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We present a novel simulation algorithm based on tempering a fraction of relaxation-limiting 
interactions to accelerate the process of obtaining uncorrelated equilibrium configurations of 
self-associating polymer solutions. This approach consists of tempering (turning off) the attractive 
interactions for a fraction of self-associating groups determined by a biasing field h . A number of 
independent configurations (replicas) with overlapping Hamiltonian distributions in the expanded 
( N V T h ) ensemble with constant N V T  but different biasing fields, forming a chain of Hamiltonians, 
were simulated in parallel with occasional attempts to exchange the replicas associated with 
adjacent fields. Each field had an associated distribution of tempered interactions, average fraction 
of tempered interactions, and structural decorrelation time. Tempering parameters (number of 
replicas, fields, and exchange frequencies) were chosen to obtain the highest efficiency in sampling 
equilibrium configurations of a self-association polymer solution based on short serial simulation 
runs and a statistical model. Depending on the strength of the relaxation-limiting interactions, 
system size, and thermodynamic conditions, the algorithm can be orders of magnitude more efficient 
than conventional canonical simulation and is superior to conventional temperature parallel 
tempering. © 2 0 0 5  A m e r i c a n  In s t i t u t e  o f  P h y s ic s . [DOT: 10.1063/1.1979494]

I. INTRODUCTION

In simulations of self-associating systems structural het­
erogeneity can add tremendous complexity to sampling con­
figurational space. Such systems often have complex energy 
landscapes with disconnected low-energy states allowing 
configurations to become trapped in local minima. For self­
associating molecular systems (e.g., surfactants, ionomers, 
and block copolymers) this corresponds to the formation of 
energetically stable domains (e.g., clusters, micelles, multi­
ple ts, or microphases). In order for structural relaxation and 
sampling of uncorrelated equilibrium configurations, mol­
ecules must make a transition from one energetically stable 
domain to another, typically requiring the molecules to visit 
high-energy states. The greater the barrier for transitioning 
between two local minima relative to the thermal energy the 
larger the bottleneck this process is to structural relaxation in 
the system. Similar issues have been noticed earlier in dense 
polymer melts, spin glasses, and supercooled liquids. Gener­
ating uncorrelated equilibrium configurations of such sys­
tems with conventional simulation methods is a formidable 
task. In recent years, several algorithms have been developed 
to overcome this problem. Some of the methodologies that

]| 9
were employed are multicanonical sampling, '" 1/k
sampling,3 J walking,4'5 expanded ensembles,6 simple 

* 7 8  * * 9 * 10—13tempering, ' entropic tempering, parallel tempering,
hyper-parallel tempering,14 and replica exchange (Monte
Carlo15 and molecular dynamics16'17). These techniques have
been applied in simulating complex systems such as

111910 I Q ,  9Q
peptides, ' "' dense polymer melts, spin glasses," lattice
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quantum chromodynamics (QCD),21'22 supercooled liquids 
as well as simple models like two-dimensional (2D) spin23 
and Lennard-Jones"4 fluids. Various studies using these 
methods have elucidated phase behavior in Lennard-Jones 
clusters"5'"6 and water octamers,"7 thermodynamics of90 90
Ar„-HF clusters," '" conformational studies of polymer 

30 * 31melts/ and reconstruction of porous media/
Parallel-tempering methods typically involve coupling 

independent replicas (realizations of the same physical sys­
tem) simulated at slightly different conditions, controlled by 
either one or more variables. The controlling parameter can 
be temperature, as in temperature parallel tempering, chemi­
cal potential as in hyperparallel tempering, a delocalization 
parameter, as in the ̂ -jumping Monte Carlo32 method or any 
other suitable parameter that modifies the Hamiltonian 
thereby forming a chain of Hamiltonians. Neighboring repli­
cas along the chain are occasionally swapped to allow each 
replica to visit different conditions, thus allowing each rep­
lica to explore the phase space associated with each Hamil­
tonian. To apply parallel tempering successfully the phase- 
space densities associated with adjacent Hamiltonians along 
the chain must have sufficient overlap. Moreover, this over­
lap of phase space between any two neighboring Hamilto­
nians (and their current replicas) must ensure that the switch­
ing of replicas leads to a random walk of each replica in the 
extended variable space, i.e., along the chain of Hamilto­
nians. To guarantee an efficient random walk the probability 
of its switching with neighboring replicas must be symmetric 
and constant along the entire chain.

The efficiency of the parallel tempering algorithm will 
depend on the number of replicas employed and the manner
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FIG. I . (a) A single telechelic chain with eight-beads. Attractive beads are 

represented by black, (b) Formation of clusters in a canonical ensemble of 

1000 chains at 7 =0.1.

in which the replicas are spaced in configuration space. In 
the case of temperature parallel tempering, one of the sim­
plest to implement and most commonly employed variation 
of the parallel tempering, distributions of potential energies 
are considered for swapping the configurations. As the sys­
tem size increases, the width of the distribution of energies 
(or any other appropriate conjugate property to the control­
ling parameter) compared to its average value becomes nar­
rower and the number of replicas required to provide equiva­
lent overlapping of phase space will be larger. Predescu 
e t  a l ,33 have determined that the efficiency of temperature 
parallel tempering Monte Carlo method for classical canoni­
cal systems decreases naturally to zero with increasing sys­
tem size.

Here we describe a novel parallel selective tempering 
(PST) algorithm based on earlier realization of expanded en­
semble simulations of dense systems.34 Unlike the conven­
tional parallel tempering techniques where all interactions in 
the system are tempered simultaneously, we target specific 
interactions that are responsible for slow structural relaxation 
and temper only a fraction of these interactions. In case of 
self-assembling polymer solutions it is obvious that the re­
laxation of the entire structure is controlled by interactions 
responsible for self-association of the polymer chains. We 
also investigate the effect of the parameters of the parallel 
tempering algorithm such as the number of replicas and ac­
ceptance probability for replica exchanges on the efficiency 
of the algorithm. Optimal parameters were chosen by sys­
tematic investigation involving performing model PST runs 
using a statistical model presented in this paper. This model 
requires only input provided by short serial simulation runs 
performed in N V T h  ensemble at different values of the con­
trolling parameter h . The efficiency of the PST algorithm 
was compared to temperature parallel tempering (TPT). We 
also investigate the efficiency of the PST method as a func­
tion of system size and temperature.

