
DESIGN AND IMPLEMENTATION OF A

RELATIONAL DATA BASE SYSTEM FOR A MINICOMPUTER

by

Sue Marie Thompson Dintelman

UUCS-77-108

A thesis submitted to the faculty of the
University of Utah in partial fulfillment of the requirements

for the degree of

Master of Science

Department of Computer Science

University of Utah

Summer 1977

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276285862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A data base system provides the advantages of c e n ­

tralized control of data including increased data ind e ­

pendence. Design specifications for a low level r e l a t i o n ­

al data base interface are giv e n in the form of a formal

d e s c r i p t i o n which separates the implementation details

from the d e s c r i p t i o n of the functions making up the

interface. The formal d e s c r i p t i o n may be used by both the

user and implementer of the system.

The mi n i c o m p u t e r implementation of the data base sy s ­

tem described is intended to be used directly by a p p l i c a ­

tion programmers or as a base on w h i c h to build a higher

level interface. The functions maki n g up the system are

FORTRAN callable subroutines making it convenient for

m inicomputer a p p l i c a t i o n programs to use the system. A

method of utilizing the low level interface to implement

a higher level interface based on the relational algebra

is outlined.

A B ST R A C T

A CKN OW LEDGM ENTS

Dr. John M. Smith, for his invaluable comments, c r i t i ­

cisms, e n couragement and pati e n c e t hroughout this project.

Also, I w i s h to acknowledge the Compu t e r Aided Design

L abora t o r y of the Graduate School of Archite c t u r e whi c h

provided m a c hine support. In addit i o n I express my app r e ­

c iation to Professor Steven G r e gory of the Gradu a t e School

of A r c h i t e c t u r e who suggested the project and who s e co m ­

ments greatly improved the final v e r s i o n of the i m p l e m e n t a ­

tion.

I also wish to thank the o t h e r members of my committee,

Dr. M a r t i n Newell and Professor Roy Keir for their help in

p reparing the final thesis draft. And finally, a special

thank you to my husband, Bob, for his constant understanding

and support.

I wish to thank my advisor and committee chairman,

I»

TABLE OF CONTENTS

A B S T R A C T ... iv

A C K N O W L E D G M E N T S .. V

LIST OF F I G U R E S .. viii

Chapter
I. Introduction ... 1

1.1 The Relational M o d e l 3
1.2 The Data Base I n t e r f a c e 5
1.3 O v e rview of the T h e s i s 7

II. Design of the Data Base S y s t e m 9

2.1 The Data B a s e 9
2.2 The A M F u n c t i o n s 10
2.3 The Master R e l a t i o n s 13
2.4 The Tuple I d e n t i f i e r s 16
2.5 The Formal D e s c r i p t i o n 17

III. I m p l ementation of the Data Base S y s t e m 22

3.1 System A r c h i t e c t u r e 22
3.2 Implementation of the A M f u n c t i o n s 23

3.3 Implementation of the Data B a s e 24
3.3.1 Implementation of the Master

. ■ R e l a t i o n s 25
3.3.2 Storing User R e l a t i o n s 27

3.4 A c c e s s i n g T u p l e s 30
3.4.1 A c c e s s i n g Tuples Using a

Search C r i t erion 30
3.4.2 A c c e s s i n g Tuples Using the

Tuple I d e n t i f i e r 35
3.5 Inserting Tuples into User Relations. . . . 37
3.6 ' I/O C o n s i d e r a t i o n s 39
3.7 Utility Functions 43

4.1 Using the A M F u n c t i o n s 48
4.2 Using Information from the Data B a s e 49

4.3 Use of the A M Functions to Implement a
Higher Level I n t e r f a c e53

4.4 Planned Extensions to the Current System. . . 57
4.5 In C o n c l u s i o n 62

A P P E N D I X A. The Formal S p e c i f i c a t i o n , . 64

AP P E N D I X B. Users' M a n u a l70

R E F E R E N C E S 86
V I T A ..88

I V . U s e o f t h e D a t a B a s e S y s t e m ..48

v i i

L I S T OF F IG U R E S

1. File System vs. Data Base System. „ 2

2. The Relation P A R T S 4

3. A W a r e h o u s e Inventory Data M o d e l 5

4. The Data Base I n t e r f a c e 6
5. Role of the Formal Description. 7

6 . A M F u n c t i o n s ... 10

7. Master R e l a t i o n s .. 14

8 . System A r c h i t e c t u r e 22

9. The A M F u n c t i o n s P a c k a g e 24

10. U se of the M a s t e r R e l a t i o n s 26

11. S U P P L I E R R e l a t i o n Stored Using the
Indexed Sequential S t r u c t u r e 29

12. Allow a b l e Forms for the Search C r i t e r i o n 30

13. The SUPPLIER R e l a t i o n Stored Using the
Unord e r e d Sequential S t r u c t u r e32

14. A Stored V e r s i o n of the SUPPLIER Relation 33

15. The Chaining of Overflow P a g e s38

16. Example of the Use of the Low Level Interface . . 50

17. The Restrict O p e r a t o r 54

18. Implemen t a t i o n of the RESTR I C T O p e r a t o r 55

19. The Project O p e r a t o r56

20. The Join O p e r a t o r 58

C H A P T E R I

This thesis describes the d e sign and implementation

of a data base system for a minicomputer. A data base

system provides centralized control of d a t a by handling

access to the physical data through a common data base

i n t e r f a c e . Most minico m p u t e r systems have no data m a n a g e ­

ment facilities beyond a simple file system. In file

systems, application programs allocate and m a i n t a i n their

o w n set of files w i t h little sharing of data and there is

usually no centra l i z e d control of data. The d ifference

b e t ween a file system and a data base system is illustrated

in Figure 1. The centra l i z e d control in a data base

s ystem offers several advantages including i) increased

data independence, ii) reduced redundancy and iii) more

easily mainta i n e d consistency. Each advantage is discussed

separately below.

i) Data i n d e p e n d e n c e . If a p r o g r a m uses data stored

on secondary storage and if changes in the format of the

stored data r e q uire p r ogram changes then the p r ogram is

said to be data d e p e n d e n t . The common interface allows

programs to be w r i t t e n which are more data i n d e p e n d e n t .

Programs may access data w i t h o u t regard to the physical

IN T R O D U C T IO N ■

properties of the data and therefore are unaffected by

changes in the data format, location or storage structure.

Prog r a m
1

V

file
1

Programs using distinct
data files in a file
system

common
interface

integrated
data base

Programs using an
integrated dat a base in
a data base system

Figure 1. File System vs. Data Base System

ii) Reduced r e d u n d a n c y . In m a n y file systems each

applic a t i o n program has its own set of stored data. These

d at a sets often contain some of the same information. This

com m o n data is stored with each p r o g r a m using it, causing

w ast e d storage space. With a data base system redundancy

is reduced because programs can share the common data and

eliminate the need for duplicate copies.

iii) More easily maintained c o n s i s t e n c y . When a piece

of information is stored in m o r e than one location and a

change is required in the information, there is a period

of time during which the separate entries will be inconsis­

tent. If redundancy is eliminated (as in a data base) and

changes have to be mad e only once, the problems of incon­

sistency are reduced.

The data in the data base must be structured so the

user has some way to work with it. A data model provides

this structure. A data model is the information content

of the data base as it is represented by the common data

base interface. It is the use of a high level data model

which gives a data base system most data independence.

The relational data model was developed by E. F. Codd

(1970) and is a relatively concise, high level way in

w h i c h to represent a user's interpretation of his data.

The relational model was chosen for this implementation

because i) it allows a high degree of data independence,

ii) the tabular structure used to represent the data is

easy to understand and iii) the model allows simple u p d a t ­

ing of data. The following discus s i o n b r iefly introduces

the relational model. More d e t a i l e d information about the

r elational model and its advantages may be found in

Chambe r l i n (1976).

A relation may be represented by a table in w h i c h

information is organized into rows and columns. A n example

of a relation is given in F igure 2. The rows are called

t u p l e s ♦ The columns of a relation are given names and are

called d o m a i n s . The domains of the relation PARTS are P # ,

PNAME, COLOR and WEIGHT. Two additional properties of

relations are that i) the ordering of the rows is not

s ignificant and ii) there are no duplicate rows. The

second property implies that in each relation there is some

1 . 1 T h e R e l a t i o n a l M o d e l

d o m a i n (or combination of domains) which uniquely determines

a tuple. This domain(s) is called the primary k e y . In

the relation of Figure 2 the prim a r y key is P # . Because

the prim a r y key uniquely determines a tuple the primary key

may be used to determine if a new tuple is a duplicate.

T h a t is, a tuple may not be inserted into a relation if its

primary key has the same value as the primary key of an

e xisting tuple. The relational model consists of a c o l ­

lection of relations containing the information needed by a

u ser of the data base.

PARTS

p# PNAME COL O R WEIGHT
PI Nut Red 12
P2 Bolt Green 17
P3 Nut Blue 17
P4 Screw Red 14

Figure 2. The Relation PARTS

Consider the relational model in Figure 3. This is a

d a t a model r epresenting a wareh o u s e inventory. The S# and

P# domains of the S U PPLIER-PART relation correspond to

the primary key domains of the SUPPLIER and PART relations

The SUPPLIER-PART relation represents an association

b e t w e e n the two entities - suppliers and the parts which

they supply. It is a property of the relational model

that there is no differ e n c e between the represen t a t i o n of

the entities in a data base and the relationships between

these e n t i t i e s .

S U P P L I E R S U P P L IE R - P A R T

s# SNAME STATUS CITY
SI Smith 20 London
S2 Blake 30 Paris
S3 Jones 10 Paris
S4 Clark 20 London
S5 Adams 30 Athens

PARTS

P # PNAME COLOR WEIGHT
PI Nut Red 12
P2 Bolt Green 17
P3 Nut Blue 17
P4 Screw Red 14

S# P# QTY
SI PI 3
SI P2 2
SI P3 4
SI P4 2
S2 PI 3
S2 P2 4
S2 P4 6 .
S3 P3 4
S4 P2 3
S4 P4 2
S5 P2 5

Figu r e 3. A Warehouse Inventory Data Model

The d e v e l o p m e n t of suitable relational models is a

topic of current research and will not be dealt with here.

1.2 The Data Base Interface

The user of a data base requests information based on

the data model. However, the data base must be accessed

using storage details of the data. It is the job of the

d ata bas e interface to translate betw e e n the data model and

the storage structure of the data.

As shown in Figure 4, a data base interface may consist

of mor e than one level. A t the level closest to the data

base is the low level interface w h i c h actually accesses and

changes information in the data base. This interface deals

mainly w i t h one tuple of one relation at a time. Altho u g h

this type of interface is useful for some applications by

itself, it also provides a foundation on w h i c h to build

higher levels. Higher level interfaces can accept more

complex queries and enforce integrity constraints spanning

6

m ore than one relation, and allow alternate views and

concurrent users. XRM (Lorie 1972, 1974) is an example

of a low level interface w h i c h has b e e n used to implement

higher level interfaces (Astrahan 1975). The leveled

approach is also used in other documented systems such as

INGRES (Stonebraker 1976) , 2ETA (Czarnik 1975) and RISS

{McLeod 197 5).

The interface implemented as part of this thesis is a

low level interface and was designed to provide a convenient

way to access the data base and to provide a basis for

d eveloping higher level modules. The interface allows the

user to create and destroy relations; to retrieve, insert,

update and delete tuples from relations and to check stored

information about the relations. All information about the

physical location of the data is isolated at this level so

that storage details of relations m a y be changed without

affecting higher levels.

data base
interface

Figure 4. The Data Base Interface

7

The remainder of the thesis describes the design,

implementation and use of the data base system. Chapter 2

contains a more detailed e x planation of the structure of

the data base and the data base interface. This chapter

also describes a formal descri p t i o n of the data base i n t e r ­

face. This formal descri p t i o n contains as few of the imple

m e n t a t i o n details as possible and makes few assumptions

about the type of usage that will be made of the interface.

The formal d e s c r i p t i o n is designed to serve as a common

ground for d i s c u s s i o n b e tween the user and implementer of

the data b a s e system as illustrated in F igure 5. It is

essentially the d esign specifications for the interface.

1 . 3 O v e r v i e w o f t h e T h e s i s

Chapter 3 concentrates on an implementation of the

data b a s e system described in Chapter 2. The details are

of an implementation done as part of an ongoing p r oject of

the C o m puter A ided Design Laboratory, Graduate School of

Architecture, U n i v e r s i t y of Utah. Various d e s i g n decisions

are analyzed w i t h the reasons for particular choices

d i s c u s s e d .

F igure 5. Role of the Formal D escription

The use of the data b a s e system is emphasized in

C hapter 4. The data base system is currently being used

to implement an a r chitectural design application, Building

Design with an Integrated Relational Data Base (BIRD)

(Gregory, 1977). This chapter describes the use of the

interface directly by application programs and as a tool

to implement some higher level constructs. Chapter 4 also

presents notes on extensions to the system planned as part

of the BIRD project.

The complete formal specification described in Chapter

2 is included as A p p e n d i x A. Appendix B contains the data

base system Users' Manual.

This chapter describes the data base and its low

level interface. In order to facilitate the develo p m e n t

of similar systems on other machines using other host

languages, this chapter contains as few of the i m p l e m e n t a ­

tion details as possible. The subroutines m a k i n g up the

interface are called the access method (AM) functions. A

formal s p e cification for the A M functions is given to

further separate the implementation details from the

d e s c r i p t i o n of the A M functions.

