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A theoretical study of the coherent light scattering from disordered photonic crystals is presented. In addition

to the conventional enhancement of the reflected light intensity into the backscattering direction, the so-called

coherent backscattering ⑦CBS✦, the periodic modulation of the dielectric function in photonic crystals gives rise

to a qualitatively new effect: enhancement of the reflected light intensity in directions different from the

backscattering direction. These additional coherent scattering processes, dubbed here umklapp scattering

⑦CUS✦, result in peaks, which are most pronounced when the incident light beam enters the sample at an angle

close to the the Bragg angle. Assuming that the dielectric function modulation is weak, we study the shape of

the CUS peaks for different relative lengths of the modulation-induced Bragg attenuation compared to the

disorder-induced mean free path. We show that when the Bragg length increases, then the CBS peak assumes

its conventional shape, whereas the CUS peak rapidly diminishes in amplitude. We also study the suppression

of the CUS peak upon the departure of the incident beam from the Bragg resonance: we found that the

diminishing of the CUS intensity is accompanied by substantial broadening. In addition, the peak becomes

asymmetric.
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I. INTRODUCTION

Since the first experimental observations,1–8 the phenom-
enon of coherent backscattering �CBS✁ of light from disor-
dered media has been the subject of intense theoretical and
experimental studies9 �see also Ref. 10 for the most recent
review✁. The underlying mechanism for the CBS was identi-
fied as the interference of clockwise and counterclockwise
scattering paths. This was understood already in the early
works by analogy to the weak localization of electrons. It has
been also pointed out11 that this picture fully captures the
physics of the coherent scattering only if there are no forbid-
den directions for the propagation of light in the absence of
disorder. These forbidden directions emerge in systems with
periodic spatial modulation of the dielectric function or, in
other words, in photonic crystals with incomplete gaps.12 In
the presence of periodicity, the enhanced scattering of light
may occur not only in the backscattering direction, but in
other directions as well. Roughly speaking, the additional
peaks in the scattering intensity can be regarded as
periodicity-induced diffraction satellites of the CBS peak.
Their origin is illustrated in Fig. 1. In the presence of the
periodic modulation of the dielectric function, the light-wave
vector is determined only up to the vector s of the reciprocal
lattice. Hence, upon entering the medium, light with wave
vector k acquires a satellite component with y projection of
the wave vector, ky✺k sin ✉✷✂. Importantly, the same argu-
ment also applies for the coherently backscattered light with
wave vector ✷k, when it propagates inside the medium on
the way out; namely, it also acquires a component with y

projection ky✺✷k sin ✉✶✂ �Fig. 1✁. This component gives
rise to a satellite of the CBS peak in the direction ✉✽ where
sin ✉✽✺(✂✷k sin ✉)/k. We dub this peak in the reflected light
intensity as coherent umklapp scattering �CUS✁. We note that
the above picture is only illustrative. In reality, in addition to
the process shown in Fig. 1, a variety of diffraction processes
contribute to the formation of the CUS peaks. In general, the

total number of the CUS peaks is determined by the number
of reciprocal-lattice vectors for which ✄✷k✶s✄✱k .

It follows from the above qualitative picture that the mag-
nitude of the CUS peak is governed by the ratio of the
disorder-induced mean free path l �the elementary step of
light diffusion✁ and the characteristic length ❥ of formation
of the diffraction component. This formation occurs most
efficiently for the incidence angles ✉✺✉B , corresponding to
the Bragg condition ky✺✂/2, i.e., sin ✉B✺✂/(2k). In this case
❥ coincides with the Bragg decay length LB , which is the
decay length of the evanescent wave with frequency in the
middle of the photonic stop band. Away from the Bragg
resonance the length ❥ increases, resulting in suppression of
the CUS peak. We note that the limiting case LB☎0 and ✉

✺✉B was considered in Ref. 13. In this case the CBS and
CUS peaks are simply the mirror images of each other. In the
case of a photonic crystal with an incomplete gap, LB is large
(kLB❅1). The question of interest is then: how do the mag-
nitude and shape of the CUS peak depend on LB /l and on

FIG. 1. Schematic plot of light diffraction in a photonic crystal.

