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We derive an expression for the rate Tis' of the cross relaxation between the Zeeman splitting of one 
nuclear spin species (I spins, I = 1/2) and the quadrupole splitting of another spin species (S spins, 
S> 1/2) via the I-S dipolar interaction. We calculate TIS for the case of CFCLl -CFCL2 (I spins are 
'9F, and S spins are HCI and 37CI) and compare the results with experimental data. 

I. INTRODUCTION 

Cross relaxation phenomena in solid-state NMR have 
been observed in a wide variety of different situations. 
Cross relaxation between two systems generally occurs 
if the splitting of energy levels in one system can be 
made to be equal to the splitting in the other. As a case 
in point, consider a system of I spins (I = ~), strongly 
coupled to a dc magnetic field Ho via a Zeeman interac
tion, and a system of 5 spins (5 > ~) strongly coupled to 
the crystalline electric field gradient via a quadrupole 
interaction. At certain values of Ho, the Zeeman split
ting of the I spins will be equal to the quadrupole split
ting of the 5 spins, and the I and 5 spins cross relax. 

This phenomenon is easily observed via the spin-lat
tice relaxation time Ttr of the I spins. Since the quadru
pole TIS of the 5 spins is usually very short, cross re
laxation between the I and S spins can cause a sharp re
duction in T!I' This effect was first observed experi
mentally by Goldman1,2 in paradichlorobenzene (I spins 
are lH, and S spins are 35CI and 37Cl) and later was ob
served independently by Woessner and Gutowsky3 in the 
same compound. Since then, many others4-

11 have seen 
this effect in a variety of experiments. 

In this paper we derive an expression for the cross 
relaxation time T rs' We apply our result to the case of 
CFCI2-CFCI2 (I spins are 19F, and S spins are 35Cl and 
37Cl). At low temperatures, this compound forms a 
glassy crystalline phase in which the molecules, sitting 
in a bOdy-centered-cubic (bcc) lattice, are "frozen" into 
an orientationally disordered state. We calculate T rs 
for CFC12-CFCI2 and compare the result with experi
mental data. (This data was presented and discussed in 
detail in the preceding paper.u) 

II. GENERAL EXPRESSION FOR TIS 

Consider a system of I spins (I = ~) and S spins (S > ~). 
We write the Hamiltonian, 

(1) 

The first term :iCr is the I-spin Zeeman interaction with 
Ho. Choosing the z axis to be along Ho, we have 
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:iCr= - wor LI.r, , (2) , 
where wOr='YrHo and 'Yr is the gyromagnetic ratio of the 
I spins. The second term :iCs in Eq. (1) is the sum of 
the Zeeman and quadrupole interactions for S spins. 
We do not give the explicit form of JCs here. The term 
:iCrs is the I-S dipolar spin-spin interaction, 

(3) 

where the summation over j and k are over the I and S 
spins, respectively. Explicit expressions for FW and 
AJtl(I, S) are given in Ref. 12. 

NOW, the interactions :iCr and :iCs form energy reser
voirs which can be characterized by inverse spin tem
peratures f3r and f3s , respectively. The interaction :)Crs 
is a perturbation which causes cross relaxation between 
them such that f3r and f3s evolve with time towards a 
common inverse spin temperature. We define the cross 
relaxation time T rs by the relation, 

From Goldman13 [e. g., p. 150, Eq. (6.37)], we find 

1 1 ('" 
T

rs 
= Tr(:iC

r
)2 J

o 
dT Tr{exp(iT3Cr + iT:iCs ) 

x [:iCrs , :iC1 ]exp( - iT:iCr - iT:iCs)[:iCW :iC1]} • (5) 

Evaluation of the commutator gives 

where 

In the above equation Y2m(9'k' IfiJl.) refers to spherical 
harmonics. Also, 

exp(iT:iCr)I"'J exp( - iT:iCr) = I"" exp('F iWOrT) • (8) 

We obtain from Eq. (5), using Eqs. (6) and (8) and taking 
the traces over the I spins, 
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2Yh'~ ti2 f" '"' . N tr (1) dT L.J {exp(- tWOrT) 
r s 0 J,II,' 

1 

X trs[exp(iTJCs )GJ" exp(- iTJCS)G~,J 

+ exp(iWorT) trs[exp(iT'JCs)Gj" exp( - iTJCs)G Jln, (9) 

where trs means the trace over the S spins. 

