

CUG 1995 Fall

 Proceedings

121

Binary-Swap and Shear-Warp

Volume Renderer on the T3D

Roy Troutman

, National Energy Research Supercomputer Center,

Livermore, California, and

Chuck Hansen, Mike Krogh, James

Painter,

and

 Guillaume Colin de Verdiere

, Advanced Computing

Lab, Los Alamos National Lab, Los Alamos, New Mexico

ABSTRACT:

Large parallel machines give today’s scientists the ability to compute very large

simulations which may generate equally large data. Not only does having visualization tools on

the parallel system allow the scientist to take advantage of the large memory to visualize the

data, the processing power allows interactive manipulation of visualization parameters.

We will describe a volume renderer on the T3D which allows us to take advantage of the

capabilities of the Shear-Warp renderer and the Binary-Swap compositing algorithm to produce

an image in sub-second times, several seconds faster than other techniques. An interactive inter-

face using AVS through a FDDI connection is described.

Introduction and Background

Many of the scientists working in a supercomputing environ-

ment are accustomed to performing their visualization tasks

using postprocessing. The data is generated on the large

systems, downloaded to a high end workstation and assimilated

with one or more of a large variety of visualization packages.

Figure 1 demonstrates an obvious problem with this paradigm.

Many of the proposals requesting time on the MP systems

appear to be more interested in the large memory rather than the

computational power. Users are talking about adding more

dimensions and scaling their simulations. This doesn’t increase

the resulting data by a few multiples, this increases the data size

by several orders of magnitude. One possible solution is to

provide visualization tools directly on the MP platform.

Ideally, the responsibility of creating and maintaining a

parallel visualization system would fall on third party vendors.

Unfortunately, because of the small numbers of MP systems

sold, there isn’t a great deal of market for this software. Hard-

ware vendors havetaken up some of the responsibility, but

usually can’t afford to invest in creating a complete visualiza-

tion environment. CRI offers a very efficient polygon renderer

and ray tracer in their CAT product, but this system currently

does not support transparency [2]. AVS is a complete solution

which can be purchased for the MPP front end, but parallel

modules are currently not an option. In many cases, special

purpose software is written for a particular problem and a partic-

ular platform [1].

It is our goal to construct a set of visualization utilities which

allow us to take advantage of the unique features and problems

of the MP system. This paper will concentrate on volume

rendering. It is our goal to create a renderer which can scale to

use a large portion of the MP system while still allowing the user

to explore their data with an interactive component. It is also

highly desirable to create a portable solution.

In this paper we will discuss a parallel volume renderer and

enhancements needed to help us approach the previously

mentioned goal. We will start by discussing the renderer which

served as the foundation. We will then discuss enhancements

T3D Meiko SMP Server Desk
0

2000

4000

6000

8000

10000

12000

14000

16000

T3D Meiko SMP Server Desk

M
B

y
te

s

V i z

Tools

P a r a l l e l

Systems

Figure 1: Memory comparison for machines at LLNL. SMP is 12
PE system, Server is a 128 MB machine and Desk is a 96 MB
desktop.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276285827?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

122

CUG 1995 Fall

 Proceedings

made to the renderer. This will be followed by timing results of

the rendering components.

Volume Renderer

The renderer that served as a foundation for this project was

the Binary-Swap renderer of [4] and [8]. This renderer consists

of a master process which transmits a color transfer function and

a transformation to a set of slaves. The master then waits to

receive an image to be sent to the console or a file. The slaves

have four different stages as shown in figure 2. The setup stage

receives the transfer function and transformation. The rendering

phase renders the distributed data into several distinct images.

The compositing phase combines the image into a single image

which is also distributed among the processors. The collection

phase then collects the distributed image into a single location

and transmits the results back to the master.