II. MOLECULAR-DYNAMICS SIMULATIONS OF SELF­
ASSOCIATING POLYMER SOLUTIONS

A. Simulation methodology and system description

Simulations were performed on an ensemble of 1000 
telechelic chains of eight beads each where chain ends are 
designated as “stickers.” A pictorial representation of the sys­
tem is illustrated in Fig. 1. This system is identical to the

telechelic solutions studied in our previous work.35'36 Note 
that the potential used in this previous work is identical to 
that given here, and not as published in that work. This form 
of the potential was originally used in the work of Khalatur 
e t  a l ? 1 In our simulations all beads interact via a simple 
Weeks-Chandler-Andersen (WCA) potential (purely repul­
sive) given by,

U ( r ) .
( a / r ) 12 -  (a / r )6 + — r  < r Q

(D

0, r  2= r0,

where r0 = 21/6. This potential represents the excluded volume 
interactions between any two nonbonded particles and is a 
good model for a polymer chain immersed in a good solvent. 
In addition to the WCA interaction, the end-groups (stickers) 
interact via a screened attractive Coulomb potential of the 
form:

U c( r )  ■■
■-[1 - (r/re)2]2, r < r c 

r (2 )

0 ,

with a screening length r c = 2. Bond lengths were constrained 
at unit length by employing the SHAKE algorithm. ' Addi­
tional rigidity was introduced by a bend potential of the form

U b( r )  =  k b( A - A 0)2 , (3)

where k b= 0.593 and the equilibrium bend angle (A0) of
175°. All properties described in this paper are expressed in 

39reduced units,’ in terms of the energy scale e, length scale 
(j, and bead mass m , specifically time (?=[g/(;H(T2)]1/y), 
density ( p = p ha 3 ), temperature ( T = k BT h/ s ) ,  and frequency
(£t) =  [g/(7H(J2)]'"1/2£ / ) .

Molecular-dynamics (MD) simulations were performed 
at various temperatures (0.1-0.74) with a constant density 
(0.3) and N V T  conditions. A Nose-Hoover40'41 thermostat 
with a thermostat frequency of 2.5 was employed to regulate 
temperature in all our simulations. Initially, the molecules 
were placed on a low-density lattice. Simulations were car­
ried out in N P T  ensemble for 1 X 106 steps at high tempera­
ture (0.37) with a reduced time step of 0.01. Later, N V T  
simulations were performed at 7=0.37 at equilibrium density 
obtained from N P T  simulations. The system underwent sev­
eral hundred relaxation times (calculated from the chain end- 
end vector autocorrelation function) during the length of the 
simulation. Subsequently the systems were cooled over an­
other 1 X 106 steps to desired temperatures at a constant den­
sity (0.3). Equilibration runs were performed for at least two 
relaxation times at lower temperatures and several relaxation 
times at high temperatures except for 7=0.1 where the relax­
ation time is about 2X 106 (2X 108 time steps). Subse­
quently, production runs were carried out for several relax­
ation times at each temperature except for 7=0.1 and 
statistics were collected to obtain equilibrium properties.

B. Structure and structural relaxation

Stickers tend to self-associate to form clusters (as seen in 
Fig. 1), the size, shape, distribution, and spacing of which is 
dependent on the thermodynamic conditions. For example,
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RG . 2. Probability to find an end group in a cluster of size m for self­

associating polymer solutions as a function of temperature.

the cluster size distribution, defined as the probability P ( m )  
to find an end group in a cluster of size m , is shown as a 
function of temperature in Fig. 2. Here a cluster of size m is 
defined as an aggregation of end-groups in which each chain 
end group is within a distance of 2 from at least one other 
end group in the cluster. Similar to our earlier simulations of 
self-associating polymer solutions we observe an onset of 
micellization (appearance of a shoulder in cluster size distri­
bution) at around T =  0.26, or T m, below which end-groups 
aggregate to form clusters of preferable size.

Also consistent with our previous studies we discern that 
the formation of clusters strongly influences the dynamical 
properties and viscoelastic response of the polymer solution. 
The terminal relaxation time as a function of temperature, 
obtained by fitting the chain end-to-end vector autocorrela­
tion function obtained from MD simulations with a stretched 
exponential and integrating over time,

~UTinm.tl ' : j  C ( t ) d t =  j exp[- ( t / T ^ J d t (4)

is shown in Fig. 3. The relaxation times in the self­
associating regime ( T <  T m) show an Arrhenius dependence

MG. 3. Temperature dependence of terminal relaxation times ( '7‘t)L.riTlinil|) and 

cluster life times (Tt.|uswr) of self-associating solutions obtained from MD 

simulations. Also shown are the apparent relaxation times (ti|t) resulting 

from parallel selective tempering (PST) and temperature parallel tempering 

(TPT) algorithms.

on temperature with an apparent activation energy that is 
significantly higher than that observed for T >  T m. The relax­
ation time at T =  0.07 was extrapolated based on Arrhenius 
behavior at higher temperatures. Structural relaxation in the 
self-associating polymer solution was monitored through the 
cluster lifetime autocorrelation function, defined as

(5)

where the summation was performed over every pair ( i , j )  of 
end groups. Here the function = 1 if the end groups i  
and j  belong to the same cluster at time t, otherwise H j j ( t )  
= 0. The cluster lifetime (rC|USter) was obtained by fitting Eq. 
(5) to a stretched exponential and integrating over time [see 
Eq. (4)]. As in our previous studies we can see in Fig. 3 a 
close correspondence between the cluster lifetime and the 
end-to-end vector relaxation time of the telechelic chains.

An important consequence of the dramatic increase in 
the terminal relaxation time of the telechelic chains with de­
creasing temperature resulting from the formation of stable 
end-group clusters for (T < T m) is that obtaining equilibrium 
configurations using conventional MD simulations quickly 
becomes infeasible with decreasing temperature. To enhance 
the structural decorrelation process in these self-associating 
polymer solutions a parallel selective tempering methodol­
ogy described in Sec. Ill has been employed.

III. THE PARALLEL SELECTIVE TEMPERING (PST) 
METHOD

A. Ghost particles

Our supposition is that obtaining the equilibrium con­
figuration of a molecular system can be greatly facilitated by 
tempering a subset of interactions that is responsible for the 
slowing down of dynamics if these interactions are known a  
p r i o r i . In case of the self-associating polymer solution de­
scribed in Sec. II, structural relaxation is limited by the abil­
ity of self-associating groups to leave a cluster and join other 
clusters, a process that can be monitored through relaxation 
of the polymer chain end-to-end vector autocorrelation func­
tion. To facilitate relaxation, the attraction leading to forma­
tion of these energetically stable clusters (relaxation-limiting 
interactions) can be either reduced (by a scaling factor) or 
completely eliminated. In either case self-associating par­
ticles are allowed to move into a nonphysical space in which 
their interaction with other particles has been modified. Each 
“allowable” particle i is assigned a fictitious space coordinate 
depending on the current interaction state. A value of “0” for 
this coordinate, jc4(i) = 0, indicates that all interactions due to 
this particle are included whereas x4(/)=1 represents a par­
ticle whose interactions are modified. A system that has all 
particles with the fourth coordinate as 0, £4=0, represents the 
unperturbed system. The extended Hamiltonian for this sys­
tem is given by

H ( x ,x 4) =  U ( x , x 4). (6 )

The potential energy depends not only on the real space co­
ordinates of all particles, given by x , but also on jc4, as par-
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tides with x4(/) = 1 have modified interactions with the re­
maining particles.

