4,♣/2. With increasing ❢ again, it is seen that there is
a tendency for the emission spectrum to become symmetric
near ❢✺♣/2. At ❢✺♣ ⑦not presented here✦ the emission
spectrum is again transformed into the mirror image of the
initial curve at ❢✺0 but now with respect to the shifted
central gap frequency ❱0 /cos ✉✽. We also note the appear-
ance of additional singularities in the emission spectrum.
Their origin lies in the different angle dependencies of the
gap width for TE and TM polarizations, as seen before in
Eqs. ⑦17✦ and ⑦18✦. To be more specific, we note that the
highest-and lowest-frequency peaks correspond to the band
edges for TE polarization. Similarly, two peaks at the inter-
mediate frequencies determine the band edges for TM polar-

FIG. 2. Normalized emission power (dP/d�)N averaged over

the dipole emitter orientations at ✁✂0 for ✄✂0,☎ /2 and ☎ . Here

✆✈̃✂✈✷�0 is the deviation from the Bragg frequency at ✁✂0.

Calculations were performed with ✝1✂3✝0✂3 and ✞✂0.1. The

emitter is five periods away from the interface (d✂5a) implying

strong suppression of the emission within the gap.

FIG. 3. Normalized and averaged power emission (dP/d�)N at

✁✂60° for ✄✂0,☎ /4, and ☎ /2. The rest of the parameters are the

same as in Fig. 2.

PRB 62 1783EMISSION SPECTRUM OF A DIPOLE IN A SEMI- . . .



ization. Both pairs of the singularities are located symetri-

cally around the shifted Bragg frequency ✈0✺❱0 /cos ✉✽.

Let us now turn to the discussion of the case where the

emitter is close to the interface. The main feature of this

situation is that (dP/d❱)N inside the gap remains finite. One
can see from Eq. ⑦24✦ that moving the emitter N periods
away from the boundary decreases the emission power at the
center of the gap by a factor of exp(✷2♣N❉). Therefore, to
study the features of the spontaneous emission inside the
gap, we choose N✺1,2. This situation is illustrated in Fig. 4
where we plot the averaged (dP/d❱)N for the observation
angle ✉✺60°. One can see that the evolution of the emission
power by increasing the initial phase is very strong. Again,
we note that there are four well-pronounced singularities in
the emission spectrum that correspond to the spectral gap
edges of the TE and TM polarizations. In particular, for ❢
✺0 there is a noticable enhancement of the emission rate ⑦by
a factor of ❀2) at the frequency that determines the lower
band edge of the TE polarization, whereas for ❢✺♣ /2 a

similar enhancement occurs at the edges of the TM polariza-
tion gap.

Finally, in Fig. 5 we plot the emission power integrated
over the observation angle ✉ ⑦i.e., the total power emitter in
the xy plane✦ for ❢✺0 and ❢✺♣ . In this case too, an aver-
aging over the dipole position within the unit cell has been
performed. To allow for an unpolarized emission we have
chosen jx✺ j y✺ j z . Remarkably, even after angular averag-
ing a weak dependence of the emission power on the initial
phase still persists.

IV. DISCUSSION

We have studied the emission spectrum of a dipole inside
a one-dimensional periodic structure in the presence of a
nearby plane boundary. As expected, the emission rates are
strongly suppressed for frequencies inside the spectral gap,
provided that the emitter is many periods away from the
interface (d/a✳5). For frequencies near the band edges, the

FIG. 4. Emission spectrum of the emitter located at �a✁ N✂1, �b✁ N✂2 periods away from the boundary for ✄✂60° and for the same set

of the initial phases as in Fig. 3. Averaging over the position within the unit cell and over all possible orientaions of the dipole emitter

direction has been performed.
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emission spectrum changes drastically with the initial phase

of the dielectric modulation. We also observed enhancement
of the emission rates near the band edges, however, by a
factor much smaller than predicted in the previous
studies.16,17 This can be attributed to the fact that the modu-
lation in our model is weak. In Ref. 17, where the total
radiation power from a dipole inside a infinite 3D fcc lattice
was calculated numerically, the contrast in the dielectric con-
stant ❉� was more than 10 allowing for the formation of a
complete photonic band gap. This resulted in an enhance-
ment of the radiated power at the band edges by a factor of
❀25. Similarly, in Ref. 16, where the authors considered a
1D Kronig-Penney-type modulation of the refractive index,
the enhancement factor at the band edges was about ❀30,
whereas inside the gap it was identically zero. Apparently,
this resulted from consideration of radiative modes polarized
parallel to the dipole direction. Allowing for nonpolarized
radiation ⑦i.e., in all directions✦ should lead to qualitatively
different results ⑦see, for example, Fig. 5✦. Strictly speaking,
the straightforward comparision of our calculation with those
of previous studies is not possible due to the different ap-
proach developed here. However, it is clear from our consid-
eration that the sensitivity of the power emission to the
boundary conditions should persist also for strong and non-

sinusoidal modulation and become even stronger.
In this paper we also studied the case where the emitter is

sufficiently close to the interface, so that the emission power
for the frequencies inside the gap is finite. In this case also
we showed that the features of the emission spectrum are
very sensitive to the initial phase of the periodic modulation,
hence emphasizing the effect of the boundary.

We note that in our calculations we assumed that no def-
fects exist in the system. In the presence of weak disorder the
emission spectrum would be significantly modified. Let us
consider radiation from a dipole that is many periods away
from the boundary with a frequency inside the spectral gap.
If there are no defects then the radiation ⑦e.g., in the direction
normal to the boundary✦ is strongly attenuated ⑦see Fig. 2✦.
However, introducing a small concentration of defects opens
up a new mechanism for the light emission to come out from
the PC in the direction normal to the boundary. Namely,
light can propagate without any attenuation in directions for
which the Bragg condition is not satisfied and then scatter off
defects that are close to the interface. As a result, the emis-
sion power in the direction normal to the boundary is not
exponentially small but is finite, similar to the case of a
dipole close to the boundary. Remarkably, only defects close
to the boundary, within the Bragg attenuation length ❥B

✺(2♣✁❉)✷1 from the interface, contribute to the emission
power. Owing to this effect, we conclude that the emission
spectrum in the presence of a weak disorder is rather univer-
sal, since it does not depend on the dipole-interface distance
d. Experimentally this was demonstrated in Ref. 23, where
the authors found a way to excite fluorescent dye molecules
at different distances from the boundary. They have demon-
strated that the emission power at the center of the spectral
gap is attenuated by a factor of ❀2 and does not change
upon changing d. This was interpretated in terms of light
scattering off defects close to the PC interface.
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