The Binary-Swap renderer solves the issue of portability by

thinking of the slaves as a heterogeneous collection of proces-

sors. Communication is done through PVM, which runs on

virtually any UNIX platform. Scaleability was achieved in [4] by

making only minor modifications to the initial code. Interac-

tivity is difficult to determine. If a user can control the renderer

in an event driven dynamic fashion, it can be said that the

renderer is interactive. However, if the time between the users

change and the displayed results is too long, the user looses the

feeling of control over the 3D object. Higher speeds will actually

enhance the feeling of looking at an object with depth. We set

our interactivity goal at being able to render a reasonable sized

image (256

2

 to 512

2

) in less than 1 second, which is at least 2

seconds shorted than the 32 processor cases of [4] and [8].

Hardware

The environment that we are using at the National Energy

Research Supercomputer Center (NERSC) is a single cabinet

configuration with 3 YMP processors acting as a front end for a

256 PE T3D. Each PE has 8 MW (64MB) of memory. There are

2 I/O gateways, 2 I/O processing units and no SSD. The oper-

ating system on the YMP is version 8.0.3.1 of UNICOS and the

Alphas on the MPP side are running UNICOS MAX version

1.2.0.5.

Master Slave

Transformation
and Transfer Func

Receive and
Display

Setup

Render

Composite

Collect and Send

Figure 2: Phases of the Binary-Swap volume renderer.

NERSC imposes additional limitations to ensure efficient use

of the T3D. A 32 processor maximum is set for interactive jobs.

Obtaining the full machine can only be done through the batch

system.

The code was compiled with version 1.0.3.3 of the C++

compiler. The strictly C code was compiled with standard C

version 4.0.3.16. The version of PVM on the Cray was 3.3.4 or

Cray version 2.1.1.

Some of the tests were run with the master process running on

an SGI Onyx with a 90 MHz R8000 processor. Although the

T3D has both a HIPPI and a FDDI connection, the Onyx only

had the FDDI installed. Code compiled on the Onyx was

compiled in 32 bit mode and linked with version 3.3.8 of the

ORNL PVM library [7].

Renderer Optimization

This section will discuss the various modifications that were

made to the Binary-Swap renderer to enable us to approach some

of our goals. Our distributed algorithms is designed to have a

master process control a collection of slaves on some homoge-

neous collection of processors. The slave does not change

regardless of whether the program is an interactive, command

line or batch oriented. Since most of the interesting work occurs

in the slave, we will concentrate on the enhancements made to

this code. Displaying the image is simply a matter of writing the

received data to a file or passing the image off to AVS.

Setup Phase

Thinking of our collection of slaves as a large set of homoge-

neous processors within a single system would imply a different

paradigm for broadcasting the transformation through the slaves.

An MP system such as the T3D has a high speed connection

between processors. The message should be sent to a single

processor and then broadcasted through this high speed network.

Sending such a message to PE 0 and broadcasting is the recom-

mended method in [6] and was covered in [4]. Using this method

increases the scaleability of our program.

During the setup phase, the original code waited for a transfer

function and a transformation before the rendering phase was

initiated. Since a new transfer function may imply having to

reset a number of parameters associated with shading, the setup

phase was changed to allow PE 0 to wait for either a transforma-

tion, a transfer function, a transformation and a transfer function,

or a message indicating the master is finished. In essence, this

makes the setup phase an event loop reacting to input from the

master.

A problem with the setup phase was encountered while

running the renderer with an interactive master process. When

the master receives an image from the slaves, it displays the

results and waits for the user to change something before

signaling the slaves to render another image. During this time,

PE 0 has executed the pvm_recv function to obtain the next

message from the master. It was found that an enormous amount

of time was being incurred executing system calls by the

mppexec process associated with the slaves. The mppexec

CUG 1995 Fall

 Proceedings

123

process appeared to be polling rather than waiting in a UNIX

select call [9], which impacted other users on the system while

our process was doing nothing more than waiting. A method was

needed to signal PE 0 that a message was sent rather than

allowing PE 0 to block in pvm_recv. The pvm_sendsig proce-

dure appeared to be an obvious solution, but signals did not seem

to arrive from a remote host with any reliability. Since this same

behavior was encountered using two workstations, it is

suspected that the problem may be somewhere in the version of

PVM running on the Onyx. Another solution is to create a socket

between the master and PE 0. When the master was ready to send

a message, it sent a single byte through the socket to unblock PE

0. PE 0 then executed the pvm_recv call to receive the incoming

message. Consultants from CRI had been informed and are

working to determine if there is a problem with pvm_recv.