2.1 The Data Base

The data base consists of user relations created and

m a i n t a i n e d by the user. If programs using these relations

are to be data independent the information about the

storage details of the relations must be kept with the

relations rather than in the programs. If this information

is stored in relational form all the data base information

will be in the form of relations and may be treated in a

u n iform way. In this implementation there are Master

relations stored as part of the data base c ontaining infor­

m a t i o n about the individual user relations. To insure that

the M aster relations accurately reflect the contents of the

C H A P T E R I I

D E S IG N OF THE DATA B A S E SY ST EM '

data base they are maintained by the system and may not be

changed directly by the user. They are changed a u t o m a t i ­

cally as a result of calling the A M functions. The infor­

m a t i o n in the Master relations is available directly on a

read-only basis.

2.2 The AM Functions

The set of AM functions ma y be divided into three

groups as shown in Figure 6 : i) the functions w h i c h involve

the data base as a whole, ii) those involving single r e l a ­

tions and iii) those involving individual tuples of a

relation. W i t h i n each g r oup there are functions which do

not alter the contents of the data base, these are labeled

r e a d -only functions in Figu r e 6 . The other functions

w h e n called, change the contents of the data base, either

the user relations or the M a s t e r relations, in some way

and are labeled as update f u n c t i o n s .

10

Data Base
Functions

BEGIN
END
RTRV REL

Relation
Functions

SETSCAN
RT RV_REL_INFO
RTRV DOM INFO

Tuple
Functions

GET
GETNEXT
FINDTID

Read-only
Functions

CREATE
DESTROY

INSERT
DELETE
R EPLACE

U p d a t e

F u n c t i o n s

F i g u r e 6 . AM F u n c t i o n s

A session consists of all data base activities between and

including the BEGIN and END function calls. Higher level

signon/signoff procedures incorporating security checks

may be devel o p e d using these functions. CREA T E and

DESTROY define and delete relations. GET, DELETE, REPLACE

and INSERT are used to m a n i p u l a t e the tuples of a relation.

Eac h tuple in the data base is identified by a unique

number. This tuple identifier, the TID, is determined by

the system at the time a tuple is inserted into a relation.

GET, DELETE, REPL A C E and INSERT access individual tuples

by their T I D’s.

There are many instances w h e n a tuple (or set of

tuples) must be retrieved based on the value of a particular

d oma i n and the TID is not known. In this case a systematic

search of the relation m u s t be made in order to locate the

desired tuples. Associated w i t h a stored relation are one

or more traversal schemes. Each traversal scheme provides

a linear ordering of all the tuples in a relat i o n so that,

given the TID of a tuple and a traversal scheme, there is a

unique next tuple.

The SETSCAN and GETNEXT functions provide the means to

search relations for specific tuples. Using a property of

the desired tuple or tuples, SETSCAN determ i n e s the trav e r ­

sal scheme w h i c h will limit the number of tuples to be

searched as m u c h as possible. The selected traversal

scheme and other information depending on the storage

B E G IN a n d END a r e u s e d t o s t a r t a n d f i n i s h a s e s s i o n .

structure is encoded into a traversal code as will be

explained in Section 3.3. SETSCAN returns this initial

traversal code as well as the TID's of the first and last

tuples in the selected linear ordering w h i c h may fit the

search criteria.

GETNEXT is used w i t h the first tuple's TID and the

traversal code to retrieve the first tuple, the TID of the

next tuple in the relation and an updated traversal code.

The tuple returned by G E TNEXT m u s t always be checked to see

if it satisfies the search criteria because the scanning

returns possible matches, not guaranteed matches. The

TID and traversal code returned by GETNEXT are then used

for another call to GETNEXT. The user p r ogram continues to

call G E TNEXT in this manner until either a desired tuple

or set of tuples is found or until the last TID returned

by SETSCAN is used to retrieve a tuple. These two A M

functions provide the means to answer general queries about

the tuples in a relat i o n rather than retrieving a specific

tuple based on its TID.

For the special case w h e r e the value of a tuple's

primary key is known, the function FINDTID m a y be used to

d e t e rmine the tuple's TID. FINDTID uses the same procedure

described above to limit the search by choosing a traversal

scheme and checking successive tuples. FINDTID handles the

search details internally and returns the TID of the

desired tuple if it exists. This function is not required

as SETSCAN and GETNEXT could be used to find the required

12

TID, but it is included because it provides a more c o n v e n ­

ient way to map from the primary key to the TID. F I NDTID

c annot replace the SETSCAN and GETNEXT functions because

it handles only the specific case where the search is for

a primary key value and it is known in advance that the

search will always result in at most one match.

The other A M functions are used to interrogate the

M aster relations. RTRV_REL returns a list of all user

relations in the data base. RTRV_REL_INFO returns all of

the information contained in the Master relations for a

specific relation and R T R V_DOM_INFO returns all of the

i n formation about the domains of a specific relation.

2.3 The Master Relations

The Master relations contain all the information

necessary to access the user relations. To support the

e x i sting interface there are two relations, the Relation

I n formation r e l ation and the Domain Information relation.

A l t h o u g h the relation name could be used to identify

a relat i o n and to cross reference from the Domain Infor­

ma t i o n relation to the appropriate entry in the Relation

I nformation relation, it is more efficient to use a numeric

identifier. The r e l ation name is chosen by the user to

make it easier to remember the contents of the relation.

The c o r r e s p o n d i n g relation identifier, the RID, is assigned

by the system. The RID is then used with the A M functions

to more efficiently reference the relations of the data

base. The RID does not change d uring the lifetime of the

13

14

relation, but w h e n a relation is destroyed its RID may be

reassigned to another relation.

The Relation Information relation contains the relation

name, the RID, the number of domains in the relation, the

storage structure of the relation, its physical location

and the length of tuples and other information depending on

the storage structure of the relation. Figure 7 summarizes

this list of information. The A M function RTRV_REL

retrieves from the Relation Information relation a d i r e ctory

consisting of all the relation names and their c o r r e s p o n d ­

ing RID 1s . R T R V _REL_INFO m a y be called to retrieve the

tuple of the Relation Information relation corresponding to

a particular RID.

RELNAME Relation name
RID Internal relation identifier
TU PLE_LENGTH Length of the tuple
STORAGE_STRUCT Storage structure of the relation
PLOC Physical location of the relation
STRUCT_INFO Other necessary information depending

on storage structure

A. Relation Information Relation Domains

D O M _NAME Domain name
DID Internal domain identifier
RID Relation identifier of relation

containing this domain
D O M _TYPE Data type (numeric, character)
DOM_L E N G T H Length of the domain
DOM_LOC Location of domain in tuple
D O M _KEY Coded primary key information

B. Domain Information Relation Domains

Figure 7. M aster Relations

The Domain Information relation contains a tuple for

each domain of each relation. As shown in Figure 7, each

tuple contains the domain name for the convenience of the

user, a numeric d omain identifier for use by the system

and the RID of the relat i o n to which the d omain belongs.

The tuples of the Domain Information relation also contain

domains to identify the data type, length and location of

each d omain in the user relation tuples. It is also

n ecessary to identify the domains that are part of the

primary key.

The R E PLACE and INSERT functions both use the primary

key information in the D omain Information relation. As

explained in Section 1.1 each primary key value is unique

and b e fore inserting a new tuple a check m u s t b e made to

insure that there is not an existing tuple w i t h the same

primary key value. The REPLACE function w i l l not allow

alter i n g of the p r imary key domains because such alteration

is in fact creating a new tuple. Other i n formation in the

D o main Information relation is used by the SETSCAN function

to d e t e r m i n e an efficient traversal scheme and to determine

if the storage structure of a relation is one in w h i c h

a scan m i g h t be limited for some partic u l a r d omain value,

i.e., a relation that is sorted on a particular domain.

This is all the information about relations and their

domains necessary for this interface. Since higher level

interfaces may need additional information, such as

d i r e ctory information and p r o t e c t i o n data, the use of a

relational structure for the Master relations makes it

easy to add either additional domains or additional

2.4 The Tuple Identifiers

The tuple identifier (TID) of a tuple is related to

the physical address of a tuple and is therefore determined

by the system and not the user. Since the TID is related

to a physical location, if a tuple is moved its TID is

changed. In this system there is no tuple reorganization

during a session so the TID of a tuple remains unchanged

for the d u r ation of a session. This allows user programs

to r epeatedly reference tuples by their T I D 1s and therefore

take advantage of the efficient GET, REPLACE, INSERT and

D ELETE functions w i t h o u t having to relocate the tuples

using the SETSCAN and GETNEXT functions or the FINDTID

f u n c t i o n .

It would be impractical to m a i ntain the same TID's

indefinitely however, because e ventually some type of

garbage collec t i o n will need to be done and tuples will

need to be moved. Therefore no guarantee is made for the

c onstancy of TID's from session to session. This a s s u m p ­

tion allows relations to be reorganized between sessions

not only to do necessary garbage collection, but also to

optimize d i f f erent application programs.

Because the TID is not necessarily the same from

session to session it does not replace the primary key as

the unique identifier for a tuple. The TID is a c o n v e n ­

ience for use w i t h i n a session and must be re-established

each session using the SETSCAN and GETNEXT functions or the

16

r e l a t i o n s t o c o n t a i n t h i s i n f o r m a t i o n .

2.5 The Formal Description

The formal d escription of the AM functions is based on

a s p ecification technique suggested by D. L. Parnas (1972).

The purpose of this technique is to provide complete '

information to both the user and the implementer of the

interface without giving unnecessary details. This

requir e m e n t that the specification contain as little

extraneous information as possible is the minimality

requir e m e n t for specification techniques described in

(Liskov 1975). Because this technique does produce fairly

mi n i m a l specifications it is applicable to the A M function

package. A n important des i g n goal was to isolate all

knowledge of the storage structure of relations to the AM

function level. This means that user programs need no t be

aware of changes made in the actual storage of data. Also,

since several different programs will be calling the AM

functions, it is important not to assume anything about

the calling programs w h e n implementing the functions. The

specification, therefore contains information on wha t the

interface does and not on how it is achieved nor on how it

should be used.

The complete formal specification is included as

A p p e n d i x A. The specification of each function consists of

a de s c r i p t i o n of the input and output parameters, a

d e s c r i p t i o n of the effect of the function and a list of

exceptions (error conditions) that may occur. The effect

F I N D T I D f u n c t i o n .

of a function, {i.e. the changes a function makes to the

d at a base) is given in terms of the other functions in the

A M function package. The data base may be accessed only

by calling other AM functions. Some of the functions have

no effect. This means there is no way to tell that the

function has been called and it may be called repeatedly

with no visible effect except the passage of time. This

type of function will most likely be interrogating the

data base without making changes.

If a function has an effect on the data base the

r elationship betw e e n the input and output parameters is

contained in the d escription of the effect of the function.

For example the effect of CREATE is to add relation and

domain information to the data base Master r e l a t i o n s . This

effect on the data base is expressed by using the output

parameter, RID, to retrieve the stored information. If a

function has no effect on the data base the relationship

between the input and output parameters is included as

part of the d e s c r i p t i o n of the output parameters. Calling

the function SETSCAN has no effect on the data base and

the only reason for calling SETSCAN is to determine values

for the output parameters FIRST_TID, LAST_TID and TC (tra­

versal c o d e) . In order for the user to know wha t to expect

from this and other functions w h i c h have no effect and in

order for the implementer to know how to d e t e r m i n e the

output values, the relatio n s h i p between the input and ou t ­

put parameters mus t be explicitly stated as part of the

specification. The style used to express these r e l a t i o n ­

ships is adapted from that used in (Guttag 1976) for the

axioms describing the semantics of operations defi n e d for

data types.

No error handling is included in any of the functions.

Rather, the exceptions are "trapped" and reported to the

calling program. This allows each calling program to

handle exceptions in a manner suitable for the type of

application. If an exception occurs control is returned

to the user and the user may assume the function has had

no effect. The onl y type of exception for w h i c h this

a ssumption m ay not hold is an unrecoverable I/O error.

In the event that this type of error occurs w h e n reading

information from the data base, a "Type 1 I/O error c o n d i ­

tion" is returned. The user m ay assume there has been no

effect on the data base but some data transfer from

secondary to primary storage may have occured. If this

type of error occurs w h e n w r i t i n g it is possible that

information from primary storage has only been partially

w r i t t e n in the dat a bas e and a "Type 2 I/O error condition"

is returned. Recovery from I/O errors is discussed as part

of the implementation in Chapter 3. In all other cases

(including Type 0 I/O errors, w h ere there has b e e n no data

transfer) the function may be called again after the reason

for the exception has be e n corrected and it w i l l be as if

there had been no previous call.

I n a d d i t i o n t o t h e f o r m a l s p e c i f i c a t i o n a n a t u r a l

language explanation of each function is included to aid

b o t h the user and implementer in the use of the function

and to serve as d o cumentation for the formal description.

The notation uses PASCAL - l i k e specifications for the

array and record data types used. Capitalized names are

used for the function names, parameters and global v a r ­

iables. Lower case letters, such as "i ", are used as

free variables. Although names were chos e n to have as

m u c h intuitive m e a ning as possible to make the speci f i c a ­

tion easier to read, names are explained w h e n they first

occur or where it seemed necessary to prevent confusion.

Symbols used in the notation include which is used as

the assignment operator and "=" which indicates the equali

ty relation. The symbol "B" is read "there exists",

"9" is read "such that" and "V" is read "for all".

Because all the functions are specified in the same

style only the INSERT and GET functions from Appendix A

are discussed in detail here. The function INSERT is

called to insert a tuple into a specified relation. The

input parameters are the relation identifier, RID, and the

tuple. The tuple identifier, TID, of the newly inserted

tuple is returned as an output parameter. FINDTID is used

in the expression of the effect of INSERT because the TID

is only guaranteed to remain the same during a session but

the tuple will still be in the data base even if the TID

changes. So although the TID may be used to reference a

tuple during the session in which it is inserted, the

function FINDTID is used to represent the current TID of

the tuple so the effect of INSERT is expressed i n d e p endent­

ly of the session. The effect of inserting a tuple is to

allow the TID of the tuple to be referenced without error

(V A L _ T I D (R I D , F I N D T I D (R I D , T U P L E)) = true) and the tuple

may be retrieved using the current tuple identifier

(GET(RID, F I N D T I D (R I D , T U P L E)) = T U P L E) .

