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The Drosophila heat shock cognate gene 4 (hsc4), a member of the hsp70 gene family, encodes an abundant 
protein, hsc70, that is more similar to the constitutively expressed human protein than the Drosophila 
heat-inducible hsp70. Developmental expression revealed that hsc4 transcripts are enriched in cells active in 
endocytosis and those undergoing rapid growth and changes in shape. 

The cells of nearly all organisms have a conserved re
sponse to environmental stresses, consisting of the synthesis 
of several heat shock proteins (hsps) (for review, see refer
ence 15). The most prominent stress protein in the majority 
of species, hsp70, is highly conserved among procaryotic 
and eucaryotic species. The hsp70 gene is a member of a 
family of closely related genes that includes both stress
inducible genes (hsp's) and genes expressed constitutively 
during normal development, the heat shock cognate genes 
(hsc's). 

The heat shock cognate proteins appear to be important 
for normal cellular function (reviewed in references 5, 15, 21, 
and 27). A number of recent results indicate that the hsp70-
like proteins act in an ATP-dependent manner in several 
cellular compartments. They may function to alter the con
formations of proteins or affect protein-protein interactions 
(9, 18, 25). Additionally, they may playa role in the 
translocation of polypeptides across specific membranes (4, 
7). The abundant cytoplasmic heat shock cognate protein in 
mammalian cells, hsc70, is involved in the ATP-dependent 
uncoating of clathrin from endocytotic vesicles (26, 31). 

In Drosophila melanogaster, the hsp70 multigene family 
includes five copies of the heat-inducible hsp70 gene, one 
copy of the heat-inducible hsp68 gene, and seven heat shock 
cognate genes, hscl through hsc7, that are expressed during 
normal growth (6,13,15,19). The Drosophila hsc70 protein, 
encoded by hsc4, is a very abundant polypeptide in all 
tissues and cells and is localized to a meshwork of cytoplas
mic fibers concentrated around the nucleus (19). 

Sequence and structure of the Drosophila hsc4 gene. The 
hsc4 gene of D. melanogaster was originally isolated on a 
recombinant plasmid, pMG34 (Fig. 1A and 2), following 
hybridization with a Drosophila hsp70 gene (6). The DNA 
sequence of hsc4 revealed a single open reading frame of 
1,953 base pairs (bp) that potentially encodes a 651-amino
acid polypeptide with an estimated molecular weight of 
71,108. SI nuclease analysis indicated that the protein cod
ing and the 5' untranslated regions were not contiguous and 
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that an intron was located 5' of the initiating A TG (data not 
shown). To confirm the position of this intron, a cDNA, 
cD12, was isolated and the sequence of the 5' end was 
determined. The cDNA sequence diverged from the genomic 
DNA sequence at the ATG (Fig. IB). The protein coding and 
5' untranslated regions of the hsc4 gene were interrupted by 
a 1.6-kilobase (kb) intron. 

The deduced amino acid sequence of the hsc4 gene (Fig. 3) 
was 73% identical to that of the Drosophila heat-inducible 
hsp70 (12) and 85% identical to that of the human hsc70 
polypeptides (8). Furthermore, Drosophila hsc70 was 80% 
identical to Caenorhabditis elegans hsp70A, which is abun
dant throughout development and only marginally heat in
ducible (29). An unresolved question is whether constitu
tively expressed hsp70-related genes, such as hsc4, and 
those induced by stress, e.g., hsp70, have identical or 
different functions. The fact that Drosophila hsc4 is more 
closely related to vertebrate hsc70-like genes than an induc
ible gene from D. melanogaster suggests that the constitu
tively expressed proteins may be functionally distinct from 
the stress-induced proteins. 

In situ hybridization to embryos reveals stage- and tissue
specific enrichment of hsc4 transcripts. Northern (RNA blot) 
analysis demonstrates that the major 2.3-kb hsc4 transcript 
is expressed throughout embryonic, larval, pupal, and adult 
development at relatively constant levels (6) (data not 
shown). In situ hybridization to wild-type embryos was 
performed as described by Hafen and Levine (11) or Tautz 
and Pfeifle (30). Radioactive DNA probes were labeled by 
nick translation with eSS]dCTP (New England Nuclear 
Corp.) to a specific activity of approximately 5 x 107 