Now, we denote the eigenfunctions and eigenvalues of 
JCs by I a) and Wa , respectively: 

JCs I a) = wa I a) . (10) 

Thus, for example, 

tr s[exp(iTJCs)GJ" exp( - iTJCs)Gj,J 

=L exp(iwabT)(aIGJ"lb)(bIGj,la), (11) 
a,b 

where 

(12) 

Putting this into Eq. (9) and performing the integra
tion over T, we obtain 

1 47Tyhiti 2 '"' '"' t -;-= N tr (1) L.J L.J o(wor-wab)(aIGJlllb)(bIGJlla). 
IS r s i."" a,b 

(13) 
In order for (al GJI.! b) to be nonzero, I a} and I b) are 

allowed to differ only in the state of the kth S spin. 
Similarly, in order for (bl Gjll a) to be nonzero, I a) and 
I b) are allowed to differ only in the state of the lth S 
spin. Thus, if the two matrix elements are to be simul
taneously non-zero when I a) and I b) refer to different 
states (wab nonzero), then we must have k = 1. Physi
cally, this means that the cross relaxation proceeds 
via a transition of an I spin accompanied by a transition 
of a single S spin. 

Consider then the Hamiltonian JCSII of a single spin SIt. 
Clearly, since JCs does not contain any S-S interactions, 
we can write 

We denote the eigenfunctions and eigenvalues of JCSII by 
I a, k) and W

a
_, respectively: 

where 

(17) 

Note that this result predicts infinitely sharp rates 
(Dirac delta functions) which arise from the omission 
of line-broadening terms in the Hamiltonian. The ef
fects of such terms can be incorporated into Eq. (16) by 
replacing the Dirac delta functions O(WOI - Waul by nor
malized shape functions g(wor- Wabll). However, as we 
shall see, introduction of these shape functions would 
have negligible effect on the result as long as their line
width is reasonably narrow. 

The eigenfunctions I a, k) are well known. To simplify 
the calculation, we assume that the electric field gradi
ent is axially symmetric at each S spin. Under this as
sumption, the eigenfunctions I a, k) take on a particularly 
simple form in a reference frame x' y' z' such that the 
z' axis pOints along the axis of symmetry. Thus, in 
order to calculate the matrix elements (a, kl Gill I b, k), 
we wish to write an expression for G i" in the x' y' z' co
ordinate system. We therefore define a coordinate 
transformation xyz-x'y'z' by (1) a rotation B" about the 
y axis followed by (2) a rotation ¢" about the new z' 
axis. In this new coordinate system then Ho pOints in a 
direction defined by the spherical coordinates (BII , ¢II). 

The operators Sz" and Sz" in the xyz coordinate sys
tem can now be written in terms of the operators s"" 
and S~" in the x' y' z' coordinate system: 

and 

Sz" = cos B"S;" -t sinB" exp(irpk)S:" 

- t sinB" exp( - irpk)S~k , 

Szk = sinB"S~" + t(cosB" + 1) exp(± i¢")S~,, 

+t(cosB" -l)exp('firp")S~,, . 

Also, from Gottfried t4 we find that 

Y2m(Bw rpi") = L Y2m' (B~", ¢~,,)D;;'~(- rpll' - BII , 0) 
m' 

(18) 

where B~" and rp~" are the spherical coordinates of r i " 

in the new coordinate system x'y' z'. Explicit expres
sions for d~2,,!, (BII ) are found in Ref. 15. 

Using Eqs. (19) and (20), we write Eq. (7) as 

G i" = trj! ft ~ Y2m(e~", ¢~,,) exp(imrp,,) 

x[ exp(irp")f+m(B,,)S:,, + exp( - irp,,)f-m(B,,)S~k + f ... (e,,)S;,,] , 

(21) 

where 

and 

fzm(B,,) = - (cose" 'f1)d~;')(e,,) -16 sine"d~~~(B,,) 
+ l6(cosB" ± l)d~~~(B,,) , 

f ... (e,,) = - 2 sinBlld~!,>(B,,) + 216 cosB" d~i~(B,,) 

+ 216 sinB" d!~~(B,,) • 

III. S=t CASE 

(22) 

(23) 