The number of allowable particles is fixed and is specific 
to the system under sUidy. For example, in the case of self­
associating polymer solutions, we have chosen only the 
sticky groups (with mutually attractive potentials) to be al­
lowable particles. The probability of transition of a particle 
from .v4(/)=0 to x4(/) = 1 and vice versa is subject to the 
Metropolis criterion given by:

/>(.V4(/) = 0 <=>.V4(/) = 1):
1 ,

exp(-/3A H ) ,

A H  =£ 0 

A H  >  0,

(7)

where A H  is the change in the Hamiltonian [Eq. (6)] associ­
ated with the (attempted) transition /3 is 1 ! k BT. In our study, 
a particle with .v4(/) = 1 has no nonbonded interactions with 
any other particles. Hence these particles will be referred to 
as “ghost” particles throughout the rest of the paper. Note, 
however, that the bonded interactions (bond and bend) in­
volving these particles are unaffected by this transition.

B. Extended Hamiltonian and external biasing 
field

The equilibrium number of ghost particles obtained in a 
system with a Hamiltonian given by Eq. (6) can be con­
trolled by applying a biasing field h that operates only on 
particles with .v4(/) = 1. The associated Hamiltonian is

H ( h , x , x 4 ) = U ( x , x 4) +  N illkmMef 4h , (8 )

where iVaii0W;,bie >s the number of allowable particles and/ 4 is 
the fraction of allowable particles with .v4(/)=1. The associ­
ated partition function for the NVTh ensemble is

U(NVTh) =
X X4

X exp[- 0 U ( x , x 4 )]exp[- PN.llkm.Mef 4h]. (9)

It can be straightforwardly shown42 that in the NVTh en­
semble the fluctuations in f 4 are given as

where the field susceptibility is given by

(10)

J_#4 

p  dh ’
(11)

and f 4 is the ensemble average of f 4.
From Eq. (8) we can conclude that an increase in the 

field will penalize particles with x4(/) = 1 and hence will re­

sult in a decrease in f 4 . Conversely, a decrease in the field 
will favor particles with x4(/) = 1 and will result in an in­

crease in/4. The important point to realize is that for a given 
system and given thermodynamic conditions the average 

value of the fraction of ghost particles f 4 is determined by 
the field once equilibrium is reached. Furthermore, Eq. (10) 
reveals that during a simulation in the N V T h  ensemble (see 
Sec. Ill D for simulation details) f 4 fluctuates with time 
around the mean value and the identity of particles that con-

I-'IG. 4. (a) Terminal relaxation times (rm in il) obtained from serial NVTh 

simulations as a function of average fraction of ghost particles (/4) at T  
=0.1. (b) Schematic illustration of “cluster hopping" mechanism.

tribute to f 4 vary with time. Eventually, all allowable par­
ticles (should) participate in transition from real to ghost 
(nonphysical) space and vice versa.

C. Role of ghost particles on relaxation dynamics

We have found that the structural relaxation in the 
micelle-forming polymer solution described in Sec. II B is 
closely related to the end-to-end vector relaxation of indi­
vidual chains. In other words, end-group clusters breakup 
and reform on the same time scale as the terminal relaxation 
of individual chains. The terminal relaxation time Ttermimil 
obtained by fitting the chain end-to-end vector autocorrela­
tion function to a stretched exponential and integrating over 

time [see Eq. (4)] is shown as a function of/ 4 at J=0.1 in 
Fig. 4(a). There is a significant reduction in the chain relax­
ation time as the average fraction of ghost particles increases, 
which in turn can be controlled by the strength of the applied 
field h .

We investigated the mechanism underlying the dramatic 

reduction in chain relaxation times as f 4 increases for these 
self-associating polymer solutions. The chain ends with mu­
tual attraction aggregate to form clusters. As a chain end 
group (allowable particle) moves from real space to ghost 
space, .v4(/) =0 —>.v4(/) = 1, it no longer is bound to any cluster 
and is free to traverse the interstitial regions between the 
clusters. At a later time, as the ghost particle makes a tran­
sition back to the real space, x4(/) = 1 - ^ x 4( i ) = 0 ,  it is likely to 

join a different cluster. For example, at f 4=0.001 and T  
=0.1, we observe that 85% of the time when a ghost particle 
is changed to a real particle it joins a cluster that is a differ­
ent cluster than it was in before it transitioned into a ghost
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FIG. 5. Schematic illustration of parallel selective tempering (PST). Appli­

cation of field h drives particles from real space to ghost space. Different 

shadings in double-sided block arrows indicate swapping at different times.

particle. This cluster-hopping mechanism [see Fig. 4(b)] 
seems to play the dominant role in the decrease of chain 
decorrelation times and increased efficiency in structural 

decorrelation as f 4 increases.

D. Parallel selective tempering scheme

A parallel tempering technique utilizing the Hamiltonian 
given in Eq. (8) has been devised where n r independent rep­
licas (physical realizations) of a system are simulated in par­
allel. Each replica was simulated at a particular external field 
( h Q> h l > h 2 > h j >  > h „  _i). Values of the external fields 

are chosen such that f 4 increases monotonically with field 
index i . Moreover, each field is associated with a chain re­

laxation time Tlermillul that depends on f 4 .

1. Replica exchanges
Configurations between neighboring fields are swapped 

at regular intervals with a probability determined by the fol­
lowing Metropolis rule,

P { h j <=> h M ) ■
1, A H  =£ 0

exp(-/3AH ) ,  A H > 0 ,
(12)

where A H = - N . dllowMeA f 4A h ,  A f 4 = f ^ l - f 4, f ^ 1 is the instan­
taneous value of f 4 for the replica experiencing field h i+ l at 
the time of the switching, f 4 is the instantaneous value of f 4 
for the replica experiencing field h j and Ah  =  h M - h j .  After 
every successful exchange, the replica previously experienc­
ing field i is simulated under external field h j+ l and replica 
previously with field h M  is simulated under field h j . Ex­
change of configurations at any particular instant are at­
tempted in an alternate fashion with i=l,3,5,..., or i  
= 2,4,6,.... Pictorial representation of the replica exchange 
scheme is illustrated in Fig. 5.