The diffraction satellites of the incident ⑦at angle ✆✦ and outgoing

plane waves are shown with dashed lines. The diffraction satellite

of the backscattered wave (✝k) results in an outgoing wave emerg-

ing at an angle ✆✞.
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the deviation of the incident beam from the Bragg angle?
This question is studied in the present paper. We generalize
the approach of Refs. 3 and 14 to the case of a periodically
modulated dielectric medium and derive analytical expres-
sions for the CBS and CUS peaks. We trace the evolution of
the amplitude and width of the CUS peak with changing the
parameter LB /l and the incidence angle ✉ . We found that the
most pronounced variation occurs within the domain LB✫ l

and (✉✷✉B)✫(kLB)
�1.

The paper is organized as follows. In Sec. II we review
the conventional derivation of the CBS and introduce the
modifications necessary to take into account the Bragg re-
flection in periodic structure. In Sec. III we derive analytical
expressions for the CUS and CBS albedo from a disordered
photonic crystal and analyze limiting cases. In concluding
remarks, Sec. IV, we outline a generalization of our theory
for the case of arbitrary direction of the modulation wave
vector.

II. COHERENT ALBEDO

A. Coherent backscattering from a disordered medium

In order to introduce the notations used throughout this
paper, we first review the conventional derivation of the CBS
following Ref. 14. Neglecting the polarization effects,15 the
intensity I(R), reflected from the medium when illuminated
with incident flux F0 and which is observed at point R, is
given by the well-known expression,14

I⑦R✦✺F0 G⑦R,r1✽✦G*⑦R,r2✽✦U⑦r1 ,r1✽ ,r2 ,r2✽✦

✸❈ inc⑦r1✦❈ inc
* ⑦r2✦

✸d3r1d
3r2d

3r1✽d3r2✽ , ✁1✂
where G(R,r) is the mean propagator from r ✁inside the
medium✂ to the observation point R, ❈ inc(r) is the normal-
ized mean incident field at point r inside the medium, and

U(r1 ,r1✽ ,r2 ,r2✽) is the sum of all scattering diagrams with the

ends stripped.14

There are two leading contributions to U(r1 ,r1✽ ,r2 ,r2✽).
The first one comes from the ladder diagrams and describes
the background incoherent scattering. The second contribu-
tion, which is responsible for the coherent enhancement of
scattered intensity, represents the sum of maximally crossed
diagrams

U i⑦r1 ,r1✽ ,r2 ,r2✽✦✺
4♣c
l2

P⑦r1 ,r1✽✦❞⑦r1✷r2✽✦❞⑦r1✽✷r2✦, ✁2✂

where P(r1 ,r1✽) is the stationary probability distribution to

travel diffusively from r to r1✽ inside the scattering medium.

For the disordered medium with a boundary, this probability
distribution is given by

P⑦r1 ,r1✽✦✺
1

4♣D✄r1✷r1✽✄
✷ 1

4♣D✄r1✷r1*✄
, ✁3✂

where D✺lc/3 is the light diffusion constant and c is the
speed of light. The first term in Eq. ✁3✂ is a conventional
propagator in the bulk medium. The second term ensures the

boundary condition P(z0 ,r1✽)✺P(r1 ,z0)✺0 that is imposed

to describe the diffusion inside a semi-infinite medium. The

point r1* is the mirror image of the point r1✽ with respect to

the trapping plane located at z0✬✷0.7l ✁see Ref. 10 and
references therein✂.

The mean incident field in the case of a translationally
invariant ✁on average✂ system is given by

❈ inc⑦r1✦✺exp❙ ✷
z1

l cos ✉ ✶ ikr1❉ , ✁4✂

where k is the wave vector of the incident light (✄k✄✺k

✺✈ /c) and ✉ is the angle of incidence ✁Fig. 1✂. The first
term in the exponent describes the decay of the incident
mean-field amplitude due to scattering.

For the observation point R in the far-field region, the
asymptotic expansion of the Green’s function G(R,r1) is

G⑦R,r1✦✬
e ikR

4♣R exp ✷ z1

l cos ✉✽ ✷ik✽r1 , ✁5✂

where k✽ is the wave vector in the direction of observation,
✄k✽✄✺✈ /c , and ✉✽ is the angle between k and the z axis.