Calling INSERT before the session has been started

by calling BEGIN (DBINIT = false) is one exception whi c h

may occur. Other exceptions include using an invalid RID,

inserting a tuple wit h a blank in a primary key domain and

trying to insert a duplicate tuple. And because the

INSERT function causes information to be w r i t t e n to the

data base as well as read from it all three types of I/O

errors may occur.

The function GET is used to retrieve tuples from the

data base using the current TID. The values of the relation

identifier and tuple identifier are input to the function

and the output is the desired tuple. The fact that the

tuple returned is the one with the given TID is expressed

using the FIND T I D function, that is, calling FINDTID

w ith the retur n e d tuple will yield the input TID. The

exceptions that may occur w h e n using the GET function are

calling GET before calling BEGIN (DBINIT = f a l s e) , using

an invalid RID or TID, and the I/O exceptions associated

w ith reading information from the data base.

21

C H A P T E R I I I

IM P L E M E N T A T IO N OF THE DATA B A S E SY ST EM

The previous chapter presented a formal d escription of

the AM functions to be used by both the user and the imple-

m e n t e r . The chapter contains a de s c r i p t i o n of one possible

implementation of the data base and the AM functions.

3.1 System Archit e c t u r e

The data base system has been implemented on an

INTERDATA 7 0 minicomputer. As shown in Figure 8 , the p r e ­

sent hardware configu r a t i o n includes 64K bytes of memory,

a teletype, a paper tape reader/punch, line printer, a

single disk drive and a Computek graphics terminal wit h

data tablet.

disk
drive

INTERDATA

64K

graphics
terminal

7

F i g u r e 8 . S y s t e m A r c h i t e c t u r e

Provided w i t h the m a c h i n e is a Disk Operating System

(DOS) and the s ystem programs necessary to run assembly

language and F O R T R A N language programs.

3.2 Implementation of the A M Functions

The A M functions have been designed as a set of FORTRAN

callable subroutines. F O RTRAN was used as the host language

be cause it is the programming language most readily a v a i l ­

able to minico m p u t e r users. To use the data base system a

pr o g r a m m e r does not need to learn a new language, but only

how to use a package of FORTRAN callable subroutines.

Also, by using F O RTRAN as the host language and as the lan­

guage to implement many of the subroutines the s ystem

becomes more portable b e cause of the s tandardization and

wide availability of FORTRAN.

Figure 9 shows the set of subroutines m aking up the

data base interface. LEVEL 1 subroutines are the AM func­

tions that m a y be called directly by the user and are used

to access and m a n i p u l a t e the data base. LEVEL 2 subroutines

are those necessary for a complete interface specification

but are not user callable. These subroutines are used

ma i n l y to check for exceptions. In this implementation

many of the functions used in the s p e cification to check

for exceptions w e r e not implemented as subprograms but as

in-line code and are therefore not individual LEVEL 2

subroutines. LEVEL 3 subroutines are the service routines

wh i c h p e rform specific tasks for some of the LEVEL 1

subroutines. The descriptions of the LEVEL 3 subroutines

23

are found in Appen d i x B as part of the Users' Manual. The

I/O routine is used to actually read and write data base

pages (physical r e c o r d s) . The I/O routine is an assembly

language routine and is the only subroutine not coded in

F O R T R A N .

BEGIN INSERT
END GET
CREATE REPLACE

LEVEL 1 DESTROY DELETE
SETSCAN RTRV REL
GETNEXT RTRV REL INFO
FIND T I D R TRV_DOM_INFO

LEVEL 2 VAL_ R I D VALJTID

LOCATE GET SPACE
GET BUF FREE SPACE
CHE C K BUF PRIMARY KEY FINDER

LEVEL 3 SEARCH INDEX SAVE REL DATA
SAVE BUF WRITE REL DATA
WRITE BUF DUMP M A S T E R REL
DUMP BUF

I/O I0SVC1

Figure 9. The AM Funct i o n Package

3.3 Impleme n t a t i o n of the Data Base

Space for a data base is allocated, using DOS, on

a disk pack as one large direct access file with physical

records of the m a x i m u m size of 256 bytes. Once this data

base file has bee n created there is no need to use the

operating system to reserve and release space and FORTRAN

subroutines may be used to manage the space with i n the file.

The m a x i m u m record size is used as this gives the most

efficient data transfer rate. The first pages {physical

records) of a data base file are reserved for the Master

The Relation Information relation has been imple­

ment e d as two relations. The relation name is not used by

the low level interface, w i t h the exception of RTRV_REL,

and is included only for the c onvenience of the user. The

r e l a t i o n names and corresponding R I D 's are maintained in

one relation, the Relation I n d e x . The remaining i n f o r m a ­

tion is m aintained as the Relation Data relation. In

Figure 10 the Master relat i o n domains utilized by the AM

functions are denoted by an "X". All of the AM functions

require information from the Relation Data relation. This

rela t i o n is kept in primary storage during a data base

s e s sion to eliminate at least one dis k access per A M func­

tion call. Whe n information in the relation is changed,

however, it is w r i tten immediately to secondary storage so

there is no di s c r e p a n c y b e t ween the copy in the data base

The relation identifier, RID, in this implementation

is the offset of the relation's tuple in the two relations

discussed above. The RID may be used to index into the

relations to locate any of the d e s i r e d information. This

is especially efficient since the relations whe n in main

m e m o r y are stored as arrays and the RID may be used directly

r e l a t i o n s . T h e r e m a i n i n g p a g e s a r e a v a i l a b l e f o r s t o r i n g

A s s h o w n i n F i g u r e 1 0 t h e D o m a i n I n f o r m a t i o n r e l a t i o n

Relation

Index

Relation

Information

Domain

Information

GET DELETE REPLACE INSERT SETSCAN GETNEXT

RELNAME

RID

TUPLE LENGTH X X X X

STORAGE STRUCT X X X X X X

PLOC X X X X X

STRUCT_INFO X X X X X X

DOM NAME

DID X

RID

DO M TYPE X

DOM LENGTH X X X

DOM_LOC X X X

DOM_KEY X X X

Figure 10. Use of the Master Relations

is not used by every AM function* Partially for this

reason, but mainly because it is a muc h larger relation

than the Relat i o n Data relation, it is not m a i n t a i n e d in

m a i n memory. Information for the desired domains is

read as necessary. -

3.3.2 Storing User Relations

By using the A M functions the users of the data base

are not aware of the physical storage structure of r e l a ­

tions. The r e must, however, be a data base administrator

w ho is concerned with the details of storing the info r m a ­

tion. The data base administrator {this m a y be a committee)

must consider the usage of relations and d e t e rmine a

storage structure for each relation whi c h will provide

e f f i c i e n t access to the information. The storage structure

of a relation may be changed by restructuring the relation

using the utility functions to be discussed in Section 3.7.

Storage structures of relations m i g h t be changed to improve

response time for an a pplication or they mig h t be changed

from application to a pplication as the use of the i n f orma­

tion changes.

There are several alternatives available for storing

the tuples of a relation, not all of which have been

implemented. A m o n g these alternatives are sequential,

hashed and linked storage structures. When a hashing

scheme is not used, access to tuples may be improved wit h

the addition of indexes. A primary index entry contains a

primary key value and the location of the tuple associated

w i t h the value. Dense primary indexes contain an entry

for each tuple of the relation. Nondense primary indexes

do not contain an entry for each tuple, but take advantage

of the physical sequence of stored tuples. For example,

this type of index m a y be used to provide access to sorted

sequential structures. The index w o u l d contain only the

entries for the tuples w i t h the highest valued key on each

track, cylinder, or other partition of a relation.

Secondary indexes are indexes for domains other than

the primary key domains and provide alternate access paths

which can improve response for some queries. For a large

index additional levels of index may be created forming a

m u l t i l e v e l index which will decrease the number of c o m p a r ­

isons necessary to find a specific entry. The benefits

and d i s a dvantages of these and other storage techniques are

d i s c u s s e d in (Knuth 1968, Held 1975, London 1973) and only

the specific structures currently available with this sys­

tem are d i s c ussed below. Other structures may be added to

the system by the data base administrator. Because of the

data independence provided by the A M functions, these a d d ­

itions will not require changes in the programs using the

A M functions. The A M functions and the data base have been

d e s igned to m a k e the addition of storage structures as

s imple as possible.

Currently w i t h this system, user relations may be

stored using one of two storage structures. These struc­

tures are based on those used in the INGRES relational data

28

base system (Stonebraker 1976). One of the available

structures is an unordered sequential structure in which

tuples appear sequentially in no particular order. This

structure was used mainly to provide a simple structure

in which to store relations during the de v e l o p m e n t of the

A M functions. This structure may still be used for small

temporary relations or relations w h i c h must always be

e xhaustively searched. The other structure is an indexed

sequential one in which tuples are stored sorted on a

specified key. Figure 11 shows an example of a relation

stored using this structure whe r e the key is the supplier

name. An index is provided giving the highest key value

of a tuple on each physical record, or p a g e . For large

relations spanning several pages an index to the index

is added to decrease the number of disk accesses necessary

to reach a desired tuple. This type of storage structure

is useful for storing relations for w h ich anticipated

queries will specify the key value as falling w i t h i n a

r a nge of values.

T I D 0 V|
--7

TID1

S5 ADAMS
ATHENS

30

S2 BLAKE
PARIS

30

page 1

F i g u r e 11

TID2.,
— ?

TID3

S4 CLARK 20
PARIS

S3 JONES 10
PARIS

TID4.

page 2
INDEX

BLAKE page 1
JONES page 2
SMITH page 3

SI SMITH 20
ATHENS

page 3

SUPPLIER Relation Stored Using the
Indexed Sequential Structure

Tuples ma y be accessed directly by their TID's b e ­

cause a TID is interpreted as a physical address. Tuples

may also be accessed whe n their TID's are not known but

w h e n they are to be selected bas e d on some property of:

their d o m a i n s .

3.4.1. Accessing Tuples Using a Search Criterion

The search criterion is the property w h i c h specifies

the desired tuples. Figure 12 shows the four forms of the

search c r i t e r i o n allowed by the AM functions where RELATION

may be any of the operators <, or The first

case is the only form of the search criterion allowed by

FINDTID. All four cases are handled by the SETSCAN o p e r a ­

tor .

(1) prim a r y key = value
(2) prim a r y key RELATION value
(3) single domain RELATION value
(4) single domain RELATION single domain

Figure 12. Allowable Forms for the
Search Criterion

The operands of the search criterion are limited to a single

domain unless the primary key consists of more than one

domain, in w h i c h case the domains are concatenated and

treated as a single operand for the purpose of searching.

The use of the c o ncatenation of non-key domains was not

included in the SETSCAN function beca u s e multicr i t e r i a

searches m ay be done by first calling SETSCAN wit h a single

criterion and then checking the candidate tuples as they

3 . 4 A c c e s s i n g T u p l e s

are retrieved by GETNEXT for compliance with all criteria.

This allows for the d evelopment of a higher level module

which may analyze multicr i t e r i a searches and then, using

information about the stored relation, may choose the

single criterion which will limit the number of tuples to

check as m u c h as possible.

The search criterion and the storage structure of a

relation are used to determine (1) a traversal scheme for

scanning the relation and (2) the TID's of the first and

last tuples w h i c h need to be checked. In the case of

FI N D T I D this information is used internally to locate the

desi r e d tuple and in the case of SETSCAN is returned to the

call i n g program. Associ a t e d w i t h each stored relation is

at least one traversal scheme so that a complete scan of

the relation m ay be made w i t h o u t checking any tuple twice.

One traversal scheme, w h i c h may be used w i t h any

stored relation, orders tuples c o rresponding to their

phys i c a l posit i o n in the relation. Figure 13 is a r e p r e ­

senta t i o n of the SUPPLIER relation stored using the uno r ­

dered sequential storage structure. Using the traversal

scheme based on physical posit i o n the tuples would be

scanned in the following order: S5, S 2 , SI, S3 and S 4 .

F i g u r e 14 is the same relation stored using the indexed

sequential structure where the primary key is S N A M E . (S#

could also have been selected as the primary key in this

relation.) The tuples are now ordered by the traversal

scheme as S5, S2, S 4 , S3 and SI.

32

page 1 page 2 page 3

Figu r e 13. The SUPPLIER Relat i o n Stored Using
the Unordered Sequential Structure

A dditional traversal schemes m a y be added to either

version of the stored relation by creating additional

indexes. These additional indexes will be called

directories to prevent confusion w i t h the index associated

w i t h the indexed sequential file structure. Directories

are not implemented in the current vers i o n of the data

base system but, beca u s e they provide the efficiency of

alternate access paths, their inclusion in the system has

b e e n anticipated in the current implementation and their

use in accessing tuples is d i s c u s s e d in this section.

Figure 14B shows a secondary d i r e ctory for the domain CITY

for the stored relation in Figure 14A. The ordering of the

tuples indicated by the traversal scheme using the CITY

directory is: S5, S4, SI, S2 and S3. Directories may be

created for the primary key or any single domain. One type

o£ d i r e c t o r y is the type shown in Figu r e 14B where each

direc t o r y entry consists of the doma i n value and the TID's

of the tuples corresponding to those values. This type of

directory is mainta i n e d sorted on the domain value to

facilitate lookup.