2. Particle m oves
At each field, the coordinates in real space (.v) were up­

dated utilizing MD simulations in the N V T h  ensemble with a 
Hamiltonian given by U ( x , x 4) utilizing a time step of 0.01. 
After updating the real coordinates, a particle was selected 
randomly from the allowable particles (see Sec. Ill A) and a 
Monte Carlo move for update of its extended coordinate x 4( i )  
was performed at each time step. Specifically, particles move 
from ghost space to real space and vice versa subject to 
criteria established by Eq. (7) with A H = A U + A t i j h h where 
A«,-=l for .v4(i) = 0—>.v4(i) = 1 and A«,-=-l for ,v4(i)=I 
—>x4( i )  =  0.

MG. 6. Probability distributions of / 4 and the corresponding acceptance 

probability obtained from actual PST simulations using 20 replicas at T  
=0.1 and oj=0.008. Desired probability (0.6) is shown by dotted line.

E. Algorithmic parameters

During PST, each replica (in principle) spends time at 
each field. The extent of chain (and structural) decorrelation 
for each replica depends upon the amount of time spent by 
that replica at each field, since the chain (and hence struc­

tural) relaxation time Tlermimil decrease as f 4 increases, as 
shown in Fig. 4(a). However, each replica contributes struc­
tural data (statistics) only while residing in the first external 
field ( h 0) whose corresponding equilibrium structure closely 
resembles that of the unperturbed system, i.e., has zero or so 
few ghost particles that they do not significantly perturb the 
structure (i.e., cluster size distribution) of the system. Opti­
mization consists of determining the number of replicas, 
their associated fields, the exchange frequency between rep­
licas and the frequency of attempted particle moves that al­
lows uncorrelated equilibrium configurations to be produced 
and sampled at h 0 as efficiently as possible.

1. External fields
The probability of success in swapping neighboring rep­

licas, and hence the rate at which replicas can migrate up and 
down the chain of fields, will be determined by the extent of 
overlap in the distributions of the value of the extended 
Hamiltonian [Eq. (8)] between neighboring fields. If each 
replica is simulated in a N V T h  ensemble under the same 
thermodynamic conditions (total number of particles, tem­
perature and density), the swapping probability is given by 
Eq. (12) and the relevant distribution is the fraction of ghost 
particles f 4 at any particular field. As an example, Fig. 6 
shows the distribution of f 4 for a chain of fields for a PST 
configuration for our telechelic system (see Sec. II) at T  
= 0.1 comprised of 20 replicas. Also shown is the replica 
exchange acceptance probability corresponding to these 
overlaps (see Sec. VI). It is clear that the significant overlap 
in the distributions for neighboring replicas is required to 
obtain reasonable exchange acceptance probability.

The choice of starting field h Q depends upon the effect of 
ghost particles on the structure of the system. Ideally, one has
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to choose this parameter in a manner that simulations at this 
field provide configurations that resemble the unperturbed 
system (with no ghost particles). However, it is possible to 
consider h 0 such that f 4( h Q) +  0 but small enough that struc­
ture is unperturbed thereby “shortening” the length of the 

chain of fields required to reach a high f 4 and hence fast 
structural decorrelation. Note also that the width of the dis­

tribution in f 4 decreases dramatically as/4—>0 (see Fig. 6) 
due to entropic reasons. Similarly, the width of the distribu­

tion in f 4 decreases as /4—> 1 (not shown in the figure). Ac­
cess to these regions of phase space requires closely spaced 
fields to obtain sufficient overlap (exchange probability) and 
is best avoided if possible. By performing the sensitivity 
analysis of ghost particles on structure, one can fix the start­
ing field at a value that provides minimal tempering of the 
structure.

In order for a replica to perform a random walk through 
the chain of fields it is necessary to have uniform acceptance 
probability between any two adjacent replicas. The efficiency 
of the algorithm depends upon the choice of the acceptance 
rate, which is determined by the overlap in the distribution of 

f 4 between neighboring fields (see Fig. 6), as well as in the 
acceptance rate being as constant as possible. A significantly 
lower acceptance rate between any two particular replicas 
results in a bottleneck that adversely affects the efficiency of 
the method. Hence, the fields h f must be chosen to provide a 
constant acceptance rate for exchanges along the entire chain 
of fields.

2. Number of replicas (nr)

Increasing the number of independent replicas, i.e., the 

length of the chain of fields, allows the maximum f 4 to be 
increased for fixed replica exchange acceptance probability. 
However, as the length of the chain (number of replicas) 
increases at a constant acceptance probability, each replica in 
the chain requires more time to traverse (via a random walk) 
the entire chain of fields. Additionally, as mentioned above, 

access to very large f 4 requires closely spaced fields. There­
fore there will be a finite number of replicas that gives an 
optimal efficiency of the algorithm that must be determined.

3 . Replica exchange attempt frequency (co)

Once the exchange of replicas is successful, the replicas 
are simulated at new values of the biasing field. To reduce 
unwanted back jump correlations, the replicas are allowed to 
equilibrate to their new fields before another attempt of ex­
change is made. If the attempt is made soon after a success­
ful exchange, thereby not allowing replicas to sample differ­
ent energy space, the success of a consecutive attempt will 
be high. Therefore, at high frequencies, the neighboring con­
figurations jump back and forth between two adjacent fields, 
forcing the replicas to sample the same phase space and thus 
reducing the efficiency of the algorithm. Even though a sig­

nificant overlap in phase space (overlap in distribution in /4, 
see Fig. 6) is essential for a finite value of acceptance prob­
ability, the success of the algorithm depends on a uniform 
random walk of replicas through the chain of fields. Thus, if

the frequency is too low, the diffusion of replicas in the chain 
of fields is reduced, thereby decreasing the efficiency of the 
PST algorithm. Thus, the replica exchange attempt frequency 
needs to be optimized for a particular system and the ther­
modynamic conditions at which the system is simulated.

4. Attempted particle moves

As mentioned in Sec. Ill D, the coordinates of particles 
in real space, x , were updated via MD simulations and the 
extended fourth coordinate x 4 was updated using Monte 
Carlo (MC) move. The MD simulation time step was chosen 
in such a way that the system traverses the phase space as 
fast as possible with minimal errors due to integration. The 
choice of frequency of MC moves must ensure a fast equili­
bration of number of ghost particles at any particular field h t. 
Therefore, a reasonable choice would be attempting a MC 
move at each MD simulation time step on a particle selected 
randomly from the pool of allowable particles. Additionally, 
at every MD simulation time step, the MC attempts can be 
performed on multiple particles sequentially allowing the f 4 
to reach the equilibrium value for a particular field.