Substitution of Eqs. ✁2✂–✁5✂ into Eq. ✁1✂ results in the
following expression for the CBS albedo ❛ , defined as the
scattered intensity divided by the incident flux and the
sample area S,

❛⑦k,k✽✦✺ 3

⑦4♣✦2Sl3 d2rdz1dz1✽

✸exp❋ iqr✶i❦⑦z1✷z1✽✦✷b
⑦z1✶z1✽✦

l
●

✸ 1

❆☎2✶⑦z1✷z1✽✦2
✷ 1

❆☎2✶⑦z1✶z1✽✶2z0✦2
,

✁6✂
where r is the component of (r1✷r1✽) parallel to the medium

boundary, ❦✺(k✶k✽)z , q✺✩(k✶k✽)x ,(k✶k✽)y✪ , and b

✺(1/cos ✉✶1/cos ✉✽). Due to the presence of the fast oscil-
lating exponent, exp(iqr), the integral in Eq. ✁6✂ is nonzero
only within a narrow interval ✄✉✽✷✉✄❀(kl)�1 around the
backscattering direction, i.e., q✺0. In Ref. 14 this integral
was evaluated analytically for small angles ✉ , ✉✽. In fact, a
general expression that is valid for arbitrary ✉ , ✉✽ can be
obtained,

❛⑦k,k✽✦✺ f ⑦❦ ,q,b ✦

✺ 3

8♣S
1

⑦❦l ✦2✶⑦b✶ql ✦2✸✆
1

b
✶ 1✷exp⑦✷2qz0✦

ql
✝ .

✁7✂
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In Sec. II B we trace how the albedo ⑦7✦ is modified in the
presence of a weak periodic modulation of the dielectric
function inside the scattering medium.

B. Coherent scattering in the presence of a photonic crystal

1. Modification of the wave amplitudes

Our main observation is that an incomplete photonic gap
affects light diffusion only weakly.16 The probability that a
certain step of the diffusive motion occurs in the forbidden
direction can be estimated as (kLB)

✷1�1. On the other
hand, before the first and after the last scattering events the
light propagates along fixed directions ✉ and ✉✽. If either ✉
or ✉✽ is close to the forbidden direction, then light propaga-
tion will be strongly affected, resulting in a significant
change in the albedo. This observation suggests that in order
to calculate the coherent albedo from a photonic crystal with
an incomplete gap, it is sufficient to modify only the incident
field amplitude in Eq. ⑦4✦ and the Green function of emerg-
ing light in Eq. ⑦5✦, without changing the propagator in Eq.
⑦2✦.

To model the incomplete band gap, which is narrow com-
pared to the Bragg frequency, one can keep only a single
harmonics in the spatial modulation of the dielectric func-
tion,

❞➠✁y ✂✺2❞➠ cos✁sy ✂. ⑦8✦
Here we assumed for simplicity that the direction of modu-
lation is parallel to the boundary as shown in Fig. 1. Gener-
alization of the results to an arbitrary angle between the
boundary and the modulation wave vector is outlined in the
concluding remarks.

As was pointed out above, the Bragg resonance condition
has the form ky✺s /2. For a wave propagating in a boundless
medium this condition would lead to an amplitude decay
⑥ exp❅✄Im(ky)y ★ in the y direction, for light within the fre-
quency range ❉✈✬sc❞➠ ⑦the photonic stop band✦. How-
ever, the boundary conditions enforce a real ky value ⑦see
Fig. 1✦. Consequently, instead of causing a finite Im(ky), the
Bragg condition manifests itself in splitting of the z projec-
tion of the wave vector. This may be seen from the following

relation between the components of the wave vector k̃ inside
the medium in the vicinity of the Bragg resonance,

cos2✉B✁❞ k̃z✂2✄sin2✉B✁❞ k̃y✂2✺❙
k❞➠
2

☎
2

, ⑦9✦

where ❞ k̃z✺ k̃z✄k cos ✉B and ❞ k̃y✺ k̃y✄k sin ✉B . The deriva-
tion of Eq. ⑦9✦ is sketched in the Appendix. With k̃y✺ky
✺k sin ✉ fixed by the boundary conditions, Eq. ⑦9✦ yields two
values of k̃z , namely k̃z✺k cos ✉B✻❱ with