Rendering Phase

The real meat of the volume renderer is creating images from

the data. This is the most time consuming phase of the

Binary-Swap algorithm. We solve this problem by replacing the

ray tracing renderer with the much quicker Shear-Warp renderer

introduced in [5]. This volume renderer shears the data slices,

composites the images produced by these slices and then warps

the intermediate image. The result is a renderer which can

produce an image in sub-second speeds.

Much of the speedup from the Shear-Warp renderer is

obtained by encoding time saving structures such as the octree

and encoding the volume in a structure called a classified

volume. Additional speed is obtained by creating lookup tables

for some of the shading functions rather than reevaluating the

shading function at each sample.

The transfer function used in Shear-Warp is the multi-mate-

rial model of [3]. This model is different from what is used by

Binary-Swap and by AVS, but the interface to Shear-Warp is

flexible enough to support this model. The shading model used

in Shear-Warp is a phong shading function multiplied by an

opacity similar to

I = a [I

a

 + I

d

 (N•L) + I

s

 (N•H)

n

]

where I

a

, I

d

 and I

s

 are the ambient, diffuse and specular compo-

nents, N is the normal, L is the vector to the light, H is the

halfway vector, n is the specular exponent and a is the opacity

associated with the sample. The values inside the square

brackets are encoded into a shading table with an entry for a

predetermined number of possible directions. What we would

like is to have the diffuse component vary with the data as does

the opacity. Rather than have 256 different materials, we set the

ambient to 0 and separate the equation into a diffuse and spec-

ular component. This creates two different shading tables. We

then use Shear-Warps ability to replace the shading function

with a callback function. This function simply uses the voxel

data as a lookup into the transfer function and then multiplies

that by an entry from the diffuse shading table. An ambient term

is added in along with the entry from the specular table and the

result is multiplied by the opacity.

Composite

This phase was the easiest to enhance. The version of the

Binary-Swap renderer of [4] used several calls to the standard

memory manipulation routines such as memcpy and memset.

The version of memset that was being used was extremely inef-

ficient. An hours worth of work produced a robust version in C

which was 39 times faster. With the upgrade of UNICOS MAX

from 1.2.0.4 to 1.2.0.5, we were given a version which was over

50 times faster. This resulted in significant speedup of this

phase.

Image Collection and Sending

Communication to the MP can be enhanced by setting param-

eters with pvm_setopt [7]. One of the most important parameters

to our interactive renderer is PvmRouteDirect and PvmFragSize.

A direct route allows us to bypass the pvm daemon when

sending pvm messages. When used on the Onyx, this option

alone will result in considerable time savings. On the YMP front

end, it actually increased the amount of time to receive large

messages. PvmFragSize increases the size of internal communi-

cations buffers. On the Onyx, this resulted in a much smaller but

still significant improvement.

Implementation

In order to combine Shear-Warp with Binary-Swap, the

existing render in the Binary-Swap library was replaced with a

simplified object oriented interface with functions to initialize,

set the shading, set the transformation and render the image. The

results from the rendering function is an image in a format

compatible with the existing compositing functions. Separating

the renderer from the Binary-Swap library in this fashion will

eventually allow us to replace the rendering phase with different

techniques such as isosurface extraction or even a different

volume renderer.