IV. STATISTICAL MODEL

It is extremely difficult to empirically optimize the tem­
pering parameters described above based on actual parallel 
tempering simulations. Therefore, we have developed a sta­
tistical model utilizing input from short serial simulations 
(no replica exchanges) performed over a wide range of fields 
that allows us to optimize the tempering parameters that can 
be subsequently utilized in actual PST runs (see Sec. VI).

A. Input parameters

At a given field strength h the fraction of ghost particles 
fluctuates around an equilibrium average value determined 
by the strength of the field, as discussed in Sec. Ill B. The 
distribution of the fraction of ghost particles /4, like any 
other thermodynamic quantity, can be fit to a Gaussian. The 
width of the distribution oy4 depends on the size of the sys­
tem, temperature, and strength of the field [see Eq. (10)]. 
Keeping the temperature and the size of the system constant, 
the mean value and the width of the distribution will be a 
function of strength of the field alone, as shown in Sec. Ill B. 
Also, as mentioned earlier in Sec. HIE, the structural relax­

ation time t̂erminal depends on f 4 which in turn depends upon 
the strength of the biasing field. Therefore,

h  = W ,T ),

■ VfX.UNMô T )  = xll\f4,r)N7j^uhk,,

^"terminal '"k'rmmali/'-l- ■ (13)

Note that /Van0Wabie (>n our case end-groups) is propor­
tional to the total number of particles in the system and 
hence is a measure of system size. Short serial simulations 
(without replica exchange) in N V T h  ensemble can be per­

formed at constant /Va||owabie and T  to obtain f 4( h ) ,  c r f  ( f 4),
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and Ttemiimil(/4) for discrete values of h . The characteristic 

values (f4, oy, and Ttemiimil) at any field can be obtained by 
interpolating from the values obtained from short serial 
simulations at discrete fields in N V T h  ensemble.

N V T h  ensemble averaged over statistics from simulations at 
discrete fields. The autocorrelation function of ghost fraction 
is given by

A ( t )  - ^ ?0 + f) (14)
<[/40o) -.AlLAOo) ~ f i \ )

B. Random number generator

If oy and f 4 at any particular field h are known, the 
distribution in / 4 can be modeled by employing the Gaussian 
random number generator. The Gaussian random number 
generator is easily obtained by employing Box-Muller43 al­
gorithm to the uniform random number (that gives a distri­
bution of random numbers from 0 to I). The distribution of 
Gaussian random numbers thus obtained will have a mean 
value of 0 and a width of I. The distribution was further 

modified to obtain a distribution with a mean value of/ 4 and 
a width of oy4 (see the Appendix for further explanation).

Once the number of replicas n r (see Sec. Ill E), the start­
ing field ( h (j), and the acceptance probability between adja­

cent replicas are fixed, the/ 4 and h j for replicas (/=! to n r 
-I) that give us the desired acceptance probability can be 
obtained by solving iteratively starting from the h f). A set of 
50 000 random numbers were generated initially that corre­

sponds to a mean value of/ 4 ( h f}) and a width of distribution 
oy ( h0). Later, a different set of random numbers were gen­
erated that corresponds to a distribution with a mean value of 

/ 4 (h ) and a width of distribution oy (h ), where h < h (). The 
random numbers are then selected sequentially from the two 
bins and MC moves are attempted. The acceptance probabil­
ity was determined using Eq. (12). This procedure was re­
peated by changing h (<//0) until the desired acceptance 
probability was achieved. Once the value of h ] was achieved 
(the converged value of h ) , the procedure was repeated for 
the rest of the fields h j. The characteristic values of oy and 

Ttemiinai at the fields h j are then interpolated from the values 
obtained from short serial simulations in N V T h  ensemble and 

their dependencies on /4.
The fluctuations observed in / 4 at each field by employ­

ing a typical Gaussian random number generator will follow 
the Gaussian white-noise statistics, i.e., successive values of 
/ 4 are not correlated. However, the fluctuations in / 4 (or any 
other thermodynamic quantity) of a real system in N V T h  
ensemble are correlated in time and a characteristic time is 
often involved in such correlations. In order to reflect the 
fluctuations of real system in time, it is essential to incorpo­
rate a random number generator that accommodates these 
correlations. Therefore, we have employed a correlated ran­
dom number generator based on exact time domain method 
by Percival (See the Appendix for formulation).44 In this 
methodology, the time correlations can be incorporated using 
a predefined correlation sequence (s t Y in the Appendix). 
These correlated random numbers are also essential in cap­
turing the effect of replica exchange attempt frequency on 
the efficiency of the algorithm. The correlation sequence 
(s,j-) in formulation can then be directly obtained from the 
autocorrelation function of/ 4 from short serial simulations in

C. Model PST simulations

Once the fields h j for a particular set of tempering con­
ditions (number of replicas/fields, the acceptance probability, 
and the exchange frequency) are known, a Gaussian random 
number corresponding to the distributions at each field was 
obtained. An exchange of configuration between adjacent 
replicas was then attempted mimicking the actual parallel 
tempering simulation following Eq. (12). The procedure was 
repeated and after every failed attempt of exchange of neigh­
boring replicas, a new random number that was correlated 
with the previous random number (see Sec. IV B to obtain 
correlated random number sequence) was used for the next 
attempt to exchange the same replicas. Once the replicas are 
exchanged, they acquire new fields and the random number 
generation corresponding to these distributions in / 4 have 
been reinitialized (the random number obtained for the next 
attempt was not correlated with the previous random number 
since the replicas were exchanged and simulated at a new 
field). This procedure was repeated until 100 decorrelated 
structures have been obtained. In case of model PST runs, 
the decorrelation in structure in a replica was measured by 
the time spent by that replica in each field. Each field is 
associated with a relaxation time Ttemiimil and the total deco­
rrelation of structure in a replica is the sum of decorrelation 
achieved at each field (based on the time spent at that field 
and the corresponding relaxation time). It is important to 
note that the statistics (total relaxation times) were only col­
lected when a replica visits the field h f) (the equilibrium 
structure at this field represents that of the unperturbed sys­
tem). It is possible that a replica can undergo more than one 
relaxation before it revisits the field h f) depending upon the 
time spent at every other field.

Several independent sets of model PST runs are per­
formed by changing the initial seed that generates the corre­
lated random sequence to obtain the normal distribution of/ 4 
at each field. Statistics are collected and averaged over 100 
such independent sets at a particular set of algorithmic con­
ditions P {h j< ^ > h i+j) and the w]. The efficiency of the PST 
algorithm (CPUMn/CPUPT) at a particular set of conditions 
is defined as the ratio of total CPU time (sum of CPU on all 
nodes/replicas employed) required by PST technique to the 
CPU time required using conventional MD simulations. The 
efficiency varies with the number of decorrelated structures 
obtained. Therefore, it is essential to plot the efficiency of the 
algorithm as a function of number of independent decorre­
lated structures obtained.

