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ABSTRACT 

This paper presents two adaptive step-size gradient adaptive filters. The 
step sizes are changed using a gradient descent algorithm designed to 
minimize the squared estimation error. The first algorithm uses the same 
step-size sequence for all the filter coefficients whereas the second algorithm 
uses different step-size sequences for different adaptive filter coefficients. An 
analytical performance analysis of the first algorithm is also presented in the 
paper. Analyses and experiments indicate that (I) the algorithms have fast 
convergence rates and small misadjustment errors; and (2) in nonstationary 
environments, the algorithms tend to adjust the step sizes so as to give 
close to the best possible performance. Several simulation examples 
demonslrating the good properties of the adaptive fIlters are also presented in 
the paper. 

I. INTRODUCTION 

Stochastic gradient adaptive filters are exlremely popular because of 
their inherent simplicity. However, they suffer from relatively slow and 
data-dependent convergence behavior. It is well known that the performance 
of stochastic gradient methods is adversely affected by high eigenvalue 
spreads of the autocorrelation matrix of the input vector. 

Traditional approaches for improving the speed of convergence of the 
gradient adaptive filters have been to employ time-varying converge~ce 
parameters [1-5]. The idea is to somehow sense how far away the adapuve 
filter coefficients are from the optimal filter coefficients and use convergence 
parameters that are small when adaptive filter coefficients are close to the 
optimal values and use large convergence parameters otherwise. The 
approach is heuristically sound and has resulted in several ad !we techniques, 
where the selection of the convergence parameter is based on the magnitude 
of the estimation error [3], polarity of the successive samples of the 
estimation error [4J, measurement of the cross correlation of the estimation 
error with input data [I, 2], and so on. Experimentation with these 
techniques has shown that their performance is highly dependent on the 
selection of certain parameters in the algorithm and furthermore, the optimal 
choice of these parameters are highly data dependent This fact has severely 
limited the usefulness of such algorithms in practical applications. 
Recently, Michael, et al. [5J have proposed methods for selecting the 
convergence parameters that would give the fastest speed of ~onvergence. 
Unfortunately, their choices of the convergence parameters wIll also result 
in fairly large steady-state excess mean squared estimation error. 

The objective of this paper is to present two stochastic gradient adaptive 
filtering algorithms that overcome the limit,ations of the metho~s discus~ed 
above. The idea that we will employ IS to change the ume-varymg 
convergence parameters J.l(n) in such a way that the change is proportional 
to the negative of the gradient of the squared estimation error with respect to 
the convergence parameter. This approach results in the following two 
algorithms. 
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Algorithm 1 (Single Convergence Sequence u(n)) 

e(n) = den) - HT(n)X(n) 

J.L(n)=J.L(n-l)-£. __ il-e2(n) 
2 Mn-l) 

= J.L(n - 1) + pe(n)e(n - I)X
T

(n - I)X(n) 

H(n + 1) = H(n) _ J.L(n) iJe
2

(n) 
2 ilH(n) 

= H(n) + J.L(n)e(n)X(n) 

(I) 

(2a) 

(2b) 

(3a) 

(3b) 

In the above equations, p is a small positive constant, den) is the desired 
response signal of the adaptive filter, X(n) is the input vector to the adaptive 
filter, and H(n) is the vector of adaptive filter coefficients, all at time n. 

Algorithm 2 (Individual Convergence Sequence Yq(n) for Each Coefficient 

e(n) = den) - HT (n)X(n) (4) 

~ (n) = ~ (n - 1) + pe(n)e(n - l)xi (n)x
i 
(n - 1) 

(5) 

(6) 

Here, hi(n) and xi(n) are the i-th elements of H(n) and X(n), respectively. 

Algorithm 1 was originally proposed by Sin and Lee [6J. We now 
present a convergence analysis for this algorithm. 

II. PERFORMANCE ANALYSIS OF ALGORITHM 1 

For the performance analysis, we will assume that the adaptive filter 
structure is that of an N-point FIR filter, and the input vector X(n) is 
obtained as a vector formed by the most recent N samples of the input 
sequence x(n), i.e., 

X(n) = [x(n), x(n - 1), ... , x(n - N + I)JT , (7) 

where (o)T denotes the matrix transpose of (0). Let Hopt(n) denote the 
optimal coefficient vector (in the minimum mean-squared estimation error 
sense) for estimating the desired response signal den) using X(n). We will 
assume that Hopt(n) is time varying, and that the time variations are caused 
by a random disturbance of the optional coefficient process. Thus, the 
behavior of the optional coefficient process can be modeled as 

Hopt(n) = Hopt(n - 1) + C(n - 1) (8) 

where C(n - 1) is the disturbance process that is a zero mean and white 
vector process with covariance matrix ~I. 
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In order to make the analysis tractable, we will make use of the 
following assumptions and approximations. 