T h e a l g o r i t h m u s e d b y F I N D T I D a n d SE T S C A N t o s e l e c t

a traversal scheme will first check M a ster Relation infor­

m a t i o n to see if a directory is m a i n t a i n e d for the operand

s pecified in the search criterion. If there is no directory

the traversal scheme based on physical ordering is used.

This traversal scheme is also used if the search criterion

is a compar i s o n between two domains, since this requires a

full scan of all tuples of a relation.

TIDO.

TID1.

S5 ADAMS 30
A THENS

S2 BLAKE 30
PARIS

TID2,

TID 3.

S4 CLARK 20
LONDON

S3 JONES 10
PARIS

TID4
SI SMITH 20

LONDON

page 1 page 2
INDEX

B LAKEj p a g e 1
JONES| p a g e 2
SMITHipage 3

page 3

14A. The R e l ation Stored Using the Indexed
S equential Storage Structure

ATHENS TIDO
L ONDON T I D 2 , TID4
PARIS T I D 1 , TID 3

14B. The CITY Directory

Figure 14. A Stored V e r s i o n of the S U P PLIER Relation

Once the traversal scheme is c hosen the search c r i ­

terion may be used to limit the number of tuples which m u s t

be checked. Consi d e r the SUPPLIER relation stored as in

F igure 14 and the following examples.

Example 1. If F I NDTID is called using the search c r i ­

terion "SNAME = JONES" the traversal scheme based on p h y s i ­

cal order i n g is chosen b e c a u s e there is no directory for

SNAME. Because SNAME is the primary key and the storage

structure is indexed sequential the index may be used to

limit the search to tuples stored on p a g e 2 of the relation.

FIND T I D will check the tuple wit h TID2 and w i l l then obtain

a m a t c h for the tuple w i t h T I D 3 . TID3 is the TID returned

as the result of the call.

Example 2. SETSCAN is called using the search crit e r ­

ion "CITY = PARIS". The traversal scheme based on the CITY

direc t o r y is chosen and the directory is used to set the

FIRST_TID as TID1 and the LAST_TID as TID3. The user

program calls GETNEXT wit h the FIRST_TID, TIDl, and issues

calls to G E T N E X T using the NEXT_TID returned by GETNEXT

until it has been called using the L A S T _ T I D , T I D 3 . In this

example GETNEXT is called twice, first w i t h TIDl and then

w i t h TID3. Both the returned tuples need to be checked to

see if CIT Y does equal PARIS and in this case they both do.

Example 3. SETSCAN is called using the search c r i t e r ­

ion "STATUS = 20". Because there is no direc t o r y for STATUS

the traversal scheme based on physical location is chosen.

STATUS is not the primary key so the entire relation m u s t

be s c a n n e d . The FIRST_TID is set as TIDO and the LAST_TID

as TID4. GETN E X T is called five times by the user program

and each returned tuple is checked for STATUS = 20.

The traversal code returned by SETSCAN and GETNEXT

contains an encoding of the traversal scheme selected. If

the traversal scheme is based on a directory, additional

i nformation about the location of the current TID in the

d i r e c t o r y will be included in the traversal code. Although

the TID and traversal scheme uniquely d e t e r m i n e the next

TID, the directory location w i l l enable GETNEXT to determine

the next TID much mor e efficiently as the current TID will

n o t need to be relocated in the directory for each call to

GETNEXT. The traversal code returned by GETNEXT w i l l be

updated in this case and w i l l consist of the traversal

scheme and the new current location in the directory.

3.4.2 A c c e s s i n g Tuples Using the Tuple Identifier

The tuple identifier (TID) is used to uniquely i d e n ­

t ify a tuple. It may be used to retrieve a tuple and must

be used w h e n deleting or replacing a tuple. The TID of a

t up l e is determined by its physical placement in the stored

r e l a t i o n .

There are two TID schemes used in the current i m p l e ­

mentation. The first is used with the unordered sequential

storage structure. The TID decodes into a relative page

n u m b e r and a tuple o f f s e t . The relative page number is

ad ded to the starting address of the relation obtained

from the R e l a t i o n Data relation. This sum indicates the

actual page number of the page in the data b a s e w h i c h c o n ­

tains the tuple. After the correct page is retrieved from

the dat a base, the tuple offset is used to locate the s t a r t ­

ing word of the tuple on the page. Given an offset, S, and

the tuple length, TL, obtained from the Relation Data

r e l a t i o n the starting word, SW, is

SW = S * T L + 1 .

For example, an offset of S = 0 indicates that the tuple is

the first on the page and the starting word is

0 * TL + 1 = 1.

Similar computations will locate the starting word for other

t u p l e s . Using the starting w o r d of the tuple and the tuple

length the tuple may be retrieved or replaced. A deleted

tuple is not immediately removed from the data base but is

marked as being deleted and m ay not be accessed. There is

no automatic garbage collection done by the implementation,

however, Section 3.7 describes the procedure whi c h may be

used by the data base administrator to free space occupied

by deleted tuples. Also, Section 3.5 discusses the use of

space occupied b y deleted tuples whe n inserting new tuples

into a relation.

The second method of using a TID to locate a tuple is

used by the indexed sequential storage structure. The TID

again decodes into a relative page number and offset. The

c orr e c t page is d etermined as above. The offset, however,

is not a tuple offset, b ut the offset in the page directory

found on each page. The entry in the page directory gives

the starting wo r d address of the tuple on the page. The

starting word and length of the tuple are used whe n

retrieving or replacing a tuple. When delet i n g a tuple the

page directory entry as w e l l as the tuple are marked deleted

Both TID schemes w e r e implemented as each has its a d ­

vantages. The advantage of the first scheme is that it

requires no space overhead. The second method requires the

overhead of one hal f word per tuple, but allows tuples to

be reorganized on a page w i t h o u t changing TID's. Because

the storage struc t u r e of a relation determines which scheme

is used for interpreting the TID there is no problem wit h

having mor e than on e scheme.

The current implementation encodes the relative page

number and offset of a TID into a single half w o r d {16 bit)

integer. Allow i n g for a m a x i m u m of 64 tuples per {256 byte)

pag e requires using 6 bits. The remaining 10 bits are

used to denote relative page number. This allows a m a x i m u m

of 1024 pages per relat i o n which is sufficient for planned

application programs. The encoding and decoding of TID's

is isolated in all coding, however, so a switch to another

scheme for handling the page number and offs e t could be

m a d e .

3.5 Inserting Tuples into User Relations

Inserting a tuple into a relation using the INSERT

function consists of three operations. First a check is

made to insure that there is no duplicate tuple. Then if

there is no duplicate, the position in the stored relation

where the new tuple is to be placed must be determined.

Finally, based on the posit i o n of the new tuple the TID of

the tuple is computed to be returned by INSERT to the

calling program.

Inserting a tuple into a relation stored using the

unordered sequential structure requires a scan of all the

tuples in the rela t i o n to deter m i n e if there is a duplicate.

If a deleted tuple is found on this scan its position is

noted. The new tuple is placed in the first available

position, that is, if there is a deleted tuple its position

is used as the position of the new tuple, otherwise the

tuple is placed at the end of the stored relation. The

TID of the tuple is computed using the relative page number

and the offset of the position chosen for the new tuple.

A complete scan of a relation stored using the indexed

sequential structure is not required because the index may

be used to locate the page on which a duplicate might be

stored. The tuples on the page are checked to determine

if there is a duplicate. The position of a deleted tuple

(if one exists) is noted during this check. If there is

no duplicate the new tuple may be inserted in the position

occupied by a deleted tuple. Otherwise it is inserted at

the end of the page. In the event the page is full an

overflow page is allocated and linked to the primary page

as illustrated in Figure 15. The tuple being inserted is

placed on the overflow page.

primary page primary page primary page

overflow page

Figure 15. The Chaining of Overflow Pages

Note that a tuple inserted into a relation stored

using the indexed sequential structure is probably not in

the correct order based on the key of the structure. When

a tuple is inserted no reorganization takes place because

in some cases this would involve moving a tuple from one

page to another, thereby changing its TID. In order to

allow constant T I D’s a primary page and its overflow pages

are not maintained in sorted order. This decision implies

that the primary page and all of its overflow pages must

be included in a scan for a particular tuple.

The TID of the inserted tuple is computed using the

relative page number and offset of the page directory

e n t r y .

3.6 I/O Considerations

All input and output is performed by the subroutine

I0SVC1. This is an assembly language subroutine which

issues a request to transfer the contents of a page from

memory to secondary storage or vice versa. Buffers are

used to hold up to five user relation pages in memory at

one time. Before a user relation page is read, the contents

of the buffers are checked by the subroutine CHECK_BUF to

see if the desired page is present. If the page is not in

a buffer CHECK_BUF determines if there is an available

buffer. If the page is not in memory and there is no

available buffer then the subroutine GET_BUF is called to

determine which buffer should be used. In the present

implementation GET_BUF arbitrarily chooses a buffer but

when a more desirable scheme is developed it can be more

easily implemented as the selection part of this task has

been isolated in the G£T_BUF subroutine.

When doing I/O there are three types of errors which

may occur. Type 0 I/O errors are those which result in no

data transfer either into or out of the data base. Type 1

errors are those which occur during a read operation when

an undetermined amount of data is transfered from the data

base to main memory before the error condition occurs.

Type 2 errors are the same as Type 1 errors except they

occur during write operations, that is, an undetermined

amount of information has been transfered from main memory

to the data base. These errors can occur when reading or

writing either Master Relation or user relation pages. The

recovery procedures for these I/O errors are outlined in

the following paragraphs.

Because the Relation Index and Relation Data Master

relations are small enough to fit entirely in main memory,

they are read and written in one I/O operation whether or

not they occupy more than one page. In the following

discussion block refers to the unit of information read or

written by one I0SVC1 call, whether it is one page as in

the case of user relations or the Domain Information rel­

ation or multiple pages in the case of the other two Master

Relations.

Before the contents of a block are changed, the entire
block is saved in a save area. The save area is presently

in memory, but could be on an external device. The save

area provides the means for backing out of an AM function

if it cannot be completed due to the occurence of an I/O

error. As an example consider the function CREATE which

requires reading and writing the Relation Index and Relation

Data relations and reading and writing perhaps multiple

pages of the Domain Information relation. If the updated

Relation Index and Relation Data relations are successfully

written in the data base and an I/O error occurs when

reading or writing the first Domain Information page, the

new relation is only partially created. To back out of the

CREATE function the saved versions of the Relation Index

and Relation Data relations are written back into the data

base thereby returning the data base to its previous state.

Each update function has a similar recovery procedure.

Copies of the original version of all updated blocks are

maintained. If an error does occur the function first

attempts to return the data base to its state prior to

the function call by writing the saved blocks back into the

data base. If there are saved blocks which cannot be r e ­

written due to further I/O errors they are dumped to an

external device. The data base administrator may make

further attempts to restore the data base using these

dumped blocks. If the saved blocks are lost before they

can be used to restore the data base there is no way to

recover completely from the I/O error and action must be

taken by the data base administrator to restore the

If a function returns an I/O error exception code the

following actions should be taken. Termination due to a

Type 0 I/O error requires no special action beyond fixing

the cause of the error, for example readying an off-line

device. If a Type 1 error has occurred some main memory

block may have questionable information. For this reason

the session should be terminated and a new session started

so all main memory blocks may be reinitialized. If a

Type 2 error occurs the session should be terminated

and the dumped blocks written into the data base using

a utility function, WRTBLK, which is described in Section

3.7. . ;

The recovery procedure outlined above provides some

protection in the event of hardware errors, but as in all

data processing environments the entire data base should be

periodically backed up. In the event some unrecoverable

error occurs, the backup prevents loss of the entire data

base, although all operations done since the most recent

backup are lost. As the data base system receives more use

the addition of some type of system log to record the output

operations of a session will allow even better recovery

procedures. With the addition of a log if the data base

is lost a previous copy may be recovered to the point

of the error using the operations recorded in the log.

42

i n t e g r i t y o f t h e e f f e c t e d r e l a t i o n .

In addition to the AM functions already described the

following routines have been developed for use by the data

base administrator to maintain the data base. INIT is used

to initialize a new data base, COPY allows entire relations

to be transfered into or out of the data base and WRTBLK

will write a specified block into the data base.

When creating a new data base the subroutine INIT

is used to initialize the data base file. In particular

the global variable NUM_RJEL (the number of relations) must

be set to zero because it is used in a variety of places to

terminate loops and must accurately reflect the total num­

ber of relations. The space allocated for the Relation

Index and Relation Data relations is also initialized

because the entire space is read and written by the AM func

tions, not just the space occupied by tuples. The space

available for storing user relations is not initialized but

the total number of pages available for the user relations

is used to initialize the free space list.

The function COPY provides the means for transfering

entire relations into or out of the data base. Input

parameters for COPY are the relation identifier, the mode

of operation (input or output) and the logical unit number

assigned to the external device to be used for input or

o u t p u t .

In the output mode COPY scans all tuples of the speci­

fied relation using the traversal scheme corresponding to

3.7 U t i l i t y F u n c t i o n s

physical position. As discussed in Section 3.4 using this

traversal scheme means that relations stored using the

unordered sequential structure are scanned from beginning

to end. Relations stored using the indexed sequential

structure are also scanned from beginning to end but any

pointers to overflow pages are followed so overflow pages

are scanned in the correct order. Any tuples marked deleted

are ignored by the scan. As a tuple is scanned it is

written to the device indicated by the user. If this device

produces machine readable copy (i.e. paper punch or disk

drive) the copy may be used as a backup for the relation

in the event the data base copy is destroyed due to hard­

ware or software error. If the output is the line printer

the copy is a formatted list of the relation.