Thus the model PST runs can be performed at different 
values of P (h j< = > h i+ i) , 10, and The efficiency of the algo­
rithm was calculated by averaging over 100 independent 
runs at each set of tempering parameters and the optimal 
values for parameters were obtained.
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RG . 7. Characteristic curves obtained from serial NVTh simulations at T  

= 0.1. (a) Average fraction of ghost particles (/4) as a function of external 

field (h). (b) The width of the distribution ( a t ) of fraction of ghost particles 

as a function of average fraction of ghost particles (/4).

V. APPLICATION OF PARALLEL SELECTIVE 
TEMPERING TO SELF-ASSOCIATING POLYMER 
SOLUTIONS

A. Optimization of tempering parameters

1. Serial runs

It is evident that the interactions responsible for self­
association will be relaxation limiting. Hence an obvious 
choice for tempering would be these interactions (between 
end groups and other particles). Sticky end groups comprise 
25% (2000 particles) of the total particles in the system. 
These end groups were allowed to move from real space to 
ghost space and vice versa. Serial simulations (no exchange) 
were performed in N V T h  ensemble at various fields at T  
= 0.1 for 2X 106 steps with time step 0.01. Based on these 

short runs, / 4 ( / j ) ,  o y 4 ( / 4 ) ,  and 7-te rm in a | ( / 4 )  were obtained (see 
procedure in Sec. TV A). Figure 7(a) illustrates the effect of 

field on / 4 at 7=0.1. In Fig. 7(b), oy4 is plotted against /4. 
The width of the distribution increases as/ 4 increases until it 
reaches a maximum value and then decreases as/4̂  1. The 
information obtained from Fig. 7 along with Fig. 4(a) was 
fed into the statistical model described in Sec. IV. The start­

ing field h 0 was chosen such that/4=0.001. This very con­
servative choice of h 0 means that equilibrium statistics will 
be collected for configurations that have on average only 2 
(0.001 X 2000) ghost particles. The influence of h 0 on the 
efficiency of PST is discussed later in Sec. VI A. The auto-

0 20 40 60 80 100

Number of independent decorrelated configurations

R G . 8. Hfficiency of parallel tempering algorithm (PST) predicted by sta­

tistical model at various acceptance probabilities (0.1-0.9) using 20 replicas. 

Abscissa indicates the number of collectible independent equilibrium 

configurations.

correlation function of ghost fraction, given by Eq. (14), was 
calculated from the fluctuations of/ 4 in serial runs in N V T h  
ensemble. At 7=0.1, the correlation time calculated by fitting 
Eq. (14) to the stretched exponential and integrating over 
time was found to be 889. The correlation time thus obtained 
was averaged over statistics obtained from N V T h  simulations 
at discrete values of h.

2. Model PST runs

Model PST runs were then performed for various num­
ber of replicas (2-200), acceptance probabilities (0.1-0.9 
with intervals of 0.1) and the replica exchange attempt fre­
quency (0.0008-0.4) between neighboring replicas. The 
model PST runs were carried out until we obtained 100 in­
dependent decorrelated configurations (defined earlier in Sec. 
IV B). Typically 100 runs were performed (using indepen­
dent initial seed for correlated random number generator) for 
each set of tempering parameters in order to obtain good 
statistics and error bars.

The model PST runs revealed that the efficiency of the 
algorithm varies significantly with the probability of accep­
tance of switching configurations between neighboring rep­
licas (keeping a constant number of replicas). Figure 8 shows 
the effect of acceptance probability on the efficiency of the 
algorithm. The efficiency is shown as a function of accep­
tance probabilities ranging from 0.1 to 0.9 for a chain of 20 
replicas/fields and an exchange frequency of 0.008. It is ob­
vious from the figure that the PST scheme is inefficient if the 
objective is to obtain only a few equilibrium structures. 
However, the speedup ratio (see Sec. IV C) increases as the 
required number of decorrelated system configurations ob­
tained increases. An optimal acceptance probability for rep­
lica exchange is 0.7 for our chosen criteria of 100 decorre­
lated configurations from 20 replicas.

The efficiency of the PST algorithm as a function of 
number of replicas simulated (model PST runs) at respective 
optimum acceptance probability is shown in Fig. 9(a). It is 
clear that there is a range of number of replicas that can give 
approximately the same computational efficiency. Another 
factor to be considered is the total wall clock time required to
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FIG. 9. (a) Efficiency of PST predicted by statistical model for various 

replicas (6-40) at their optimal acceptance probabilities, (b) The wall clock 

and CPU time required (in days) to obtain 100 decorrelated configurations 

as the function of number of replicas. The CPU time=wall clock time X 

number of replicas.

achieve the goal (e.g., 100 independent decorrelated configu­
rations). Figure 9(b) illustrates the number of CPU and wall 
clock days required to obtain 100 independent configurations 
using 20 replicas. The numbers were based on AMD Athlon 
XP 2200+ (-1800 MHz) CPU. CPU time is just the product 
of wall clock time and number of replicas. The CPU time has 
a shallow minimum at 10 replicas consistent with the 
speedup ratios shown in Fig. 9(a).

We also explored the effect of the replica exchange at­
tempt frequency on the efficiency by performing model PST 
runs for 20 replicas at optimum acceptance probability (0.7). 
Figure 10(a) illustrates the effect of exchange frequency on 
the speedup factor. As seen from the figure, the efficiency is 
very sensitive to the exchange frequency. In Fig. 10(b), we 
notice that the optimal value for exchange frequency is about 
0.08 for 20 replicas.

B. Validation of statistical model

In order to validate the statistical model we performed 
the actual PST simulation at T = 0 .1 using 20 replicas at ac­
ceptance probability of 0.6 between the neighboring replicas. 
Attempts to swap the neighboring replicas were made after 
every 0.008. The starting field ( h Q) corresponds to a value 

that corresponds to/4=0.001 whereas the last field (/i19) cor­

responds to/4=0.036. In Fig. 6 the acceptance probabilities 
between adjacent replicas in actual PST simulation are com­
pared to the predicted values for the PST statistical model. 
The efficiency (speedup ratio) of the actual PST method is

FIG. 10. (a) Efficiency of PST predicted by statistical model as a function of 

replica exchange attempt frequency (b) wall clock time required in days as 

the function of replica exchange attempt frequency for 20 replicas with 0.6 

acceptance probability.

compared to the predictions made by the model PST simu­
lations in Fig. 11. As seen from Figs. 6 and 11, excellent 
agreement between the model PST simulation and the actual 
PST simulation is obtained.