Volpack version 1.0b3 was then obtained from the ftp server

at Stanford and ported to the T3D. Getting to the point where we

could create an image using only the Volpack library on a single

processor was a time consuming process. Much of this time was

due to the assumption that the original programmer made that

the size of an integer was 32 bits and the size of a short integer

was 16 bits. This assumption will cause us additional problems

when we try to render larger volumes. Since structures are

expanded to the size of a word (64 bits) a very large amount of

memory is currently being wasted. We also encountered some

difficulties with the Cray C compiler when using the function

rint and using negative offsets from a pointer.

Once a serial version of Volpack was working we taught it to

render only a portion of the data by introducing a collection of

translations and scales that correctly positioned the data subset.

Ideally, these transformations would be outside of Volpack to

help encapsulate the library. Currently they are imbedded within

the warp routines.

124

CUG 1995 Fall

 Proceedings

Results

Two different timing tests were run on the same 128

3

 dataset

of [4]. An image showing the orientation, but not the color, is

shown in figure 6. The first is an interactive test where the master

is a module in AVS. This allows us to use existing interactive

features of AVS for the specification of the transformation and

the transfer function. The AVS module was designed to have

input ports for data, a colormap and a transformation and output

an image. The output is typically connected to the display

tracker module which can be used to interactively manipulate

the transformation. A 256

2

image was produced and display

trackers ability to scale the image was used to double the resolu-

tion. We rendered the data using an octree encoding and the clas-

sified encoding schemes. Table 1 and Figures 3 and 4 show the

times for the different phases using the octree and classified

encodings. The timings were taken during midday hours with

several other users on the T3D, which can cause a small amount

of variation. The collect time includes the time to collect the

image onto PE 0 and then send it out to the master. The collect

and render phases have a wide variation in rendering times on

different processors. The maximum time of any one processor is

represented.

The previous timings involved only a change to the transfor-

mation. In this case, some of the internal structures do not have

to be rebuilt. Rebuilding these structures can be somewhat

expensive. Figure 5 shows the amount of time needed to

complete the rendering cycle when a change is made to the

transfer function. Although the classified renderer is much

faster, the amount of time to build the structures is significant.

The times for the both methods could be significantly reduced by

using parallelism inside the encoding process. Although the

encoded data is not shared, the shading tables are identical.

1 2 4 8 1 6 3 2

0

0 .5

1

1 .5

2

2 .5

S
e

c
o

n
d

s

1 2 4 8 1 6 3 2

Processors

Octree Encoding

Collec t
Composit e

Render
Set up

Figure 3: Accumulated time for interactive rendering using 128
3

data creating a 256
2
 image with octree encoding.

The enhancements made to speed up the interactive version

also enhance the command line version. In this case, we only

have one transfer function and each new frame involves sending

just a new transformation. Timings were taken using the Onyx

as the master to produce the same image as in previous tests with

a higher resolution as shown in table N. This table shows a the

expected decrease in rendering times, but also shows a gradual

increase in the collection time. Since the collect time for the 1

processor case is only due to transmission time, we can see this

is a significant portion of the collection phase.

Conclusions

We have described a volume renderer which can produce an

image at interactive rates. Although the interactive goal was

obtained, there are several areas which can use additional

enhancements.

Changing the transfer function resulted in an understandable

increase in the amount of time due to the necessary recomputa-

1 2 4 8 16 32
0

0.2

0.4

0.6

0.8

1

1.2

1.4

S
e

c
o

n
d

s

1 2 4 8 16 32

Processors

Classified Encoding

Collec t
Composit e
Render
Set up

Figure 4: Accumulated time for interactive rendering using 128
3

data creating a 256
2
 image with classified encoding.

1 2 4 8 1 6 3 2

0

1

2
3

4

5

6

7

8

S
e

c
o

n
d

s

1 2 4 8 1 6 3 2

Processors

Structure Rebuilding

Classif ied

Octree

Figure 5: Times to complete the rendering process once a change
in the transfer function is detected. The time for the octree method
with 32 processors is 1.08 seconds.