cpmlj.l.g, and the autoradiograms were developed after 2 to 3 
days. Nonradioactive probes were prepared essentially by 
the protocol provided with the nonradioactive labeling and 
detecting kit (Boehringer Mannheim, catalog no. 1093657). 
hsc4 transcripts were localized in a complex spatial and 
temporal pattern during embryogenesis (Fig. 4 and 5), which 
was superimposed onto a basal level of expression apparent 
in virtually all cells of the developing embryo. 
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Enrichment of hsc4 transcripts was first observed during 
late syncytial and cellular blastoderm stages and during early 
gastrulation in the cytoplasmic compartment between the 
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FIG. 1. (A) Restriction map of pMG34, a recombinant plasmid containing the entire Drosophila hsc4 gene. The direction of transcription, 
positions of the intron and exons 1 and 2, start (ATG) and stop (T AA) codons of translation, and relevant restriction sites are included (B, 
BamHI; Bg, BglII; Hc, HincH; P, PstI; Xb, XbaI; Xh, XhoI). Below the restriction map, the approximate extents of three hsc4 cDNAs \ire 
depicted. cDNA clone c321 was isolated from a 3- to 12-h embryonic cDNA library (23) in a differential screen designed to identify genes 
preferentially expressed in neuroblasts rather than differentiated neurons (L. A. Perkins, A. P. Mahowald, and N. Perrimon, submitted for 
publication) and was determined to encode hsc4 sequence based 011 its localization to SSE on the salivary gland polytene chromosomes, 
Southern blot analysis with pMG34 as a probe, and partial DNA sequence analysis. cDNA clone cHsc4 was isolated at high stringency from 
a size-selected 9- to 12-h embryonic library with c321 as a probe (35). cDNA clone cD12 was isolated from an embryonic cDNA library 
provided by M. Goldschmidt-Clermont with pMG34 as a probe. (B) Location ofthe intronlexon boundaries in the Drosophila hsc4 gene. This 
comparison shows the nucleotide sequence from cDNA cD12 aligned with the genomic DNA sequence from pMG34. This alignment does not 
permit the unambiguous determination of the precise boundaries of exons 1 and 2, but the predicted splice site ( "), based on the eucaryotic 
consensus (17), is shown. 

blastoderm nuclei and the yolk (Fig. 4A and B). These stages 
are characterized by the rapid assembly of cellular mem
branes to compartmentalize the nuclei. Tissue enrichment 
was next observed in neuroblasts of both the head and 
extending germ band (Fig. 4C, D, and E). Unlike transcripts 
from Delta and members of the achaete-scute gene complex, 
which are enriched in subsets of neuroblasts enlarging within 
the neurogenic ectoderm (2, 24, 32), hsc4 transcripts were 
only observM in newly segregated neuroblasts internal to 
the ectoderm. Enrichment was clearly observed in neuro
blasts from the procephalic neurogenic ectoderm (Fig. 4C 
and D) and continued to be enriched in specific derivatives of 
this region (Fig. 4H). Enrichment of hsc4 transcripts was 
observed in cells of the embryonic gut from anterior and 
posterior midgut invagination to hatching (Fig. 4F to H) and 
transiently in developing mesodermal cells (Fig. 4F and G). 
Enrichment in the gut occurred while the cells were under
going numerous cellular processes: mitoses, expansions, 
stretching, and volumetric growth (3). Enrichment in the 
mesoderm occurred as the somatic and splanchnic meso-

derms became separate layers (Fig. 4F and G) and was 
readily apparent as the somatic muscles formed and single 
cells fused into syncytial myotubes and differentiated into 
somatic muscles (3). . 

During late embryogenesis, hsc4 transcripts were most 
abundant in the garland gland (Fig. 4G and H), an organ 
postulated to segregate and store waste products (34). Cells 
from the garland gland are very active in endocytosis via 
coated vesicles. In fact, electron microscopy reveals the 
cortex of these cells to be a labyrinth of endocytotic pits or 
channels that "pinch off" to form clathrin coated vesicles 
(14; C. Poodry, personal communication). Since a clathrin 
"uncoating ATPase" activity has been detected in Droso
phila cells (28), we propose that hsc70 in the garland gland 
functions in the uncoating of clathrin triske1ions. 

In conclusion, hsc4 transcripts are present in most if not 
all cells during embryonic development but are enriched in 
cells active in endocytosis and those undergoing rapid 
growth and changes in shape. Studies in other organisms 
have demonstrated high levels of hsc70 in rapidly growing 
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ATGrCTAAAG CTCCTGCTGT TGGTATTGAT TTGGGCACCA CCTACTCGTG CGTGGGCGTG TTCCAGCATG GCAAGGTCGA GATCATCGCC AACGACCAGG GTAATCGTAC CACTCCATCC 231 

TATGTTGCCT TCACCGATAC GGAGCGTCTG ATCGGAGATG CCGCCAAGAA CCAGGTGGCG ATGAACCCGA CCCAGACGAT CTTCGACGCC AAGCGCTTGA TTGGTCGCAA GTTCGATGAT 351 

GCCGCCGTGC AGTCTGACAT GAAGCACTGG CCCTTCGAGG TGGTCAGCGC CGATGGCAAG CCCAAGATCG AGGTGACCTA CAAGGACGAG AAGAAGACCT TCTTCCCCGA GGAGATCTCT 471 