VI. EFFICIENCY OF PARALLEL SELECTIVE 
TEMPERING METHOD

The end-group cluster size distribution at r=0.1 calcu­
lated after 75 decorrelated configurations obtained from PST 
simulations is illustrated in Fig. 12. Also shown for compari-

FIG. 11. Efficiency of actual PST simulation and model PST simulation for 

nr-20, 0.008, 7=0.1, and acceptance probability =0.6.
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RG . 12. Cluster size distribution of self-associating polymer solutions at 

7=0.1 from conventional MD and actual PST simulations.
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MG. 13. Clusters of size 1 (free end groups) of self-associating solutions at 

7=0.1 for various values of average starting tempering fraction [/' l̂A,))]. 

Also shown are the corresponding efficiencies of PST at these fractions.

son is the cluster size distribution obtained from a conven­
tional iVVTMD simulation at the same temperature. The wall 
clock time for the conventional MD simulation, which yields 
a trajectory that is shorter than the structural relaxation time 
at this temperature, corresponds to that of the PST simula­
tion. We observe a dramatic improvement in statistics from 
the PST simulation. Most notable is the disappearance of 
large clusters ( i n — 6 0 ) that are apparently an artifact of the 
nonequilibrium sampling in the conventional MD simulation.

It is clear that the PST algorithm greatly accelerates the 
generation of equilibrium configurations of the self­
associating polymer solution compared to conventional MD 
simulation. In the case of self-associating dilute solutions at 
7=0.1, the algorithm is at least an order of magnitude faster 
than the conventional MD simulation. The speedup depends 
upon the thermodynamic conditions, size of the system, and 
algorithmic parameters such as number of replicas, replica 
exchange attempt frequency, and the fields. Optimization of 
the number of replicas, replica exchange attempt frequency, 
and the fields has been discussed in Sec. IV. Here we inves­
tigate the role of starting field, system size effects, and com­
pare PST with conventional temperature parallel tempering.

A. Choice of starting field

As the particles move from real space to nonphysical 
space, the structure is perturbed. The extent of this perturba­
tion needs to be clearly understood in order to fix the starting 
field for PST simulations. Since the particles that are tem­
pered are the sticky groups that form clusters, these sticky 
groups in ghost space are free to move in the interstitial 
regions between clusters. Once they make their transition 
into real space (when all the interactions are turned on), they 
attach to another cluster. This mechanism of hopping of par­
ticle from one cluster to another is responsible for acceler­
ated structural relaxation obtained with PST. It is evident 
from this process that the perturbation in structure due to the 
particles in ghost space can be measured by calculating the 
distribution of free sticky groups (clusters of size 1 in cluster 
size distribution). In Fig. 13, the number of free sticky 
groups normalized by total number of sticky ends is plotted 

against the average fraction of ghost particles. At f 4=0.001,

corresponding to the h (j used in the PST simulation discussed 
above, the fraction of free sticky ends was about 0.0008 in­
dicating that the influence of tempering on structure was 

minimal. Basing the choice of starting fraction /4(/?o) on the 
fraction of free sticky ends as shown in Fig. 13, we deter­

mined that an upper limit of/4(/?0)=0.0125 (this value cor­
responds to the fraction of free sticky ends to be 0.01) to be 
reasonable after comparing the radial distribution function 
for the end groups obtained at this value to that for the un­
tempered system.

The efficiency of PST as defined earlier is also shown in 

Fig. 13 as a function of/4(/?0) as obtained from model PST 
simulations. Based on the definition of efficiency in our case 
(CPUmo/CPUpj), we can see that the efficiency of the PST 

method depends upon /4(/?o). This increase in efficiency is 
due to the intrinsic speedup of dynamics at field h f) (seen by 
the reduction of rlermina| at h fj as we decrease h fj further). For 

/4(/?o) = 0.0125, the maximum acceptable value, model calcu­
lations show the PST method to be 2.5 times more efficient 

than for the more conservative/4(/?0) = 0.001.

B. Influence of temperature

The effect of temperature on the efficiency of the PST 
algorithm was observed by simulating self-associating solu­
tions at various temperatures using the statistical model. In 
addition to simulations at 7=0.1, we performed simulations 
at 7=0.13 and 7=0.07. In order to utilize the statistical 
model at 7=0.13, the input parameters to the model have 
been evaluated at that temperature. Short serial runs were 
also performed at 7=0.13 to investigate characteristic depen­

dencies, /4(/j), oy4(/4), and Tlt.rTOina|(/4) of the system. The 
starting field h f) was chosen to obtain a corresponding 

/4(/?o) = 0.001 similar to the investigations at 7=0.1. Optimal 
parameters and the highest efficiency at that temperature are 
obtained subsequently by performing the model PST runs 
under different algorithmic conditions. However, as we 
lower the temperature, obtaining input parameters for the 
statistical model becomes computationally unachievable due 
to the exponential increase in relaxation times. Therefore, in 
order to simulate using the statistical model at 7=0.07, ex-
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trapolation techniques were employed. The characteristic de­
pendencies are extrapolated based on the values at higher 
temperatures. Later, the model PST runs were performed and 
the optimal algorithmic parameters that give us the highest 
efficiency are noted. The efficiency of PST at different tem­
peratures is plotted in Fig. 3 in terms of apparent relaxation 
times. The apparent relaxation time at any particular tem­
perature is defined as the chain end-to-end vector relaxation 
time observed in MD simulation at that temperature times 
the speedup observed due to the algorithm. The apparent 
relaxation times from PST deviate increasingly from the 
Arrhenius behavior seen from N V T  MD simulations as we 
approach lower temperatures, indicating that the algorithm is 
more efficient at low temperatures. Specifically, the algo­
rithm at 7=0.07 is 150 times more efficient than at 7=0.1 
and about 1500 times more efficient than at 7=0.13.

FIG. 14. Hfficiency of PST and temperature parallel tempering (TPT) as a 

function of system size. The abscissa is normalized by the number of sticky 

ends and T0 is the temperature of the first replica in TPT.

C. Size effects

The width of the distribution of any thermodynamic 
quantity such as energy scales as Ar“,/2, whereas the average 
scales as N  ( N  refers to system size). This poses a particular 
problem for parallel tempering methods that rely on the over­
lap of distributions of energies between adjacent replicas/ 
fields in that as the system size increases the number of rep­
licas required to obtain reasonable overlap increases. In order 
to investigate the effect of N  on PST efficiency we have 
performed model PST runs on various system sizes. The 
characteristic dependencies of the system are obtained in the 
following manner. Similar to any other thermodynamic 
quantity, the normalized width (actual width normalized by 
the system size) of the distribution in f 4 scales as Allowable 
[see Eqs. (10) and (13)]. Therefore,

^Xnowubie. T ) = a u ( U N Mombk,, T ) ( ,
\ -'''a llow able/

(15)

where is the size of the new system. Note that/4(/i)
and Terminal 1/4), are independent of system size. The depen­
dencies (based on the new system size) are later fed into the 
model and the highest efficiency is obtained at optimal pa­
rameters from the model.