CUG 1995 Fall

 Proceedings

125

tion of the shade tables. Since this information is the same on all

processors, a parallel algorithm is the obvious solution. Finding

and exploiting other areas of parallelism would decrease

rendering times even further.

The times given for the rendering all phases were the

maximum of all the processors. The setup and composite phases

did not have significant variation. The rendering phase had a

great deal of variation due to the transparent regions and the

octree encoding. Creating a balanced load in an environment

with a dynamic transfer function is another challenging problem.

One of the most disturbing trends in the timing tables is the

amount of time needed in the collection phase. A significant

portion of this time is due to network bandwidth limitations.

Exploring methods of fast parallel compression and decompres-

sion should make this phase much less troublesome.

Acknowledgments

This work was performed under the auspices of the US

Department of Energy by Lawrence Livermore National Labo-

ratory under contract number W-7405-ENG-48.

We would like to thank Mike Stewart and Scott Emery of CRI

for their helping us understand PVM and the T3D. A special

thanks goes to Phillippe Lacroute and Marc Levoy for giving

free access to their source via the net. Their generosity has

enabled many researchers to take leaps rather than steps.

Bibliography

[1] 1993 Parallel Rendering Symposium Proceedings, IEEE Computer Society

in cooperation with ACM SIGGRAPH.

[2] Cray Animation Theater 1.0 Release Overview and Installation Bulletin,

publication RO-5275, Cray Research, Inc.

[3] Drebin, Robert A., Loren Carpenter and Pat Hanrahan, “Volume Rendering”,

1988 SIGGRAPH Conference Proceedings, pg. 65-74.

[4] Hansen, Chuck, Michael Krogh, James Painter, Guillaume Colin de Verdiere

and Roy Troutman, “Binary-Swap Volumetric Rendering on the T3D”, CUG

1995 Spring Proceedings, pg. 61-69.

[5] Lacroute, Philippe and Marc Levoy, “Fast Volume Rendering Using a

Shear-Warp Factorization of the Viewing Transformation”, 1994 SIG-

GRAPH Conference Proceedings, pg. 451-458.

[6] PVM and HeNCE Programmer’s Manual, SR-2501 5.0, Cray Research, Inc.

[7] PVM Version 3.3 Programmer’s Manual, Oak Ridge National Lab.

[8] Rowlan, John S., Edward Lent, Nihar Gokhale and Shannon Bradshaw, “A

distributed, parallel, interactive volume rendering package”, 1994 IEEE Vi-

sualization Proceedings, pg. 21-30.

[9] Stevens, W. Richard, “UNIX Network Programming”, Prentice Hall Soft-

ware Series, 1990.

Octree 1 2 4 8 16 32
Setup 0.039 0.038 0.039 0.038 0.041 0.043

Render 2.236 1.250 0.700 0.438 0.418 0.336

Composite 0.004 0.030 0.018 0.041 0.040 0.041

Collect 0.061 0.086 0.082 0.090 0.117 0.114

Classified
Setup 0.050 0.040 0.039 0.040 0.043 0.042

Render 1.094 0.599 0.323 0.232 0.192 0.176

Composite 0.004 0.031 0.018 0.042 0.040 0.041

Collect 0.062 0.081 0.085 0.091 0.113 0.117

Table 1. Timings for the 32 processor case using 1283 data

1 2 4 8 16 32
Setup 0.049 0.036 0.033 0.038 0.038 0.039

Render 0.899 0.503 0.268 0.241 0.176 0.153
Composite 0.014 0.110 0.065 0.148 0.144 0.136
Collect 0.152 0.217 0.241 0.265 0.265 0.277

Table 2. Timings for command line verson using same 1283 dataset to

create a 5122 image.

Figure 6: Grayscale image of the 128

3

 dataset used in the timing
tests. The image used for the actual tests was full color with areas
of complete and partial transparency.