The input mode of COPY uses the Master relation infor­

mation to determine the storage structure of the relation

to be copied. COPY reads tuples from the input device

indicated by the user and places them in the data base. If

the storage structure is unordered sequential the tuples

are positioned one after another as they are read. If

the storage structure is indexed sequential the tuples are

assumed to be ordered on the primary key and are placed

in the data base in the order in which they are read. When

a data base page is filled a first level index entry is

created using the key of the last tuple on the page. When

a first level index page is filled a second level index

entry is created. The input mode of COPY provides a

44

f

The COPY function may be used by the data base admin­
istrator to restructure relations and to manage space
allocated to relations. The procedure used to restruc­
ture a relation involves using COPY to copy the tuples of
a relation out of the data base then destroying the relation
using the DESTROY function. The relation is then recreated
using the CREATE function with the desired storage struc­
ture as one of the input parameters. If the new structure
requires tuples to be ordered on a particular field the
tuples in the external copy of the relation must be sorted
on this field. The input mode of COPY is then used to
copy the tuples into the data base where they are placed
according to the new storage structure. This procedure
requires each step to be initiated by the data base
administrator. A higher level restructuring function could
be implemented to perform the necessary steps automatically
given the relation identifier and the new storage struc­
ture desired.

Because deleted tuples are ignored by COPY, garbage
collection of deleted tuples in a relation is done any
time a relation is copied out of the data base and then
back into the data base using the COPY function.

A procedure similar to that used for restructuring
may be followed if an adjustment needs to be made to the
amount of space allocated to a relation. When a relation
is created one of the input parameters for the CREATE

45

c o n v e n i e n t w a y to p o p u l a t e a r e l a t i o n .

function is the projected maximum number of tuples. This

number is used to determine the number of contiguous pages

to allocate to a relation. If the amount of space initially

allocated proves to be too little or too much the data base

administrator may follow the restructuring procedure to make

the necessary adjustment. When the relation is recreated a

new figure for the maximum number of tuples may be used.

This space management scheme is sufficient for the planned

application, because the sizes of relations are predictable

and fairly static. This scheme would not be effective how­

ever, if relations change size often. A more dynamic space

allocation scheme could involve the use of a free page list.

Pages could be allocated to relations as necessary and re­

turned to the free list when they were no longer needed.

This type of scheme would require more overhead than the

scheme presently implemented but would result in a savings

of data base space if accurate estimates of relation size

could not be made.

WRTBLK allows a particular data base block to be writ­

ten into the data base. As explained in Section 3.6 a block

is either the entire Relation Index or Relation Data rela­

tion or a single page of either the Domain Information re­

lation or a user relation. The block to be copied is in the

internal format (binary) of the machine and I0SVC1 is used

to write the block into the data base. WRTBLK is part of

the recovery procedure described in Section 3.6 which is

The AM functions were developed to be used in two ways

Application programs may use the AM functions directly to

access information in the data base, or they may be used

to implement a higher level interface. This chapter dis­

cusses both of these uses of the AM functions. Also in­

cluded in this chapter are suggestions for further devel­

opment of the current implementation.

4.1 Using the AM Functions

The system requirements and details involved in the

use of the data base system are described in the U s e r s '

Manual included as Appendix B. The Manual is organized

into two parts. Part I is primarily for use by the data

base administrator when creating new data bases or when

making additions or changes to the system. It contains in­

formation about initializing system variables and adding

new storage structures. It also contains a detailed des­

cription of the implementation of each subroutine in the

system including the utility functions. Part II of the

Manual is directed to the user of the AM functions and con­

tains only a description of the calling sequence of each

C H A P T E R IV

U S E O F T H E D A T A B A S E S Y S T E M .

user callable AM function and the details of other program­
ming requirments necessary to use the data base system.

4.2 Using Information from the Data Base

When using the low level interface provided by the AM

functions the basic unit of data is the tuple. In practice

user programs will probably be interested in a particular

domain or domains of a tuple. To maintain the maximum

degree of data independence the system information contained

in the Master relations about the number and location of

domains in the tuple should be used rather than coding this

information directly. If the order of domains within a

tuple is changed or if a domain is added to a relation it

will have no effect on existing programs if the system in­

formation is used.

Figure 16 is an example of an application program

which retrieves from the SUPPLIER-PART relation the tuples

with S# = 2. An array is declared for each domain of in­

terest, in this case SPP for the P# domain and SPQTY for

the QTY domain. Although the RID of a relation does not

change and may be used directly by an application program,

the example illustrates the use of the RTRV_REL function

(RTR) to determine the RID. The SUPPLIER-PART relation

name (SUPPRT) is compared to each relation name in the

Relation Index until a match is made. The corresponding

RID is assigned to the variable SPRID for use in the pro­

gram. Next, the domain identifier (DID) and location in

the tuple of each of the three domains is found by the

49

S P P (r) = T U P L E (S P P L O C)

S P Q T Y (I) = T U P L E (S P Q L O C)
C O N T I N U E

I F (TI D. EQ. L A S T I D) G O T O 3 0

T I D = N X T T I D

T C = N X T T C
G O T O 2 0

C O N T I N U E

N U M S P I S T H E N U M B E R O F S E L E C T E D T U P L E S

N U M S P = I ,

R E M A I N D E R O F P R O G R A M H E R E

W R I T E (7 , 3 0 0) S P P (I >, (S P Q T Y (I), 1 = 1, N U M S P)

F O R M A T (' R E L A T I O N ' , < 2 1 5))

C A L L E N D I T (S T A T U S)

S T O P

E R R O R E X I T

C O N T I N U E

S T O P

E N D

S U B R O U T I N E F N D D O M < R I D , D O M N A M , D O M N U M , D O M L O C , D O M D I D)

I N T E G £ R # 2 R I D , D O M N A M (3, S) , D O M N U M , D O M L O C (2 , S) , D 0 M D I D < 8) ,

T O T D O M , D O M I N F (12, 8) , S T A T U S , T S T

T S T = 0

D O 1 0 I = 1 , 8

D O M L O C (1 , 1) = 0

D O M L O C <2, I) = 0

D O M D I D < I) = 0

C O N T I N U E

C A L L R T D O M (R I D , T O T D O M , D O M I N F , S T A T U S)

I F (S T A T U S . NE. 0) G O T O 6 0

D O 2 0 1 = 1 , T O T D O M

D O 3 0 J = 1 , D O M N U M

I F (D O M L O C (1, J). EQ. 0. A N D . D O M N A M < 1, J). EQ. D O M I N F (2, I)

* AN D. D O M N A M < 2, J). EQ. D O M I N F (3, I). A N D .

* D O M N A M (3, J). EQ. D O M I N F (4, I)) G O T O 4 0

C O N T I N U E

G O T O 2 0

C O N T I N U E

D O M D I D (J) = D O M I N F (9 , 1)

D O M L O C (1, J) = D O M I N F (6 , 1)

D O M L O C (2 , J) = D O M I N F (7 , 1)

T S T = T S T + 1

I F (TST. EQ. D O M N U M) G O T O 6 0

C O N T I N U E

C O N T I N U E

R E T U R N

E N D

Figure 16. Example of the Use of the
Low Level Interface

51

C D E C L A R E V A R I A B L E S N E C E S S A R Y F O R S U P F ' L I E R - F ' A R T R E L A T I O N I N F O

C

D I M E N S I O N SF'F' (2 0 0). S F ' Q T Y (2 0 0)

I N T E G E R * 2 S F ' N A M (3) , S P R I D , S F ' N A M S (3 , 8) , S P S L O C , S P P L O C , S P Q L O C

C

C O T H E R V A R I A B L E S •

C •

D I M E N S I O N T U P L E (6 4) , V A L (3 2)

I N T E G E R * 2 I , N R E L , R I D S (1 0), R E L N A M (3, 1 0) , S T A T U S , N U M D O M ,

* D O M I N F (12, 8) , D O M L O C (2, S) , D 0 M D I D (8) , T I D , F R S T I D , L A S T I D , TC ,

* N X T T I D , N X T T C , NLIMSP, J

C

C I N I T I A L I Z E

C

D A T A S P N A M , (< S F ' N A M S (I , J) , 1 = 1 , 3) , J = l , 3)

* / ' S U P P R T - ' , ' S P L I E R ' , - ' F A R T N O ' , ' Q T Y " /

D A T A S P P , SF'QTY, S P R I D , S P S L O C , S P P L O C , S P Q L O C

* /200*0. , 200*0. , 0, 0, 0, 0/
C A L L B E G I N (S T A T U S)

C

C D E T E R M I N E R I D F O R S U P F ' L I E R - P A R T R E L A T I O N

C

C A L L R T R (N R E L , R I D S , R E L N A M , S T A T U S)

I F (S T A T U S . NE. 0) G O T O 1 0

D O 1 2 I = 1 , N R E L

I F (S P N A M (1). EQ. R E L N A M (1, I). A N D . S P N A M (2 > . EQ. R E L N A M < 2, I)

* . A ND. S P N A M (3) . EQ. R E L N A M (3, I)) G O T O 1 5

1 2 C O N T I N U E

G O T O 1 0

1 5 C O N T I N U E

S P R I D = R I D S (I)

C

C F I N D L O C A T I O N S O F D O M A I N S O F I N T E R E S T

C

C A L L F N D D O M (S P R I D , S F ' N A M S , 3, D O M L O C , D O M D I D)

S P S D I D = D O M D I D (1)

S P S L O C = D O M L O C . < 1 , 1)

S P P L O C = D O M L O C (1 , 2)

S P Q L O C = D O M L O C (1 , 3)

W R I T E < 7 , 2 0 0) S P S L O C , S P P L O C , S P Q L O C :

2 0 0 F O R M A T (' S P S L O C , S P P L O C , S F ' Q L O C ' , 3 1 5)

I F (S P S L O C . EQ. 0. OR. S P P L O C . EQ. 0. OR. S P Q L O C . EQ. O) G O T O 1 0

C

C R E T R I E V E S U P F ' L I E R - P A R T R E L A T I O N

C
V A L < 1) = 2.

C A L L S E T S C N (S P R I D , 1, S P S D I D , 0, V A L , F R S T I D , L A S T I D , T C , S T A T U S)

I F (S T A T U S . NE. 0) G O T O 1 0

I = O

T I D = F R S T I D

2 0 C O N T I N U E

C A L L G E T N X T <S P R I D , T I D , TC , T U P L E , N X T T I D , N X T T C , S T A T U S)

I F (S T A T U S . NE. O) G O T O 1 0

I F (T U P L E (S P S L O C) . NE. 2.) G O T O 2 5

1 = 1 + 1

F i g u r e 16. (c o n t i n u e d)

FNDDOM subroutine. This subroutine is an example of how

the RTRV__DOM_INFO (RTDOM) function may be used to retrieve

system information from the Domain information relation.

The domain location is given by a starting and ending off­

set but in this example because all three domains are num­

eric (single word) domains only the starting word of each

domain is necessary. The offsets in the tuple of the three

domains S # , P# and QTY are SPSLOC, SPPLOC and SPQLOC res­

pectively .

Once the RID and domain locations are determined the

relation is retrieved from the data base using the SETSCAN

and GETNEXT functions. The domain identifier of the S#

domain, SPSDID, and the value 2 are passed to S E T S C A N wit.h

the code for the equality relation which is 1. (The para­

meter set to 0 is the second DID used in some forms of the

search criterion.) SETSCAN returns the first TID (FRSTID),

last TID (LASTID) and the traversal code (TC) to be used in

the scan. Each tuple retrieved by GETNEXT is tested against

the criterion "S# = 2". Notice that the tuple is returned

from GETNEXT in an array of the maximum tuple size

(TUPLE(64)). When a tuple meets the criterion the P# and

QTY domains are mapped to the next available rows in the

SPP and SPQTY a r r a y s . GETNEXT is called until the last

tuple indicated by SETSCAN (TID = LASTID) has been re­

trieved .

4.3 Use of the AM Functions to Implement
a Higher Level Interface
The example application program shown in Figure 16

retrieves tuples from the SUPPLIER-PART relation which

satisfy the criterion S# = 2. If the tuples from the PART

relation with WEIGHT > 15 are desired another program would

be necessary. A higher level interface allows queries to

be made without requiring new coding for each new query.

For a discussion of the variety of relational languages

currently being developed as higher level interfaces see

(Chamberlin 1976). One higher level language is based on

the relational algebra. The following discussion defines

three relational algebra operators and illustrates how the

AM functions could be used to implement them.

Relational algebra operators take relations as oper­

ands and always return a single relation as a result. The

restrict operator selects tuples from a relation that sat­

isfy a given condition. The condition may be a comparison

between the value of a particular domain and a constant or

between the values of two similarly typed domains in a

tuple. For example, Figure 17 shows the result of re­

stricting the PARTS relation to those tuples satisfying the

condition WEIGHT > 15. The RESULT relation contains only

the tuples from the PARTS relation satisfying the given

condition.

Figure 18 is a flowchart illustrating the use of the

AM functions to implement the restrict operator. The

53

relation A is restricted using the condition "DOMAIN

RELATION VALUE", where RELATION is = , < , >, 5̂ , > °r ? ■

PARTS RESULT = RESTR I C T (P ARTS,WEIGHT >15)

p# PNAME COLOR WEIGHT
PI Nut Red 12
P2 Bolt Green 17
P3 Screw Blue 17
P4 Screw Red 14
P5 Cam Blue 12
P 6 Cog Red 19

Pf PNAME COLOR WEIGHT
P2 Bolt Green 17
P3 Screw Blue 17
P6 Coq Red 19

Figure 17. The Restrict Operator

The RESULT relation will contain the selected tuples.

At the relational alebra level the relations and domains

are referenced by name but the AM functions require the

use of the internal identifiers. As shown in Figure 18

the RTRV_REL function is used to establish the RID of

relation A and the RID of the RESULT relation if it exists.