❱✺ 1

2k cos ✉B

❆✁sk cos ✉B ❜✂2✶✁k2❞➠✂2

✺ tan ✉B

2LB

❆✁2kLB cos ✉B ❜✂2✶1, ⑦10✦

where ❜✺✉✄✉B is the deviation from the Bragg angle and
LB✺2 sin2✉B /(s❞➠) is the Bragg length. In the region z✳0,
the field components with z projections k cos ✉B✶❱ and

k cos ✉B✄❱, which comprise the waves k̃ and k̃✄✆ shown in
Fig. 1, are coupled to each other. This leads to the following
modification of Eq. ⑦4✦ for ❈ inc :

❈ inc✁r✂✬ exp❙ ✄
z

l cos ✉B
☎

✸✩C✝ ,❢✁z ✂e ikBr✶ iS✝ ,❢✁z ✂e i(kB✷✞)r✪, ⑦11✦
where the functions C✝ ,❢(z) and S✝ ,❢(z) are defined as

C✝ ,❢✁z ✂✺cos✁❱z ✂✄i cos✟ sin✁❱z ✂, ⑦12✦
S✝ ,❢✁z ✂✺sin✟ sin✁❱z ✂, ⑦13✦

and ✟ is determined by the relation

sin✟✺ 1

❆✁2kLB cos ✉B ❜✂2✶1
. ⑦14✦

The first term of the field amplitude in Eq. ⑦11✦ is the
wave transmitted through the interface and traveling along a
direction close to the direction k of the incident wave,
(kB)z✺k cos ✉B and (kB)xy✺kxy✺k sin ✉. The second term is
the diffracted satellite wave. As is seen in Eq. ⑦13✦, the char-
acteristic length scale at which the latter wave is formed is
❥✺1/❱ . In the limit LB✠❵ the incident wave does not
change upon crossing the boundary. Indeed, the satellite
wave in Eq. ⑦11✦ vanishes due to the sin✟ prefactor in Eq.
⑦13✦, whereas C✝ ,❢(z) turns into exp(✄ik sin ✉B❜ z) and
makes up for the difference between (kB)z and kz✺k cos ✉.

The modification due to the Bragg scattering should be
incorporated into the emerging wave propagator G in a simi-
lar way. Taking into account that after the last scattering
event a wave exp(ik✽r) that emerges at angle ✉✽✺✉B✶❞✉
close to the Bragg resonance also has a diffracted component
inside the medium, Eq. ⑦5✦ transforms into

G✁R,r✂✬ e ikR

4♣R exp❙ ✄
z

l cos ✉ ☎

✸✩C✝✡,❢✡✁z ✂e✷ i(k
B✡✷✞)r✶ iS✝✡,❢✡✁z ✂e✷ ik

B✡ r✪,
⑦15✦

where ❱✽ and ✟✽ are given by the same expressions ⑦10✦ and
⑦14✦, where ❜ is replaced by ❞✉ . The components of the

wave vector kB✽ inside the medium are given by (kB✽ )z✺
✄k cos ✉B and (kB✽ )xy✺kxy✽ ✺k sin ✉✽. Expression ⑦15✦ is writ-
ten specifically for the observation point in the CUS direc-
tion, i.e., (kB)y✳0 ⑦Fig. 1✦. Similarly to Eq. ⑦11✦, G(R,r)
represents the sum of two terms, which we dub here as the C
term and S term, respectively.

2. CUS and CBS albedo

Substitution of Eqs. ⑦11✦ and ⑦15✦ together with Eqs. ⑦2✦
and ⑦3✦ into Eq. ⑦1✦ produces a sum of various terms with
fast oscillating exponential factors. The terms with factors
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e✻ isr1 or e✻ isr1✽ average out upon integration. Since Eq. ⑦15✦
is valid only in the vicinity of the Bragg resonance k�✬✷k

✶✁, then nonresonant terms should be discarded. Note,
however, that, in addition to the oscillating terms, the prod-
uct of field amplitudes ⑦11✦ and propagators ⑦15✦ in Eq. ⑦1✦
contains now two terms proportional to exp❅i(kB�✶kB
✷✁)r★ , which do not vanish if the outgoing light is parallel
to the CUS direction. The total CUS albedo is determined by
these terms and is thus given by