TCGATGGTGC TTACCAAGAT GAAGGAGACC GCCGAGGCCT ATCTGGGCAA GACTGTGACC AACGCGGTCA TCACCGTGCC GGCCTACTTC AACGACTCTC AGCGTCAGGC GACCAAGGAC 591 

GCCGGCACCA TCGCCGGTCC GAACGTGCCG CGTATCATCA ACGAGCCCAC TGCCGCTGCT ATCGCTTACG GTCTGGACAA GAAGGCTGTT GGAGAGCGCA ACGTGCTCAT CTTCGATCTG 711 

GGCGGCGGCA CCTTCGATGT GTCCATCCTG TCGATCGATG ACGGTATCTT TGAGGTCAAG TCCACGGCCG GAGATACGCA TCTGGGTGGT GAGGACTTCG ACAACCGTCT GGTCACCCAC 831 

~ TTCGTGCAGG AGTTCAAGCG CAAGCACAAG AAGGATCTGA CCACCAACAA GCGTGCTCTG CGTCGTCTGC GCACCGCTTG CGAGCGTGCA AAGCGTACCC TGTCGTCCTC CACCCAGGCC 951 
'" .j:> 

AGCATTGAGA TCGACTCTCT GTTCGAGGGT ACCGACTTCT ACACCTCGAT TACTCGTGCC CGTTTCGAGG AGTTGAACGC TGATCTGTTC CGCAGCACCA TGGACCCCGT GGAGAAGGCT 1071 

CTGCGTGACG CCAAGCTGGA CAAGTCGGTC ATCCACGACA TTGTGCTGGT CGGTGGCTCC ACCCGTATCC CCAAGGTGCA GCGCCTGCTG CAGGATCTGT TCAATGGCAA GGAGCTGAAC 1191 

AAGTCGATCA ATCCCGATGA GGCTGTGGCC TACGGTGCTG CCGTCCAGGC GGCCATTCTG CACGGCGACA AGTCGCAGGA GGTGCAGGAT CTGCTGCTGC TCGATGTCAC TCCTCTGTCC 1311 

CTGGGTATCG AAACCGCTGG CGGTGTGATG AGCGTGTTGA TCAAGCGCAA CACCACCATT CCGACCAAGC AGACCCAGAC CTTCACCACC TACTCGGACA ACCAGCCCGG TGTGCTGATC 1431 

CAGGTGTACG AGGGAGAGCG TGCCATGACC AAGGACAACA ACCTGCTCGG CAAGTTCGAG CTGTCGGGCA TCCCCCCCGC ACCACGTGGT GTGCCCCAGA TCGAGGTCAC CTTCGATATC 1551 

GATGCCAACG GTATCCTCAA CGTGACTGCC CTGGAGCGTT CGACCAACAA GGAGAACAAG ATCACCATTA CCAACGACAA GGGTCGTCTC TCCAAGGAGG ACATCGAGCG CATGGTCAAC 1671 

GAGGCCGAGA AGTACCGCAA CGAGGATGAG AAGCAGAAGG AGACCATTGC CGCCAAGAAC GGCCTCGAGT CGTACTGCTT CAACATGAAG GCCACCCTCG ACGAGGATAA CCTGAAGACC 1791 

AAGATCTCGG ACTCTGACCG CACCACAATC CTGGACAAGT GCAACGAGAC CATCAAGTGG CTGGATGCCA ACCAGCTGGC TGACAAGGAG GAGTACGAGC ACCGCCAGAA GGAACTGGAG 1911 

GGTGTGTGCA ACCCGATCAT TACCAAGCTA TACCAGGGCG CCGGTTTCCC ACCCGGTGGC ATGCCCGGCG GTGGTGGAGG TATGCCCGGA GCGGCTGGTG CCGCTGGCGC TGCCGGAGCC 2031 

GGCGGTGCTG GCCCCACCAT CGAGGAGGTC GACTAAACCA TTCACCCCCA CACCTCAATG CAACCATACA GTAACAGTTC TCCAAACAAT TTACCAACCA AACACAGTAG AAGAGTTGCT 2151 