The RTRV_DOM_INFO function is then used to determine

the DID and location within the tuple of the DOMAIN

domain. If the RESULT relation has not been created the

CREATE AM function will be used to create it at this time.*

SETSCAN and GETNEXT are then used to scan the relation

A checking each returned tuple to see if it satisfies the

given condition. If a tuple does meet the criterion it is

added to the RESULT relation using INSERT. A similar pro­

cedure would be followed if the condition is a comparison

*If the relational algebra operators are to be respon­
sible for creating result relations then default values for
some of the CREATE parameters such as the maximum number of
tuples in the relation will need to be used.

between two domains rather than a domain and a value.

The operator project forms a new relation by selecting

specified domains from tuples of a relation and eliminating

any duplicate tuples from the result. For example Figure

19 shows the result of the projection of the PARTS relation

over the domain COLOR. Project would make use of the

RTRV__REL and RTRV_DOM_INFO functions to retrieve Master

Relation information. SETSCAN and GETNEXT would be used as

in the restrict operator to scan the entire relation. The

RESULT tuples are formed using only the selected domains

from the operand relation and are then inserted using

INSERT into RESULT. The INSERT function does not allow the

insertion of duplicate tuples and will return an appropriate

error code if an attempt is made to insert a duplicate.

The project operator therefore needs no special mechanism

for eliminating duplicates as it may check for and ignore

the error code indicating a duplicate returned by INSERT.

56

PARTS RESULT = PROJECT(PARTS/(COLOR))

P# PNAME COLOR WEIGHT
PI Nut Red 12
P2 Bolt Green 17
P3 Screw Blue 17
P4 Screw Red 14
P5 Cam Blue 12
P6 Cog Red 19

Figure 19. The Project Operator

The join relational operator is a binary operator which

forms one relation by concatenating a tuple from one of the

original relations with a tuple of the other relation

whenever a given condition holds. For example Figure 20

shows the result of joining the PARTS relation and the

SUPPLIER—PARTS relation using the condition PARTS.P# =

SUPPLIER-PARTS.P # . Information about the relations and

domains of interest are retrieved as in the previous opera­

tors. Two scans will be in operation at once to build the

RESULT relation. A straight-forward implementation of this

operator would involve a complete scan of one relation for

each tuple in the other.

Much can be done to improve the implementations out­
lined above for the relational algebra operators. For
example, using temporary relations sorted on specific
domains will improve the efficiency of both the project and
join operators. No matter what type of improvements are
made, however, the implementation of relational operators
could still be based on the SETSCAN, GETNEXT and INSERT
functions.

4,4 Planned Extensions to the Current System

The design of the data base system and the current

implementation were done to allow further development of

the system without requiring extensive changes in the

current implementation. As an example, the Master relations

were designed to simplify the addition of extra domains to

existing relations and the addition of extra relations.

The needs of the relational algebra interface discussed in

Section 4.3 were considered as much as possible in the

57

P A R T S S U P P L I E R - P A R T S

s# P# QTY

SI PI 3
SI P2 2
SI P3 4
SI P4 2
SI P5 1
SI P 6 1
S2 PI 3
S2 P2 4
S3 P3 4
S3 P5 2
S4 P2 2
S4 P4 3
S4 P5 4
S5 P5 5

P# PNAME COLOR WEIGHT

PI Nut Red 12
P2 Bolt Green 17
P3 Screw Blue 17
P4 Screw Red 14
P5 Cam Blue 12
P 6 Cog Red 19

RESULT = J O I N(PARTS,SUPPLIER-PARTS,P #=P#)

P# PNAME COLOR WEIGHT P# s# QTY

PI Nut Red 12 Pi SI 3
Pi Nut Red 12 PI S2 3
P2 Bolt Green 17 P2 SI 2
P2 Bolt Green 17 P2 S2 4
P2 Bolt Green 17 P2 S4 2
P3 Screw Blue 17 P3 SI 4
P3 Screw Blue 17 P3 S3 4
P4 Screw Red 14 P4 SI 2
P4 Screw Red 14 P4 S4 3
P5 Cam Blue 12 P5 SI 1
P5 Cam Blue 12 P5 S3 2
P5 Cam Blue 12 P5 S4 4
P5 Cam Blue 12 P5 S5 5
P 6 Cog Red 19 P 6 SI 1

F i g u r e 20. T h e J o i n O p e r a t o r

current implementation so that extending the system to

include a higher level interface would be possible w i t h ­

out changing the low level interface. The following fea­

tures of the low level interface were also considered as

possible extensions in the design and implementation of the

current system. Their inclusion in the interface would

provide additional flexibility and efficiency.

Additional storage structures. One of the purposes

of the low level interface is to provide access to data

independent of the way in which it is physically stored.

This feature allows the storage structure of data to vary

as the need arises. In order that the data base may be

organized to increase the efficiency of applications it is

desirable to have a variety of storage structures. The

indexed sequential structure provides efficient access to

tuples when the key domains fall in a specified range. A

hashed structure would provide efficient access to a tuple

based on the specific value of chosen key domains. In a

storage stuucture using hashing the TID would be determined

by a computation on the key fields. This TID would then be

used to locate a specific tuple in the same manner as is

used for the indexed sequential structure. Utilizing an

existing TID scheme (the two current schemes are discussed

in Section 3.4) limits the coding changes mainly to the

SETSCAN, GETNEXT and INSERT functions because the GET,

DELETE and REPLACE functions utilize the TID to access

t uples.

Additional structures required by application programs

or higher level modules may be implemented by the data

base administrator. The Users' Manual contains guidelines

for implementing additional structures.

Directories. As discussed in Section 3.4 directories

can be used to increase the efficiency of tuple retrieval

when the search criterion is based on properties of non­

key domains. The creation of directories as separate

relations is possible with the current implementation.

Directory entries may be inserted, deleted, replaced, etc.

as are tuples in any other relation. However, a directory,

to be meaningful must reflect the contents of the relation

it modifies. This implies the maintenance of interrelation-

al information because insertions, deletions and modifica­

tions to a relation must be reflected in any directories

for the relation. One possible way to include this infor­

mation would be to add a new Master relation containing

entries for existing directories with information about

the relation and the domain for which the directory is

maintained and the location and type of the directory.

This information would be used to maintain directories and

to use them as alternate traversal paths for scanning

relations.

Variable Length D o m a i n s . The present implementation

allows only tuples containing fixed length domains. Some

applications may require domains of variable length, espe­

cially applications using graphical data. For example a

60

COMPONENT relation in a building design application may
consist of information for standard doors, windows, beams,
etc. Although tuples of this type of relation may have
many domains with a similar length, such as NAME,
MANUFACTURER, UNIT-COST, etc., the graphical information
may vary in length significantly from one component to
another. Rather than having a domain sized to accommodate
the largest amount of graphical data, a scheme for allowing
variable size tuples would eliminate wasted space.

The TID scheme used for the indexed sequential storage
structure may be adapted to handle tuples with variable
length domains. The page directory as implemented contains
the address of the first word of the tuple. In a relation
declared as having variable length tuples the first word of
a tuple would be the length of the tuple. This length
could be used when retrieving the tuple and to determine
the starting address of the next tuple on the page. The
starting address of the next tuple would be the address of
the current tuple plus its length. Deleting, inserting and
replacing tuples with variable length domains would make
use of the fact that tuples may be reorganized on a page
without changing the tuples' TID's. For example, instead
of simply marking a tuple deleted as is presently done the
page would be reorganized so that the remaining tuples on
the page would fill the space previously occupied by the
deleted tuple. This would leave all available space at the
end of the page to be used for new tuples. If replacing a

tuple involved a change in tuple size the update would be

viewed as a deletion followed by an insertion. With any

page reorganization the page directory would be updated to

include the current values of the starting addresses for

tu p l e s .

An alternate method for implementing variable length

domains could involve maintaining the variable length in­

formation in a special single-domain relation and using a

pointer in the original tuple. This pointer may then be

used to retrieve the variable length domain as necessary.

4.5 In Conclusion
The data base system designed and implemented meets

the desired objectives of allowing access to a data base

and providing the advantages of centralized control over

the data including increased data independence. Because

the storage structures of the relations are an implementa­

tion detail not visible to the user of the data base inter­

face the storage structures of relations may be changed

without affecting programs using them. This means that

structures may be implemented to maximize the efficiency

of specific applications without requiring changes in

other application programs.

The formal description of the AM functions making up

the low level interface provides detailed design specifica­

tions which may be used by both user and implementer. In

addition, by separating the implementation details from

62

the description of the AM functions the formal description
allows other implementations to be done without redesigning
the functions.

The implementation was designed to be used either

directly by application programmers or as a base on which

to build a higher level interface. It is possible for an

application programmer to make use of the implementation of

the low level interface because (1) the functions are

FORTRAN callable subroutines and (2) the relational model,

because of the tabular structure used, is not difficult to

use. The low level interface has been successfully used to

implement a higher level interface based on the relational

algebra.

63

A P P E N D I X A

T H E F O R M A L S P E C I F I C A T I O N

This appendix contains the formal specification of the

AM functions. Chapter 2 contains the description of the

specification technique and discusses the INSERT and GET

functions in detail.

BEGIN This function initializes system variables. It must
be called before issuing any other AM function calls.

Input - none
Output - none
Effect - DBINIT true
Exceptions - IO_ERROR = t y p e O , typel

END This function terminates a session.

Input - none
Output - none
Effect - DBINIT <c- false
Exceptions - DBINIT = false

CREATE This function is used to define new relations.

Input - RELINF = record of
RELATION_NAME
NUM_DOMAINS The order of the relation
MAX_TUPLES Number of tuples expected
TUPLEJLENGTH
DOMAIN_INFO array of DOM_DESC

DOM DESC = record of
DOM_NAME
DOM__TYPE Character or numeric
DOM_KEY Primary key information
DOMJLENGTH
DOM_LOC Location of domain in tuple

Output - RID
Effect - VAL_RID(RID) = true

RTRV_DOM_INFO(RID) = DOMAIN_INFO, DOMAIN_ID array

65

of DID, where DOMAIN_ID is the array of
domain identifiers corresponding to the d o m ­
ains of the relation. The domain identifiers
returned by RTRV_DOM__INFO are assigned by the
system.

RTRV_REL_INFO(RID) = REL_I N F O , where REL_INFO con­
tains the same information as RELINF exclud­
ing the domain information, DOM_DESC.

NUM_REL <- NUM_REL + 1
3 i 3 1 < i < NUMREL and RELID(i) = RID and '

RELNAME(i) = RELATION_NAME

Exceptions - DBINIT = false
NUMREL = MAX_NUM_REL
D i 3 1 1 i < NUMREL and RELATION_NAME = RELNAME(i)
NUMJ30MAINS MAX_NUM__DOMA INS
CHECK_SPACE = false
TUPLE_LENGTH > MAX JTUP_LENGTH
VAL_DOM TYPE(DOMJTYPE(i)) = false
DOM_KEYli) = 0 V i 3 1 < i < NUM_DOMAINS
DOM KEY(i) = DOM K E Y (j) f 0, 1 < i ,j < NUM_DOMAINS,

i ¥ j

NUMDOM
Y DOM LENGTH(i) ^ TUPLE LENGTH
i=l “

IO_ERROR = typeO, typel, type2

DESTROY This function eliminates information about a rel­
ation from the MASTER relations.

Input - RID

same relation has no effect, where M indicates
any sequence of A M functions. '•>

Exceptions - DBINIT = false
VAL_RID(RID) = false
IO_ERROR = typeO, typel, type2

INSERT This function is used to insert tuples into existing
relations

Input - RID
TUPLE

Output - TID
Effect - VAL_TID(RID,T I D) = true

GET(RID,TID) = TUPLE, where TID =

Exceptions - DBINIT = false
VAL_RID(RID) = false
BLANK_PK(RID,TUPLE) = true
DUP_PK(RID,TUPLE) = true
10 ERROR = typeO, typel, type2

DESTROY(RID) for the

FINDTID(RID,TUPLE)

66

DELETE This function deletes the specified tuple from the
specified relation.

Input - RID
TID

Output - none r i
Effect - INSERT(RID,TUPLE) { (DELETE(RID,FINDTID(RID,

TUP L E)) has no net effect
Exceptions - DBINIT = false

VA L _TID(RID,T I D) = false *
IO_ERROR = t y p e O , typel, type2

REPLACE This function is used to replace an existing tuple
with another. Note that REPLACE will not allow a
change in the primary key domain.

Input - RID
, TID

TUPLE
Output - none
Effect - GET(RID,FINDTID(RID,TUPLE)) = TUPLE
Exceptions - DBINIT = false

VAL_RID(RID) = false
VAL_TID(RID,TID) = false
CHANGE_PK(RID,TUPLE) = true
IO_ERROR = typeO, typel, type2

GET This function is used to retrieve a tuple from a
r e l a t i o n .

Input - RID
TID

Output - TUPLE, where FINDTID(RID,TUPLE) = TID within
the same session.

Effect - none
Exceptions - DBINIT = false

VAL_RID(RID) = false
VAL_TID(RID,TID) = false
IO_ERROR = t y p e O , typel

SETSCAN This function is used to initiate a traversal of a
relation. Using information about the relation and the
search criteria a traversal path is chosen. An initial
traversal code and the TID's of the first and last
tuples on the chosen path are returned.

Input - RID
DIDl
RELATION = , < , > , < , > , ^
VALUE or DID2 Comparison value of domain iden­

tifier or domain to be used in comparison

Output - TC Initial traversal code
FIRST_TID
LAST_TID, where TC indicates a linear ordering of

all tuples of the relation and if there exist
tuples in the relation satisfying the search
criteria then they lie between the tuples
indicated by FIRST_TID and LAST_TID inclusive

Effect - none
Exceptions - DBINIT = false

VAL_RID(RID) = false
VAL_DID(RID,DID1) = false
VAL_REL(RELATION) = false
VALJDID (RID.,DID2) = false
IO_ERROR = t y p e O , typel

GETNEXT This function is used to traverse a relation. A
tuple of a relation is retrieved and the TID of the
next tuple according to the traversal scheme is deter­
mined. The traversal code is updated if necessary and
retur n e d .