❛CUS✂k,k�✄✺
c

4♣ l2S d2rdz1dz1�

✸exp❋ iqr✷b
✂z1✶z1�✄

l
● P✂r1 ,r1�✄

✸❅C❱✽,❢✽✂z1�✄C❱ ,❢* ✂z1�✄S❱ ,❢✂z1✄S❱✽ ,❢✽* ✂z1✄
✶C❱ ,❢✂z1✄C❱✽,❢✽* ✂z1✄S❱✽,❢✽✂z1�✄S❱ ,❢* ✂z1�✄★ ,

⑦16✦
where q✺(kB✶kB�✷✁)xy .

The origin of the two terms in the coherent scattering
albedo is schematically illustrated in Fig. 2. In Fig. 2⑦a✦ the
C component of the incident light ⑦solid line✦ first experi-
ences coherent backscattering and then is diffracted into the
S component ⑦dashed line✦. In Fig. 2⑦b✦ the C component of
the incident light is first diffracted into the S component, the
backscattering of which provides the second contribution to
the CUS.

The origins of the two contributions to the CBS can be
traced from Eq. ⑦1✦ in a similar way ⑦see also Fig. 2✦. The
only technical difference between the derivations of the CBS

and CUS is that for the observation point R in the CBS
direction ⑦i.e., k�✬✷k), ✁ should be added to the wave vec-
tors in both oscillating exponents of the Green function in
Eq. ⑦15✦.

Substitution of the modified propagator into Eq. ⑦1✦ and
the selection of nonvanishing resonant terms produce the fol-
lowing expression for the CBS albedo:

❛CBS✂k,k�✄✺
c

4♣ l2S d2rdz1dz1�

✸exp❋ iqr✷b
✂z1✶z1�✄

l
● P✂r1 ,r1�✄

✸❅C❱✽,❢✽* ✂z1✄C❱✽,❢✽✂z1�✄C❱ ,❢✂z1✄C❱ ,❢* ✂z1�✄
✶S❱✽,❢✽* ✂z1✄S❱✽,❢✽✂z1�✄S❱ ,❢✂z1✄S❱ ,❢* ✂z1�✄★ ,

⑦17✦
with q✺(kB✶kB� )xy . In the limit LB☎❵ , the diffracted

waves vanish, S❱ ,❢☎0, so that the only contribution to the
albedo that survives in this limit comes from the first term of
Eq. ⑦17✦.

III. RESULTS AND DISCUSSION

A. Analytical results

1. Expressions for CBS and CUS albedo

The additional oscillating factors C(z) and S(z) in the
integrands ⑦16✦ and ⑦17✦ compared to Eq. ⑦6✦ can be formally
absorbed into the decrement b by adding to it imaginary
parts of the type i(✆✝✆�)l . Then all the contributions to
the coherent albedo can be conveniently expressed with the

help of an auxiliary function, f̃ (❦ ,p), defined as

f̃ ✂❦ ,p ✄✺ f ✂❦ ,q ,b✶ ipl ✄✶ f ✂❦ ,q ,b✷ ipl ✄

✺ 3

4♣SD
1

1✶X2

b✷plX

b2✶p2l2
✶ 1✷e✞2qz0

ql
, ⑦18✦

where f (❦ ,q ,b) is the shape of the CBS cone given by Eq.
⑦7✦; the parameters D and X are expressed through the argu-
ments of the function f as follows:

D✺✂❦2✷p2✄l2✶✂b✶ql ✄2, ⑦19✦

X✺ 2pl✂b✶ql ✄
D

. ⑦20✦

In Eq. ⑦18✦ the wave vector q is equal to q✺k cos ✉B✟❜
✷❞✉✟ for the CBS, and q✺k cos ✉B✟❜✶❞✉✟ for the CUS; in
the vicinity of the Bragg resonance we can set b

✺(cos ✉)✞1✶(cos ✉�)✞1✬2(cos ✉B)✞1. Finally, the the two
contributions to the CBS albedo in Eq. ⑦17✦ take the form