The speedup obtained from model PST runs as a func­
tion of system size at 7=0.1 is illustrated in Fig. 14. All 
system sizes are normalized by the base system of 2000 al­
lowable particles. As we increase the size of the system, we 
observe that the efficiency of PST is decreased. However, 
due to intrinsically larger speedup obtained in PST, one can 
extend the limit of simulated system size farther, particularly 
at lower 7X0.07).

D. Comparison with temperature parallel temperature 
(TPT)

Results obtained from PST are compared to another 
form of parallel tempering algorithm, namely, TPT where the 
controlling parameter is the temperature. Various replicas are 
simulated under similar conditions ( N , V )  but differing in 
temperature ( T ) . In order to investigate the efficiency of TPT,

model TPT runs were performed at various temperatures. It 
is important to observe that the characteristic dependencies 
that are required for the statistical model differ from the PST 
algorithm. Specifically, the important dependencies in TPT 
are

V= V(T,N),

= <rv(T,N) = [KhT2Cv]in%

^terminal — ^terminal > (16 )

where V is the potential energy of the system in N V T  en­
semble, T̂rmimi| is the terminal relaxation time at temperature 
T  and a v is the standard deviation in fluctuations in potential 
energy, and N  is the system size. These characteristic depen­
dencies of the system are obtained from MD simulations at 
various temperatures. The relaxation times from MD simula­
tions were obtained by calculating chain end-to-end vector 
autocorrelation function and subsequently fitting to stretched 
exponential and integrating over time [see Eq. (4)]. To obtain 
the efficiency of TPT at each temperature, model TPT runs 
were performed at optimal algorithmic parameters. The pa­
rameters that influence the efficiency of TPT are the starting 
temperature (TQ), the number of replicas, replica exchange 
acceptance probability, and the exchange frequency. Optimal 
parameters are chosen by investigating the efficiency (de­
fined in Sec. IV) for various conditions. At each set of algo­
rithm conditions, 100 independent sets of model TPT runs 
were performed and the statistics were collected until we 
obtain 100 independent decorrelated configurations (similar 
to investigations performed with PST algorithm at 7T=0.1). 
Apparent relaxation times, defined in Sec. VI B, as a func­
tion of temperature for TPT are also shown in Fig. 3. It is 
evident from the figure that the TPT performs better than the 
conventional MD simulation. However, it is inferior to PST 
(as seen from the figure) and the advantage of PST over TPT 
is significantly enhanced at lower temperatures. In our com­
parison of efficiency between PST and TPT, we did not take 
into account the ability of the TPT method to provide statis­
tics for all temperatures used in the chain of replicas.
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We further compared the efficiency of TPT to PST as a 
function of system size. Model TPT runs were performed at 
different system sizes by changing the characteristic depen­
dencies. Specifically,

V '  =  V N ' / N ,

a v ( T , N ' )  =  a v ( T , N )  *  ( N ' / N ) - u \  (17)

where V ' is the potential energy of system with N '  particles. 
The efficiency thus obtained at various system sizes (normal­
ized by the base system) is compared to the efficiency of 
PST (see Fig. 14). We observe that as we increase the system 
size, it becomes more efficient to decouple the trajectories in 
TPT and run independent configurations (corresponds to ra­
tio CPUMD/CPUFr=l).

Based on the investigations made on self-associating so­
lutions, it is evident that this novel parallel selective temper­
ing algorithm can be effectively used to reduce the time re­
quired to obtain equilibrium configurations of complex 
systems. The algorithm has an edge over the current tem­
perature parallel tempering approach. With the aid of the 
statistical model developed, the algorithmic parameters can 
be tuned to maximize the efficiency.
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APPENDIX: GENERATING CORRELATED RANDOM 
NUMBERS WITH EXACT TIME DOMAIN 
METHOD

Let W q , . . .  , W N^ i be a set of N  independent Gaussian 
random numbers with zero mean and unit variance. With 
F0=cr0H/0, we generate N -1 remaining correlated samples 
recursively via the following equations:

f

Y, =  ' 2 < f > i J Y H + W , ( 7 , . t =  1.........N -  1.
M

The cr/s and tp^, are obtained by setting cr̂=.s’0 Y and recur­
sively computing for t =  1,... , N -1 by

si.r~ 2 ^,

VII. CONCLUSIONS

We have developed and implemented a new parallel 
tempering algorithm based on tempering a fraction of inter­
actions responsible for slowing down the dynamics in the 
system. Structural relaxation times are related to the fraction 
of tempered particles (or interactions associated with them), 
the higher the fraction, the smaller the relaxation time. A 
chain of independent replicas is then simulated under the 
extended (N V T h ) ensemble. Occasionally, the adjacent rep­
licas are swapped by employing the Metropolis rule. Accep­
tance probability of swapping is dependent upon the extent 
of overlap of energy distributions of replicas. Thus, in order 
for the algorithm to be efficient, the choice of various param­
eters (number of replicas, external fields associated with the 
replicas, and the swapping frequency between the replicas) 
has to be optimized. We have developed a statistical model to 
identify the effects of these parameters on the efficiency of 
the algorithm and choose the optimal values.

We employed this novel algorithm for simulating self­
associating polymer solutions and compared to MD simula­
tion and other parallel tempering (TPT) methods. The algo­
rithm performs better compared with conventional 
temperature parallel tempering at lower temperatures. There 
was a significant increase in the dynamics of the system by 
tempering only a fraction of interactions in contrast with 
TPT where the system needs to visit high temperatures to 
obtain a similar increase in dynamics. Thus, PST performs 
better at lower temperatures (the temperatures of interest). 
Also, due to the intrinsic efficiency of PST, even though the 
scaling behavior of PST is similar to any other parallel tem­
pering methodologies, one can extend the limits of system 
size. This algorithm gives us a substantial improvement over 
TPT on large systems.

fijj ~ \. 1 =£ /=£? 1 ,

2 2 /i i2 \ 
cr, =  cr,_, (1 -(f),,),

where s, Y is the predefined autocorrelation sequence. The 
correlated samples Y,’s obtained by the above equations have 
zero mean and unit variance. They can further be modified to 
obtain the random numbers with an average ( N )  and variance
S by

Y , =  Y , * S  +  ( N ) .
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