TAAACAAACT TGGATTC 2168 

FIG, 2, Complete nucleotide sequence of the Drosophila hsc4 gene contained on plasmid pMG34. The entire protein-coding region, delimited by start (ATG) and stop (TAA) codons, 
is 1,953 bp and contains no introns. The predicted 5' and 3' splice sites of the intron separating exon 1 and exon 2 and the predicted start of transcription (5' END) are indicated by arrows. 
Nucleotides are numbered with reference to the predicted start of transcription (+ 1). The 5' untranslated region of the hsc4 gene is approximately 120 bp (6); intronic sequences are not 
included in this numbering scheme. A consensus TAT A box at - 23 to - 31, and two regions (-91 to -104 and -144 to -157) with sequence similarity to the consensus heat shock element 
(20) are observed upstream of the start of transcription. Stars indicate identical matches to this heat shock element, T--GAA--TAA--G. We have marked the approximate 5' end 
of the hsc4 transcript as + 1. 
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ARFEELNADLFRGTLDPVEKALRDAKLDKSQIHDIVLVGGSTRIPKIQKLLQDFFNGKELNKSINPDEAVAYGAAVQAAILSGDKSENVQDLLLLDVTPL 399 Hum hsc70 

SLGIETAGGVMTKLIERNCRIPCKQTKTFSTYSDNQPGVSIQVYEGERAMTKDNNALGTFDLSGIPPAPRGVPQIEVTFDLDANGILNVSAKEMSTGKAK ........... .... .. ... .. ......... ............... . .. 0 ................... 0........ . . .. . 497 Oros hsp70 

SLGIETAGGVMSVLIKRNTTIPTKQTOTFTTYSDNOPGVLIOVYEGERAMTKDNNLLGKFELSGIPPAPRGVPOIEVTFDIDANGILNVTALERSTNKEN 499 Oros hsc70 ........... .................................................. .......................... .000.. . .. 
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TRHCSPIMTKMHQOGA ....... GAAGGPGANCGOOAGGFGGYSGPTVEEVD 641 ~oshsp70 ... 0 .. 0 . 00 .00.. 0 • 000 O. . .. 0 .... 
EGVCNPIITKLYQGAGFPPGGMPGGGGGMPGAAGAAGAAGAGGAGPTIEEVD 651 ~oshscro . . .......... 0.0 ........ .0. 0 .000 •••••••• 
EKVCNPIITKLYOSAGGMPGGMPGGFPG ..... GGAPPSGGASSGPTIEEVD 646 Hum hsc70 

FIG. 3. Comparison of Drosophila hsc70, human hsc70, and Drosophila hsp70 amino acid sequences. The predicted amino acid sequence encoded by the Drosophila hsc4 gene (Dros 
hsc70) is compared with the predicted amino acid sequences of human hsc70 (Hum hsc70 [8)) and Drosophila hsp70 (Dros hsp70 [12)). The sequences were aligned by using the GAP 
program of the University of Wisconsin Genetics Computer Group with a gap weight of 5.00 and a length weight of 0.30. Identical amino acids (e) and conservative differences (0) are 
indicated. 
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FIG. 4. Expression of hsc4 transcripts during embryogenesis. (A) Transverse section with ventral at the bottom; (H) parasagittal section 
with anterior to the left and ventral at the bottom; (B to G) whole-mount embryos labeled with nonradioactive probes (30). From fertilization 
through the early stages of cleavage, expression of hsc4 transcripts is uniformly distributed in the embryo (not shown). During the late 
syncytial and cellular blastoderm stages through early gastrulation, most of the hsc4 transcript is observed between the peripherally 
positioned nuclei (nu) and the central yolk (y), i.e ., in the cytoplasmic compartment (cy) (A and B) . hsc4 transcripts remain essentially uniform 
in distribution at the basal level in all embryonic tissues until the germ band is almost fully extended. At this time a punctate band of more 
intense hybridization internal to the region of the ectoderm (ec) and exterior to the mesoderm (ms), where neuroblasts (nb) have segregated 
(D, enlarged in E), is detected. With development the intensity of the band increases, presumably due to either increased numbers of cells 
becoming enriched for the hsc4 transcript or increased expression of the transcript in the enriched cells. Enrichment is also observed in the 
procephalic neurogenic regions (D, enlarged in 0. Throughout the remaining stages of embryogenesis, the lining of the developing gut is 
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FIG. 5. Schematic summary of tissue-specific enrichment for 
hsc4 transcripts during embryonic development. The top scale 
represents hours of embryogenesis with hatching (h) occurring at 22 
h of embryonic development. The solid lines indicate the times at 
which enrichment was observed in the tissues indicated at the right. 
The dashed line for the pharynx indicates that hsc4 transcription 
was below the basalleveI of transcription observed in other nonen
riched tissues. 

embryonic and transformed cells and in some secretory cells 
(1, 10, 16, 22), suggesting that hsc4 is a homolog of the 
mammalian hsc70 gene. Consistent with this interpretation is 
the fact that hsc4 is more closely related to the mammalian 
hsc70 than to the heat-inducible Drosophila hsp70 protein. 
In addition, like the mammalian hsc70 protein, the Droso
phila hsc4 protein product translocates to the nucleus after 
thermal stress (19, 33). 
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