FIG. 2. Schematic illustration of different contributions to the

coherent albedo. The CUS peak originates from ✠a✡ the diffraction

of the backscattered light and ✠b✡ backscattering of the diffracted

light.
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❛CBS
(1)

✺
sin2❢ sin2❢✽

16
❅ f̃ ⑦0,❱✶❱✽✦✶ f̃ ⑦0,❱✷❱✽✦★

✶
⑦1✶cos2❢✦⑦1✶cos2❢✽✦

16
❅ f̃ ⑦❱✶❱✽,0✦

✶ f̃ ⑦❱✷❱✽,0✦★✶
⑦1✶cos2❢✦sin2❢✽

8
f̃ ⑦❱ ,❱✽✦

✶
⑦1✶cos2❢✽✦sin2❢

8
f̃ ⑦❱✽,❱✦✷

cos❢ cos❢✽

4

✸❅ f̃ ⑦❱✶❱✽,0✦✷ f̃ ⑦❱✷❱✽,0✦★ , �21✁

❛CBS
(2)

✺
sin2❢ sin2❢✽

16
❅ f̃ ⑦❱✶❱✽,0✦✶ f̃ ⑦❱✷❱✽,0✦

✶ f̃ ⑦0,❱✶❱✽✦✶ f̃ ⑦0,❱✷❱✽✦✷ f̃ ⑦❱✽,❱✦

✷ f̃ ⑦❱ ,❱✽✦★ . �22✁

Analogously, the CUS albedo Eq. �16✁ can be expressed

through the function f̃ in the following way:

❛CUS✺
sin❢ sin❢✽

8
✩⑦1✶cos❢ cos❢✽✦❅ f̃ ⑦0,❱✷❱✽✦

✶ f̃ ⑦❱✷❱✽,0✦✷ f̃ ⑦❱ ,❱✽✦✷ f̃ ⑦❱✽,❱✦★

✷⑦1✷cos❢ cos❢✽✦❅ f̃ ⑦0,❱✶❱✽✦✶ f̃ ⑦❱✶❱✽,0✦

✷ f̃ ⑦❱ ,❱✽✦✷ f̃ ⑦❱✽,❱✦★✪. �23✁

Expressions �21✁–�23✁ are our main results. Below we ana-
lyze two limiting cases of small and large LB .

2. Limiting cases

Let us trace how the conventional CBS cone is recovered
in the limit LB✂❵ . In this limit we have ❢ ,❢✽✂0, so that

❛CUS and ❛CBS
(2) containing sin❢ and/or sin❢✽ as prefactors,

vanish. Substituting ❢✺❢✽✺0 into Eq. �21✁ we obtain

❛CBS
(1)

✺ f (❱✷❱✽,q ,b). Taking the limit LB✂❵ in Eq. �10✁,

we get (❱✷❱✽)✂k sin✉B (❜✷❞✉). Correspondingly, f (❱
✷❱✽,q ,b) reduces to Eq. �7✁.

Consider now the opposite limit,13 LB /l✄1. In this limit
❢ ,❢✽✂♣/2. It follows from Eq. �10✁ that with decreasing LB

both ❱ and ❱✽ diverge, while (❱✷❱✽)✂0. As a result, as
can be also seen from Eq. �18✁, all of the terms in Eqs.
�21✁–�23✁ that contain ❱ , ❱✽ or ❱✶❱✽ as at least one of
the arguments, vanish. Then it is straightforward to check

that both ❛CBS and ❛CUS take the form f̃ (0,0)/4
✺ f (0,q ,b)/2. We thus recover the result of Ref. 13 that in
the limit of strong modulation, CBS and CUS cones are the
mirror images of each other. Concerning the shape of the
cones, it is given by the conventional expression �7✁ for the
coherent albedo. Concerning the peak heights, they are two
times less than the height of the CBS peak in the absence of
modulation.