Input - RID
TID
TC

Output - TUPLE
NEXT_TID
NEXT_TC where TUPLE is the tuple with identifier

TID, NEXT_TID is the tuple identifier of the
tuple following TUPLE in the linear ordering
indicated by TC and NEXT_TC indicates the
same linear ordering of the relation as T C .

Effect - none
Exceptions - DBINIT = false

VAL__RID (RID) = false
VALJTID(RID,TID) = false
VAL_ T C (R I D ,T C) = false
IO_ERROR = typeO, typel

FINDTID This function is used to retrieve the TID of a
tuple when the value of the primary key is known.

Input - RID
TUPLE(PK) This is the tuple with at least the

value of the primary key. The values of the
other domains are ignored.

Output - TID where GET(RID,TID)(PK) = TUPLE(PK)
Effect - none
Exceptions - DBINIT = false

VAL_RID(RID) = false
BLANK_PK(RID,TUPLE(PK)) = true
TUPLE (PK) t* T(PK) V tuples T in the relation RID
IO_ERROR = typeO, typel

68

RTRV_REL_INFO This function returns the information con­
tained in the Relation Information Master relation for
a given relation.

Input - RID
Output - RELINFO where RTRV_REL_INFO(CREATE(...RELINFO

...)) = RELINFO
Effect - none
Exceptions - VAL_RID(RID) = false

IO_ERROR = typeO, typel '
DBINIT = false

RTRV_DOM__INFO This function returns the domain information
for all the domains in the given relation.

Input - RID
Output - DOMAIN_INFO

DOMAIN_ID where RTRV_DOM_INFO(CREATE(...DOMAIN_
INFO...)) = DOMAIN_INFO, DOMAIN_ID

Effect - none
Exceptions - DBINIT = false

VAL_RID(RID) = false
IO_ERROR = typeO/ typel

RTRV_REL This function returns a subset of the Relation
Information Master relation. It returns the R I D 1s and
relation names of all the relations.

Input - none
Output - RELINDX array of RINDX

RINDX = record RELATION NAME
RID

where C R E A T E (...R E L N A M E ...) = RINDX.RID(i) for
some i, 1 < i < N U M R E L

Effect - none
Exceptions - DBINIT = false

IO_ERROR = t y p e O , typel

The following functions are necessary for the complete

description of the data base interface, but are not accessi­

ble by the user of the interface. They are mainly used by

the other functions to check for exceptions. Their function­

al specification is implicit in the previous specifications.

For reference their input and output types are listed below.

VAL__RID
Input - RID
Output - boolean

VAL_TID
Input - RID

TID
Output - boolean

VAL_DOM_TYPE
Input - DOMJTYPE
Output - boolean

CHECK_SPACE
Input - TUPLE_LENGTH

MAX_TUPLES
Output - boolean

BLANK_PK
Input - RID

TUPLE
Output - boolean

DUP_PK
’ Input - RID

TUPLE
Output - boolean

CHANGE_PK
Input - RID

TUPLE
Output - boolean

VAL_REL
Input - RELATION
Output - boolean

VAL_TC
Input - RID

TC
Output - boolean

The following are global variables

cation.

DBINIT boolean
MAX_NUM_REL integer
MAX__NUM_DOMAINS integer
MAX_TUP_LENGTH integer
NUM_REL integer
IO_ERROR (typeO, typel, type2"l

The Users' Manual consists of two parts. The first

part contains detailed information about the data base

and the subroutines making up the data base system for

the use of the data base administrator. The second part

is directed to the user of the A M functions and contains

only the information necessary to use the system. Except

for explanatory comments in the code itself this Manual

is the documentation for the current implementation.

B.l Users' Manual Part I

This part of the U s e r s’ Manual contains a description

of the system variables and how to initialize them, a

description of each subroutine in the system and guidelines

for creating new data bases and adding additional storage

structures.

B.l.2 System Variables

The system variables are organized into labeled COMMON

areas. Following is a description of the variables con­

tained in each COMMON area. Array dimensions are given en­

closed in parentheses following the array name. Variable

names are used for array dimensions where appropriate.

A P P E N D I X B

U S E R S ' M A N U A L .

71
SYS1 COMMON (all INTEGER*2 variables unless noted)

WCODE - Write code for I0SVC1
RCODE - Read code for I0SVC1
SYSLU - System logical unit, used to read and write

Master relations
FDBBLK - First page (physical record) used for

user relations
LDBBLK - Last page used for user relations
FDOMBK - First page used for Domain Information

relation
LDOMBK - Last page used for Domain Information

relation
DBINIT - (Logical variable) Data base initializa-

. tion flag, initialized to false, set to
true in BEGIN

MAXREL - Maximum number of relations allowed
MAXDOM - Maximum number of domains allowed per

relation
MAXTL - Maximum tuple length allowed
NRIDXE - Number of Relation Index relation domains
NRINFE - Number of Relation Data relation domains
NDOMSE - Number of Domain Information relation dom­

ains
NRXBLK - Number of pages needed for Relation Index

relation
NRIBLK - Number of pages needed for Relation Data

relation
NDIBLK - Number of pages needed for Domain Informa­

tion relation

SYS2 COMMON (all INTEGER*2 variables)

NUMREL - Actual number of relations
RELINF(NRINFE,MAXREL) - Area for in-core copy

of Relation Data relation
The following are constants used to reference the
domains of the Relation Data relation which are
stored in RELINF. For example, R E L I N F (STADDR,RID)
is the first physical record in the relation RID.
STADDR - First page of relation
LSTBLK - Last page assigned to relation
TUPLTH - Tuple length
NDOM - Number of domains
STRUCT - Storage structure

For the unordered sequential file structure:
LSTTID - Last used tuple identifier

For the indexed sequential file structure:
KLNTH - Key length
NXTOV - Next available overflow page
INDXl - First page of first level index
INDX2 - First page of second level index

72

BUF COMMON (all INTEGER*2 variables unless noted)

N B U F

BRID(NBUF)

BBLKNO(NBUF)

BLU(NBUF)

B U F F E R (64,NBUF)

- Number of buffers
- RID of relation to which page

in buffer belongs
- Relative page number in rela­

tion of page in buffer
- Logical unit assigned to the

data base used when doing I/O
for this buffer

- (REAL array) Each buffer holds
one page of a user relation

SAV COMMON (all INTEGER*2 variables!

SRELIX(NRXBLK*128) - Save area for Relation Index
relation

- Save area for Domain Infor­
mation relation pages

- Work area for saving Domain
Information relation pages

- Page number of Domain Informa­
tion page in associated save
area

- Index of next available slot
in SRELD

S R E L D (128,3)

S D O M (128)

S D O M B K (3)

SDN

SAV2 COMMON (INTEGER*2 variable)

SREL(NRIBLK*128) - Save area for Relation Data
relation

SAV3 COMMON (REAL variable)

S B U F (64) - Save area for user relation page

B.l.2 Initializing System Variables

Most system variables are initialized by the DATA

statements contained in the BLOCK DATA subroutine INITD.

To change any of the system variables the initial value

should be changed in the INITD subroutine. Because FORTRAN

does not allow dynamically declared array dimensions chang­

ing some variables also involves changing any array dimen­

sions dependent on them, for example if MAXREL is changed

the dimension for RELINF(NRINFE,MAXREL) must also be

changed.

The subroutine BEGIN initializes the NUMREL and

RELINF variables of the SYS2 COMMON area by reading the

Relation Data relation from the data base.

B.1.3 The Subroutines

The description of each subroutine contains the COMMON

areas required, the number of lines of code (excluding

comments), the compiled size in bytes, a list of called

subroutines and additional comments on local variables

and computations.

BEGIN
COMMON areas - SYS1, SYS2, BUF
Lines of code - 3 8
Compiled size - 512
Called subroutines - I0SVC1

ENDIT
COMMON areas - SYS1
Lines of code - 14
Compiled size - 130

CREATE
COMMON areas - SYS1, S Y S 2 / SAV, SAV2
Lines of code - 273
Compiled size - 49 20
Called subroutines - GETSPC, IOSVC1, SAVREL,

W R T R E L , DMPMR

DSTROY
COMMON areas - SYS1, S Y S 2, SAV, SAV2
Lines of code - 182
Compiled size - 43 26
Called subroutines - V A L R I D , FRESPC, SAVREL,

W R T R E L , D M P M R , 10SVC1

RTR
COMMON areas - SYS1, SYS2
Lines of code - 53
Compiled size - 1336
Called subroutines - IOSVC1

COMMON areas - SYS1, SYS2
Lines of code - 36
Compiled size - 360
Called subroutines - VALRID

RTRIN

RTDOM
COMMON areas - SYSl, SYS2
Lines of code - 62
Compiled size - 1012
Called subroutines - VALRID, IOSVC1

GET
COMMON areas - SYSl,
Lines of code - 67
Compiled size - 1380
Called subroutines -

DELETE
COMMON areas - SYSl,
Lines of code - 95
Compiled size - 2034
Called subroutines -

SAVB U F , W R T B U F ,
DMPBUF

S Y S 2 , BUF

VALRID, VALTID, LOCATE

S Y S 2 , BUF

VALRID, VALTID, LOCATE
SAVREL, W R T R E L , IOSVC1

REPLACE
COMMON areas - SYSl, S Y S 2 , BUF
Lines of code - 84
Compiled size - 1798
Called subroutines - VALRID, VALTID, LOCATE

PKFNDR, SAVBUF, WRTBUF

INSERT
COMMON areas - SYSl, S Y S 2 , BUF
Lines of code - 255
Compiled size - 4970
Called subroutines - VALRID, PKFNDR, LOCATE

SAVBUF, WRTBUF, SAVREL, WRTREL, IOSVC1
DMPBUF, SRCHIX

SETSCN
COMMON areas - SYSl, SYS2
Lines of code - 46
Compiled size - 520
Called subroutines - VALRID, GET, SRCHIX

GETNXT
COMMON areas - SYSl, S Y S 2 , BUF
Lines of code - 129
Compiled size - 2532
Called subroutines - VALRID, GET, LOCATE

75

FNDTID
COMMON areas - SYS1, SYS2
Lines of code - 68
Compiled size - 1418
Called subroutines - PKFNDR, SETSCAN, GETNEXT

VALRID
COMMON areas - SYS2
Lines of code - 9 .
Compiled size - 138
Comments - The criterion for a valid relation

identifier is a positive value for the
starting page address.

VALTID
COMMON areas - SYS2
Lines of code - 18
Compiled size - 338
Comments - A TID is valid if the relative page number

is within the range of the pages allocated to
the relation and the offset is less than or equal
to the maximum possible offset for the relation.

LOCATE
COMMON areas - SYS1, S Y S 2 , BUF
Lines of code - 40
Compiled size - 552
Called subroutines - CHKBUF, GETBUF
Comments - After LOCATE is called the user relation

page specified is in the buffer indicated by
the output buffer number.

PKFNDR
COMMON areas - SYS1, SYS2
Lines of code - 66
Compiled size - 1412
Called subroutines - IOSVCl
Comments - PKFNDR is used to find the location of

the primary key in a tuple of a specified
r e l ation.

SRCHIX
COMMON areas - SYS1, SYS2
Lines of code - 72
Compiled size - 149 2
Comments - SRCHIX is called by INSERT and SETSCN to

search the index of a relation stored using the
indexed sequential structure. SRCHIX determines
the page or range of pages where a specific key
value may be found.

76

GETSPC
COMMON areas - SYSl
Lines of code - 48
Compiled size - 541
Comments - GETSPC scans the list of free blocks of

pages until a block of sufficient size for
a new relation is found.

FRESPC
COMMON areas - SYSl
Lines of code - 59
Compiled size - 754
Comments - This subroutine returns the pages which

were allocated to a destroyed relation to the
list of free pages.

GETBUF
COMMON areas - SYSl, S Y S 2 , BUF
Lines of code - 22
Compiled size - 256
Comments - GETBUF chooses the buffer to be over­

written by a new user relation page.

CHKBUF
COMMON areas - BUF
Lines of code - 24
Compiled size - 510
Comments - CHKBUF determines if a desired user

relation page is already in a buffer

S A V B U F
COMMON areas - SAV3
Lines of code - 13
Compiled size - 164
Comments - This subroutine saves the indicated

buffer in the save area.

W R T B U F

COMMON areas - SYSl, S Y S 2 , BUF, SAV3
Lines of code - 3 4
Compiled size - 124
Called subroutines - DMPBUF
Comments - This subroutine writes the indicated

buffer to the data base.

SAVREL
COMMON areas - SYSl, S Y S 2 , SAV2
Lines of code - 25
Compiled size - 240
Comments - SAVREL saves the Relation Data relation

in the save area.

W R T R E L

COMMON areas - SYS1, S Y S 2 , SAV2
Lines of code - 29
Compiled size - 294
Called subroutines - DMPMR, I0SVC1
Comments - This subroutine writes an updated version

of the Relation Data relation into the data base.

DMPBUF
COMMON areas - SAV3
Lines of code - 6
Compiled size - 110
Comments - DMPBUF dumps a user relation page to an

external device

DMPMR
Lines of code - 6
Compiled size - 168
Comments - DMPMR dumps a Master relation block to

an external device.