For the case S=t there are four transitions of in
terest to us. (Reference 16 gives a detailed discussion 
of these transitions and their associated eigenfunctions 
and eigenvalues.) For example, the O! transition in
volves energy levels split by an amount 

wab,,=wQs-tcoSB,,[3-(1+4tan2BII)1/2]wos, (24) 

where wQS is the pure quadrupole splitting of the S spins 
in zero field (Ho == 0) and wos = YsHo. Using the following 
relations for the O! transition, 
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and 

(a, k I S:k I b, k) =·rI[1 + (1 + 4 tan2l1kt
1!2p/2 , 

(a, k I S~k 1 b, k) = 0 , 

(a, k 1 S~k 1 b, k) = 0 , 

we obtain from Eqs. (16) and (21), 

1 31T 2 2 2 -1 '" -6 ( ) --=160 YiYsl'i NI L...JrJko WOI-Wabk 
T isa J,. 

x [1 + (1 + 4tan211kt1/2] L 41TY2m (II;., ¢~.) 
m,m' 

(25) 

(26) 

(27) 

x Y!m' (II~., ¢~.) exp[i(m - m')¢.lf.m(lIk}j.m' (Ilk) . (28) 

This expression can be simplified considerably by 
taking a powder average. (In the glassy crystalline 
phase of CFCI2-CFCI2, for example, where the molecu
lar orientations are disordered, we would expect the 
anisotropy of TIS to be rather small. Thus, in this 
case, taking a powder average probably does not affect 
the results significantly.) Therefore, we average Eq. 
(28) over II. and ¢.. Since wabk is independent of ¢. 
(see Eq. (24)], the integration.is trivial, and we obtain 

where 

II ==cos-1 {-.!.(-1)" YI (1-~) 
pq 2 Ys wOl 

+ (-l)p[.!.-~ 4(1_~)2JI/2} . 
3 12 Ys w01 

(34) 

The summations over the indices p and q arise from 
the need to sum over all four transitions j however, 
there is not a one-to-one correspondence between p, q, 
and any particular transition. 

IV. APPLICATION TO CFCI 2 -CFCI 2 

In the glassy crystalline phase of CFCI2-CFCI2, the 
molecules sit in a bcc lattice but are randomly oriented 
relative to each other. They are "frozen" into an orien
tationally disordered state. The lattice sum in Eq. (33) 
can thus be written, 

Sm == Ns1 L: (~)6 41T I Y2m (II;., ¢~,,) 12 J." r i • 

= "it ((;:J 47f 1 Y 2m (II;., ¢;,,) 12) , (35) 

where the summation is over all I sphls (j) relative to 
a given S spin (k). The lattice parameter ao is defined 
to be the distance between lattice pOints along the [100] 
direction. Since the S spins are not in equivalent posi
tions, we average each j-k pair over all possible orien
tations of their respective molecules. Note that 

(29) 

where II is the solution of 

W QS - ~ cose( 3 - (1 + 4 tan2 
1I)1/2]WOS = wOl • (30) 

Solving Eq. (30), we find that II is double valued, i. e., 

II = cos-1 {_.!. l::.r(1 _~) ± [.!. _1. 4(1 _~)2J 112} . 
2ys wO l 312ys wO l 

. (31) 

and is restricted to the range, 

YlI1_~1~1. 
Ys wOl 

(32) 

This restriction results from the requirement that the 
solution must also satisfy Eq. (24). 

Similarly, expressions can be derived for the 0/, {3, 
and {3' transitions. Adding together the contributions to 
T;1 from each transition, we finally obtain 

(33) 

I Y 2m (II;., ¢;,,) 12 is independent of ¢;. and depends only on 
II~", the angle between r Jl• and the symmetry axis of the 
electric field gradient at SIt. (We assume this symmetry 
axis, the z' axis, to be along the C-CI bond.) 

The calculation of the intramolecular contribution to 
Sm is straightforward since r J" and II~" are independent 
of molecular orientation in this case. The calculation 
of the intermolecular contribution to Sm, on the other 
hand, is more complicated. For this calculation, we 
find it convenient to use a coordinate system x"y"z" 
such that the z" axis pOints from the center of the mole
cule (the midpoint of the two carbon atoms) through the 
CI atom on the same molecule. (This CI atom is the 
one whose interactions are now being calculated.) Thus 
we define a coordinate transformation x' y' z' - x" y" z" 
by (1) a rotation 19° about the y' axis (chosen to be per
pendicular to the C-C-CI plane) followed by (2) a rota
tion ¢ about the new z" axis. (19° is thus the angle be
tween the old z' axis and the new z" axis.) Using rela
tions such as Eq. (20) and averaging over ¢, we obtain 