B. Shapes of the CBS and CUS peaks

Expressions �21✁–�23✁ for the CBS and CUS albedo are
valid only in the vicinity of the Bragg resonance ✉ ,✉✽
✬✉B . Note, however, that only in this region CUS has an
appreciable amplitude. To illustrate this we plot in Fig. 3 the
CBS and CUS cones for different detunings, ❜✺✉✷✉B , of
the incident beam from the Bragg angle for LB /l✺0.3. It is
seen that CUS practically dies out at ❜✬(2kLBcos ✉B)

☎1

✄1. It is also seen that as the amplitude of the CUS peak
falls off, the peak also becomes asymmetric. The behavior of
the CUS and CBS peak heights with the detuning ❜ is sum-
marized in Fig. 4.

Consider now the case of exact resonance, ❜✺0. As was
discussed above, the relation between the CBS and CUS
peaks is governed by the dimensionless parameter LB /l . In
Fig. 5 we show the heights of both peaks as functions of
LB /l . It is seen that the amplitude of the CBS peak saturates
already at LB /l✯2; at the same time, the CUS peak dimin-
ishes by an order of magnitude.

In Fig. 6 we illustrate the evolution of the CUS cone at
❜✺0 with increasing LB /l . For reference the CBS cone for
LB /l✺0.3 is also plotted in Fig. 6 �solid line✁. We note that
while the CUS peak keeps narrowing for LB✫ l , the shape of
the CBS cone remains practically unchanged with LB /l .

IV. CONCLUSIONS

In this paper we have studied coherent light scattering
from a disordered photonic crystal with incomplete band
gaps. We have demonstrated that the crystal dielectric func-
tion periodicity gives rise to additional coherent albedo
peaks in nonbackscattering directions. These peaks emerge
as the angle of incidence ✉ approaches the Bragg resonance,
✉✬✉B . For simplicity, the consideration was restricted to the
case where the modulation wave vector s is parallel to the
crystal boundary. In this case, and under the Bragg resonance
condition 2k sin ✉B✺✆, the direction of the additional �CUS✁
peak coincides with the reflection direction, since the CUS
wave vector is equal to k✽✺✷k✶s. The component of k✽
parallel to the boundary is equal to ky✽✺✷k sin ✉✶✆. Then at

✉✺✉B we have ky✽✺ky✺✆/2. It is important to note that this

relation is specific for s parallel to the boundary �and for the
wave vector of incident light lying in the yz plane✁.

Consider now the case where s and the incident light
wave vector still lie within the yz plane, but s is no longer
parallel to the boundary, but rather makes an angle ❣ with
the y axis. In this case the Bragg condition takes the form

2k sin ✉̃B✺✆, where ✉̃B✺sin☎1(✆/2k)✷❣ . It is easy to see
that together with the CUS condition k✽✺✷k✶s this deter-

mines the CUS direction ✉CUS✺✉̃B✶2❣ , whereas the reflec-

tion angle is ✉ r✺✉̃B . This latter case can be exploited in
experiments.

Generalization of our theory to the case of finite ❣

amounts to the replacement of the functions C and S in Eqs.
�16✁ and �17✁ for the CUS and CBS by

C✝̃ ,✞̃✺cos ❱̃z✷i sin ❢̃ sin ❱̃z , �24✁
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S❱̃ ,❢̃✺
cos ✉̃B

cos⑦✉̃B✶2❣✦

1/2

sin �̃ sin ✁̃z , ✂25✄

where

2✁̃✺
sin ✉B

L̃B cos⑦ ✉̃B✶2❣✦
❆⑦2kL̃B cos⑦ ✉̃B✶❣✦ ❜✦2✶1

✂26✄

is the modified splitting between the two solutions of Eq. ✂9✄
for kz . The modified Bragg length in Eq. ✂26✄ is defined as

L̃B✺LB
☎cos ✉̃B /cos(✉̃B✶2❣). The parameter �̃ in Eq. ✂26✄ is

still given by Eq. ✂14✄ with LB✆ L̃B .
To derive Eqs. ✂24✄–✂26✄ it is convenient to perform a

rotation of the coordinate system by the angle ❣ . Then the
additional factors in Eqs. ✂25✄ and ✂26✄ as compared to ❣
✺0 emerge due to the modification of the boundary condi-
tions. Other steps of the derivation remain unchanged.