IOSVC1
Lines of code - 29 (assembly language)
Compiled size 108
Comments - IOSVC1 issues the I/O supervisor call,

SVC1 .
COPY

COMMON areas - SYS1, SYS2
Lines of code - 316
Compiled size - 6792
Called subroutines - PK F N D R7 IOSVC1
Comments - Input parameters to COPY are the mode

(input or o u t p u t) , the RID and the logical
unit of the external device to be used.

I N I T

Lines of code - 86
Compiled size - 1516
Called subroutines - IOSVC1
Comments - INIT initializes all Relation Index and

Relation Data pages and sets the beginning of
the free list for user relation pages.

WRTBLK
Lines of code - 10
Compiled size - 148
Called subroutines - IOSVC1

To create a new data base the following four things

should be done:

(1) The size of the data base must be determined. The

values for the maximum number of relations and the maximum

number of domains per relation are used to compute the

number of pages necessary for the Master relations according

to the following computations:

NRXBLK = (NRIDXE * MAXREL) / 128 + 1
NRIBLK = (NRINFE * MAXREL) / 128 + 1
NDIBLK = (MAXREL * MAXDOM)/ (128 / NDOMSE) + 1
Total pages for MASTER relations =

NRXBLK + NRIBLK + NDIBLK

The number of pages to be allowed for the user relations

must be decided based on the anticipated use of the data

b a s e .

(2) The system variable array dimensions and values

must be changed to agree with the sizes chosen in step 1
in the subroutines making up the AM function package and

in the utility functions.

(3) The data base file must be allocated using the

DOS operating system.

(4) The data base file must be initialized using the

utility function INIT.

B.l . 5 Guidelines For Adding a New Storage Structure

Adding a new storage structure, although involving

few changes to existing code, does require major additions

to several of the subroutines in the AM function package

and in the utility function COPY. The following are

B . 1 . 4 C r e a t i n g a N e w D a t a B a s e F i l e

general comments on what decisions need to be made and

what subroutines are affected by a storage structure

addition. Specific details depend, of course, on the

structure to be added.

(1) Decide on the TID to physical location mapping

scheme to be used. Using an existing scheme reduces the

number of additions necessary as the subroutines utilizing

TID's to reference tuples, such as GET, DELETE and REPLACE,

will need few changes.

(2) Determine the traversal schemes to be associated

with the new storage structure.

(3) Determine the need for new Master relation entries.

Additional domains may be added to any of the Master rela­

tions as necessary to record information needed by the

AM functions. If the addition of domains causes a change

in the number of physical records required to store the

Master relations a new data base file must be created.

(4) To the CREATE function add the algorithm for

computing the amount of space required by a user relation

stored using the new structure and the code for initializing

any new Master relation entries.

(5) Add the code necessary to process the new storage

structure to the INSERT, SETSCAN, GETNEXT, FINDTID and COPY

functions. These functions depend directly on the storage

structure of a relation and will require the most changes.

(6) Add the necessary code to GET, DELETE and REPLACE.

These functions will require major changes only if a new

TID scheme is used.

79

This section of the Users' Manual contains the infor­

mation necessary to use the current implementation of the

data base system. This information does not replace the

formal specification which describes the relationships

between the different AM functions and what the functions

do, but contains only the implementation specific details

necessary to use the system. The first section contains

the calling sequences of all user callable subroutines and

the second section is a complete listing of the exception

c o d e s .

B.2.1 The AM functions

The input and output parameters are described for each

user callable AM function. The data types of the variables

are either half word integer (I) or real (R). Dimensions

for arrays are enclosed in parentheses following the array

name. The system variables described in Section B.1.2 are

used where appropriate. For each variable the name and type

are given followed by any additional comments necessary to

explain the restrictions or use of the variable. The

following four variables are used for many of the calls and

are explained only here.

TID, I, Tuple identifier
RID, I, Relation identifier
STATUS, I, Status code returned by a function

STATUS = 0 implies correct termination
STATUS j- 0 implies error termination. The specific
errors are listed in Section B.2.2.

80

B . 2 U s e r s 1 M a n u a l P a r t II

TUPLE(MAXTL), R, Relation tuple. When used as an input
variable only the declared length of the tuple is
used- When used as an output variable the tuple
information is left justified and any unused
portion is zero filled.

81

BEGIN
Input - none
Output - STATUS

END IT
Input - none
Output - STATUS

CREATE
Input - R E L N A M (3) , I, Relation name, may be any

alphanumeric characters.
NUMDOM, I, Number of domains where 1 < NUMDOM ̂

MAXDOM.
L T H , I, Tuple length where 1 ^ LTH ^ MAXTL
DOMINF(NDOMSE,M A X D O M) , I, where

D O M I N F (1,i) - RID
D O M I N F (2-4,i) - Domain name
D O M I N F (5,i) - 0 if domain is not part of

primary key
-1 if domain is a single domain

primary key
1 , 2, ... if domain is part of

of multiple domain key and 1 ,
2 , etc. indicates position in
key

- Starting word of tuple in relation
- Ending word of tuple in relation
- 0 if domain is alphanumeric

1 if domain is real
MAXTUP, I, Maximum number of tuples anticipated
STORST, I, Code for desired storage structure

0 - system default (unordered sequential)
1 - unordered sequential
2 - indexed sequential

Output - RID

DSTROY
Input - RID
Output - STATUS

D O M I N F (6 ,i)
D O M I N F (7,i)
D O M I N F (8 ,i)

RTR
Input - none
Output - NREL, I, Number of relations

RIDS(MAXREL), I, R I D 's of relations
I N D E X (3,MAXREL), I, Names of relations where

RID(i) is the RID of the relation with the
name in I N D E X (1-3,I)

82

R T R I N

Input - RID
Output - RELIN(NRINFE), I, Relation information where

RELIN(l) - Location of first page of relation
R E L I N (2) - Storage structure
R E L I N (3) - Location of last page of relation
R E L I N (4) - Tuple length
R E L I N (5) - Number of domains

For unordered sequential structure
R E L I N (6) - Last used tuple identifier

For indexed sequential structure
R E L I N (6) - Next available overflow page
R E L I N (7) - First page of first level index
R E L I N (8) - First page of second level index
R E L I N (9) - Key length

STATUS

RTDOM
Input - RID
Output - NUMDOM, I, Number of domains

DOMINF(NDOMSE,MAXDOM) , I, where for each domain i,
D O M I N F (1-8, i) - as in CREATE
D O M I N F (9,i) - Domain identifier (DID)

STATUS

GET
Input - RID

TID
Output - TUPLE

STATUS

REPLAC
Input - RID

TID
TUPLE, Complete tuple to replace existing one

Output - STATUS

DELETE
Input - RID

TID
Output - STATUS

INSRT
Input - RID

TUPLE
Output - TID

STATUS

SETSCN
Input - RID

TYPE, I, 1
7

- = , 2 - < , 3 , 4 - < , 5 - > , 6
- all

- -4

83

DID1, I, DID of domain of interest where l ^ D I D l ^
NUMDOM or -1 indicating the primary key

D I D 2 , I, DID of second domain of interest where
1 DID2 ^ NUMDOM or 0 if VAL is used

VAL{32), R, Value for comparison or unused if DID2
> 0

Output - FRSTID, I, First tuple identifier on traversal
path

LASTID, I, Last tuple identifier on traversal path
TC, I, Code for chosen traversal path
STATUS ■

FNDTID
Input - RID

TUPLE, Only primary key domains are used
Output - TID

STATUS

GETNXT
Input - RID

TID, I, The FRSTID returned by SETSCN or NXTTID
returned by a previous call to GETNXT

TC, I, TC returned by SETSCN or NXTTC returned by
a previous call to GETNXT

Output - TUPLE
NXTTID, I, Tuple identifier of next tuple on

traversal path
NXTTC, I, Traversal code, updated if necessary
STATUS

B.2.2 Exception Codes

The following is a list of all exception codes returned

by the AM functions through the STATUS variable. The value

of STATUS should always be checked before using the values

of other output variables. The exception code is a five

digit integer. The first two digits indicate the subroutine

and the final three digits indicate the specific error.

BEGIN 00
060, 092 - Type 0 I/O error
032 - Type 1 I/O error

END 01
000 - DBINIT = false

CREATE 02
000 - DBINIT = false

100 - NUMREL = MAXREL
101 - Relation name already exists
10 2 - NUMDOM > MAXDOM
103 - Insufficient space
104 - Tuple length greater than maximum allowed
105 - Invalid storage structure
10 6 - Invalid domain type
107 - No domain is primary key
108 - Two domains have same position in primary key
109 - Sum of domain lengths is greater than specified

tuple length
060, 092 - Type 0 I/O error
0 32 - Type 1 I/O error
13 2 - Type 2 I/O error

DSTROY 03
000 - DBINIT = false
001 - Invalid RID
060, 092 - Type 0 I/O error
032 - Type 1 I/O error
132 - Type 2 I/O error

INSERT 0 4
000 - DBINIT = false
001 - Invalid RID
100 - Blanks in primary key
101 - Duplicate primary key
102 - Relation area overflow
060, 092 - Type 0 I/O error
032 - Type 1 I/O error
132 - Type 2 I/O error

DELETE 05
000 - DBINIT = false
001 - Invalid RID
002 - Invalid TID
003 - Deleted TID
0 60, 09 2 - Type 0 I/O error
032 - Type 1 I/O error
132 - Type 2 I/O error

REPLAC 0 6
000 - DBINIT = false
001 - Invalid RID
002 - Invalid TID
003 - Deleted TID
10 0 - Change in primary key domain
0 60, 09 2 - Type 0 I/O error
032 - Type 1 I/O error
132 - Type 2 I/O error

GET 07
000 - DBINIT = false
001 - Invalid RID
002 - Invalid TID
003 - Deleted TID
060, 09 2 - Type 0 I/O error
032 - Type 1 I/O error

SETSCN 08
000 - DBINIT = false
101 - Invalid RID
100 - Invalid DIDl
101 - Invalid relation code
102 - Invalid DID2
060, 092 - Type 0 I/O error
032 - Type 1 I/O error

GETNXT 09
000 - DBINIT = false
001 - Invalid RID
002 - Invalid TID ,
003 - Deleted TID
10 0 - Invalid TC
060, 092 - Type 0 I/O error
03 2 - Type 1 I/O error

FNDTID 14
000 - DBINIT = false
001 - Invalid RID
100 - Blanks in primary key field
101 - Tuple not found
0 60, 09 2 - Type 0 I/O error
032 - Type 1 I/O error

RTRIN 10
000 - DBINIT = false
001 - Invalid RID
060, 092 - Type 0 I/O error
03 2 - Type 1 I/O error

RTDOM 11
000 - DBINIT = false
001 - Invalid RID
060, 092 - Type 0 I/O error
032 - Type 1 I/O error

RTR 12
000 - DBINIT = false
001 - Invalid RID
060, 092 - Type 0 I/O error
032 - Type 1 I/O error

R E F E R E N C E S

Astrahan, M. and Lorie, R . , "Sequel-XRM: a relational sys­
tem," Proceedings ACM Pacific 75 Regional Conference,
April 1975, ACM, New York, 1975, pp. 34-38.

Bjorner, D.; Codd, E . ; Deckert, K. and Traiger, I., "The
GAMMA Zero n-ary relational data base interface: Spec
ification of objects and operators, "IBM Research
Report RJ 1 2 0 0 , San Jose, California, April 1973.

Chamberlin, D . , "Relational data-base management systems,"
ACM Computing Surveys 8 , 1 (March 1976), PP- 43-66.

Codd, E., "A relational model of data for large shared data
banks," Communications of the ACM 13, 6 (June 1970),
pp. 377-T5T:

Cyarnik, B.; Schuster, S. and Tsichritzis, D. "ZETA: A rel­
ational data base management system," Proceedings ACM
Pacific 75 Regional C o n ference, April 197 5, ACM, New
York, 1975, pp. 21-25.

Gregory, S., "Application of the Relational Data Base Model
to Computer-Aided Building D e s i g n " , Phd Disertation
(to be p u b lished), University of Utah, Department of
Computer Science, 1977.

Guttag, J.; Horowitz, E. and Musser, D., "The design of data
type specifications," 2nd Software Engineering Confer­
ence, October, 1976, San Francisco, California, pp. 214
220.

Held, G., "Storage structures for relational data base m a n ­
agement systems," Memorandum No. ERL-M53 3 , University
of California, Berkeley, California, 1975.

Knuth, D . , The Art of Computer Programming, Vol. 3, Addison-
Wesley Pub. Co. , Read i n g , MassT"^ 1968.

Liskov, B. and Zilles, S., "Specification techniques for
data abstractions," IEEE Transactions on Software
Engineering, SE-1, 1 (March 1975)/ pp. 7-19.

London, K . , Techniques for Direct A c c e s s , Auerback,
Philadelphia, Pa., 1973.

87

Lorie, R. and S y m o n d s , A., "A relational access method
for interactive applications," Courant Computer
Science Symposia, 6 : Data Base Systems, Prentice-
H a l l , New York, 1972, pp. 99-124.

Lorie, R. , "XRM - an extended (n-ary) relational memory,"
IBM Scientific Center Report G 3 2 0 - 2 0 9 6 , Cambridge,
Mass., January 19 74.

McLeod, D. and Meldman, M . , "RISS: a generalized mini ■
computer relational data base management syst e m , "
Proceedings AFIPS National Computer C o n ference, 44,
May 1975, AFIPS Press, Montvale, N. J . , 1975, pp. 397­
402.

Parnas, D., "A technique for software module specification
with examples," Communications of the ACM, 15, 5 (May
1972), pp. 330-3TTT

Stonebraker, M . ; Wong, E.; K r e p s , P. and Held, G., "The
design and implementation of INGRES," Memorandum
No. E R L - M 5 7 7 , University of California, Berkeley,
C a l i f o r n i a , 1976.