S~Dter == L: [d~2~, (19°)f L ((~)6 47f 1 Y2m' (II~~, ¢~~) 12) , 
m' J r Jk 

(36) 
where II~~ and ¢~~ are spherical coordinates of r J• in the 
new coordinate system x" y" z" • 

The average over all orientations of the two mole
cules containing the j and k sites is done by integrating 
over the surfaces of two spheres generated by rotating 
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Sk 

FIG. 1. Integration over the surfaces of spheres 5j and 511 , 

the two molecules (see Fig. 1). The radii R j and R" of 
the two spheres are the distances from the j and k sites 
to the centers of their respective molecules. Rjll is 
the distance between the centers of the two molecules. 

First, we integrate over the sphere 5k • From geom
etry, we have 

and 

cos£l~~ 
ri,,+ Ri _p2 

2Rkr J" 

Holding p fixed, we have 

(37) 

(38) 

f d511(.!!n..)&j(COS£l~~) =-2
1 fl d(COS£lk)(.!!n..)&j(COS£l~~) 

SII r JII -I r JII 

_.! A f P
+
Rk 

-5 d f(rJII + R~ - p2) - r JII rJII , 
2 RII P P-Rk 2Rkr JII 

(39) 

where f is some function of COS£l~~. In our particular 
case, we have 

j(cos£l~~) = 41T 1 Y2m' (£I~~, ¢~~) 12 (40) 

10 I I I I I 

J I a,o' 35c1 

2 f3,f3' 35CI 

3 a,a' 31CI 
4 f3,f3' 31CI 

~ 

~ 
u y Q) 

$!. 
en 

t-!"' 

1- ~ -

~ 
I I I I I 

25 30 35 40 45 50 
wor/2'!7'(MHz) 

FIG. 2. Contribution to TIS of the 3sCI and 37CI isotopes in 
CFCI2-CFCI2• 

• 

• 
o 

~IOI 
U 
Q) 
<II 

10-
1 L--+.,,-----=!-;-------f;~-~-_,!_,,---~~ 

20 30 40 50 60 70 
W O/27T (MHz) 

FIG. 3. Total cross relaxation time TIS in CFCI2-CFCI2 cal
culated from Eq. (33). Experimental pOints are from Ref. 11. 

Similarly, we integrate over the sphere 5J, using 

R 2 R2 2 
£I JII + J - P (41) cos J= 2R ~ 

J"'-J 

where I Y 2m, (£I~~, ¢~~) 12 is evaluated at cos£l~~ = (~+ R~ 
- p2)/2rRII • The summation over j is now over molecu
lar sites j. Hence, the factor 2 in Eq. (43) accounts 
for two fluorine atoms per molecule. The integrals 
were evaluated numerically. The results for both the 
intramolecular and intermolecular contributions to 5m 

are given in Table I. As can be seen, the intramolecu
lar contribution is isomer dependent. However, the 
dependence is not great, so we just used the average of 
the two. 

Using Eq. (33) and the lattice sums in Table I, we 
can now calculate TIS for CFCl2-CFCI2• All the physical 
constants needed for the calculations are well known ex
cept for the pure quadrupole splitting wQS of 35CI and 
37Cl. From NQR measurements in other chlorinated 
ethanes l7

-
19 we find that, generally, WQs/21T~ 40 MHz 
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TABLE I. Evaluation of the lattice sum S'" in CFClz-CFClz. 

m Isomer Intramolecular Intermolecular Total 

0 
trans 931 1165 
gauche 988 

234 
1222 

±1 
trans 1063 

195 
1258 

gauche 930 1125 

±2 
trans 184 340 
gauche 136 

156 
292 

for 35Cl in these compounds. Thus we used this value 
(and hence 31. 5 MHz for 31C!) in the calculation of T IS' 

In Fig. 2 we plot the results of the calculation, show
ing the separate contributions to T;1 from the 35Cl and 
37Cl isotopes. Adding them together, we obtain the re
sultant T;1 which we plot in Fig. 3. The experimental 
points were obtained from 19F Tl data at two different 
temperatures. (A detailed discussion of the data is 
given in the preceding paperY) As can be seen, the 
agreement between theory and experiment is quite good. 
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