It is seen from Eqs. ✂25✄ and ✂26✄ that the prefactors di-

verge at 2❣✺♣ /2✷✉̃B . This divergence corresponds to the
physical situation where the diffracted component of the in-
cident light is aligned with the boundary. With regard to the

coherent scattering, the condition 2❣✺♣ /2✷✉̃B manifests a
crossover to a new regime. In this regime the diffracted wave
does not ‘‘fit’’ into the medium, so that the CUS peak is

absent. Formally, for 2❣✳♣ /2✷✉̃B Eq. ✂9✄ does not have
real solutions for kz for small ❜ , which corresponds to the
opening of the photonic band gap in the z direction. As a
result, the CBS peak exhibits an anomaly in the vicinity of
the Bragg condition.16

We did not address in the present work the modifications
of the theory caused by a difference of refraction indices on

FIG. 3. CBS ✝thin line✞ and CUS ✝bold line✞ peaks at LB✟0.3l

normalized to the CBS peak height at LB /l✠❵ are plotted for

detuning ✝a✞ ✡✟0; ✝b✞ ☛✡☛✟(kl cos ☞B)
✌1; ✝c✞ ☛✡☛✟2(kl cos ☞B)

✌1.
The peak maxima occuring at ❞☞✟✡ (❞☞✟✍✡) for the CBS

✝CUS✞ are shifted to ❞☞✟0 for convenience.

FIG. 4. CBS and CUS peak heights normalized to the CBS peak

height at LB /l✠❵ plotted vs the detuning (kl cos ☞B)✡ at LB

✟0.3l .

FIG. 5. CBS and CUS peak heights normalized to the CBS peak

height at LB /l✠❵ plotted vs LB /l .
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two sides of the interface. The impact of the light refraction
on the CBS was intensively studied ⑦see Ref. 10 and refer-
ences therein✦. A nontrivial consequence of the refraction
index mismatch is that in the course of diffusion the light
wave can ‘‘strike’’ the boundary at an angle exceeding the
angle of total internal reflection. Basically, the CUS can be
viewed as a mirror image of the CBS, hence the effect of the
index mismatch on CUS is similar to that on CBS.
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APPENDIX

In the vicinity of the Bragg resonance, ky❀s/2, we em-
ploy the coupled wave approach, i.e., we search for the field
inside the medium with the dielectric function given by Eq.

⑦8✦ in the form of a sum of two waves with wave vectors k
and k✷� and amplitudes Ak and Ak✁✂ , respectively. Sub-
stitution of this form into the wave equation results in the
following system of coupled equations for the wave ampli-
tudes:

❅✄k cos ✉B☎
2
✷kz

2
✷2k sin ✉B ✄ky✷k sin ✉B☎★Ak✶k2❞➠ Ak✁✂

✺0, ⑦A1✦

k2❞➠ Ak✶❅✄k cos ✉B☎
2
✷kz

2
✶2k sin ✉B ✄ky✷k sin ✉B☎★Ak✁✂

✺0,

where we used the definition of the Bragg angle sin ✉B
✺s/(2k). The system ⑦A1✦ together with the assumption
cos ✉✬ cos ✉B lead to Eq. ⑦9✦.

It is convenient to express the modulation strength ❞➠ in
terms of the Bragg decay length, LB , given by

LB✺
2 sin2✉B

s❞➠
. ⑦A2✦

It is easy to see from Eq. ⑦A2✦ that the meaning of LB is the
decay length for light of frequency ✈✺kc in the middle of
the Bragg gap, when the medium boundary is perpendicular
to the modulation direction y.

If the condition given in Eq. ⑦9✦ is satisfied, then there
exists a nontrivial solution of the system ⑦A1✦,

❧1,2✺
Ak✁✂

Ak

✺
cos❢✻1

sin❢
, ⑦A3✦

with ❢ defined by Eq. ⑦14✦. The two signs in the numerator
correspond to the two solutions of Eq. ⑦9✦ for kz . Upon
matching the solution for the field amplitude with the inci-
dent wave, the resulting field can be cast in the form of Eq.
⑦11✦.
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FIG. 6. Normalized CUS albedo at exact resonance, ❜✠0,

shown for LB✠0.3l ✆dashed line✝ and LB✠ l ✆dot-dashed line✝.

Solid line: normalized CBS albedo at ✡☛✠0 and LB✠0.3l .
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