i) X(n), d(n) are jointly Gaussian and zero mean random processes. 
X(n) is a stationary process. Moreover, (X(n), d(n)} is uncorrelated with 
(X(k), d(k)} if n * k. This is the commonly employed independence 
assumption and is seldom true in practice. However, analyses employing 
this assumption have produced reliable design rules in the past. 

ii) Let d(n) = XT(n)Hopt(n) + ~(n) (9) 

where ~(n) corresponds to the optimal estimation error process. We will 
assume that the triplet (X(n), C(n), ~(n)} are statistically independent 
random processes. 

iii) We will assume that the convergence parameter ~(n) is statistically 
independent of X(n) and e(n). While this is never true, experiments have 
indicated that the approximations that ~(n) and ~2(n) are uncorrelated with 
X(n) and e(n) is reasonably accurate for small values of p and relatively 
white input signals Note that the condition under which the above 
approximation is accurate is when the statistical fluctuations of ~(n) are 
small when compared with that of X(n) and e(n). This condition is, in 
general, satisfied for small values of p. 

iv) We will use the approximation that the statistical expectation of 
e2(n)X(n)XT (n) conditioned on the coefficient vector H(n) is the same as the 
unconditional expectation, i.e., 

E(e2(n)X(n)XT(n)IH(n)) ~ E(e2(n)X(n)XT(n)}. (10) 

This approximation has been successfully employed for performance 
analysis of adaptive filters equipped with the sign algorithm [7]. 

Mean Behavior of the Weight Vector 

Let Y(n) = H(n) - Hopt(n) 

denote the coefficient misalignment vector at time n. Then, 

e(n) = ~(n) - yT(n)X(n). 

Substituting (9), (11) and (12) into (3b), we can easily show that 

Y(n + 1) = (I - ~(n)X(n)XT(n))Y(n) + ~(n)X(n)~(n) - C(n). 

(11) 

(12) 

(13) 

It is straightforward using the independence assumption and the 
uncorrelatedness of ~(n) with X(n) and e(n) to show that 

E(Y(n+ I)} =(I-E(~(n)}R)E(Y(n)} 

where R is the autocorrelation matrix of the input vector X(n). 

Mean Squared Behavior of the Weight Vector 

Let 

K(n) = E(Y(n)yT(n)} 

(14) 

(IS) 

denote a second moment matrix of the misalignment vector. Multiplying 
both sides of Eq. (13) with their respective transposes, we get the following 
equation: 

Y(n + I)yT(n + 1) = (I _lJ(n)X(n)XT(n)Y(n)yT(n)(I -lJ(n)X(n)XT(n) 

+ ~2 (n)e (n)X(n)XT(n) + C(n)CT(n) 

+ g(lJ(n), X(n), Y(n), ~(n), oC(n), (16) 

where g(~(n), X(n), Y(n), ~(n), C(n)) corresponds to the sum of the six 
terms that are explicitly not listed in the expansion. Under our 
assumptions, the mean value of these six terms are all zero matrices. 
Combining usual analysis techniques for Gaussian input signals [8] with 
the assumption that ~(n) and ~2(n) are uncorrelated with the data while 
taking the statistical expectation of (16) will result in the following 
evolution equation for the second moment matrix of the coefficient 
misalignment vector: 

K(n + 1) = K(n) + E(~(n)} (RK(n) + K(n)R) 

where 

and 

+ E(~2(n)}(2RK(n)R + Ro;(n)) + %1 

o;(n) = ~min + tr RK(n) 

~min = E(~2(n)) 

(17) 

(18) 

(19) 

is the minimum value of the mean-squared estimation error and tr(o)} 
denotes the trace of the matrix (0 ). 

The mean and mean-squared behavior of ~(n) can be shown to follow 
the following nonlinear difference equations. 

E(lJ(n)} = E{lJ(n - I)} (1- p{ ~(n -I)tr(R2) + 2tr(R3 K(n - I))}) 

and 

E(~2(n)} = E(~2(n - I)} (1 - 2p {~(n - I)tr(R2) + 2tr(R3 K(n - I)}) 

+ 2pE(IJ(n - I)}tr(R
2

K(n - 1)) 

(20) 

+ p2tr({2R
2

K(n) + ~(n)R) (2R
2

K(n - 1) + ~(n - I)R}). (21) 

Details are omiued because of space limitations. 

Equations (17)-(21), completely characterize the mean-squared behavior 
of the coefficient misalignment vector. Deriving conditions on p for 
convergence of the evolution equations appears to be a very difficult task. 
However, we can guarantee convergence of K(n) by restricting ~(n) to be 
such that it always stays within the range that would ensure convergence. A 
sufficient, but not necessary, condition on ~(n) to ensure mean-squared 
convergence of the adaptive filter is [8] 

2 
0< IJ(n) < 3tr(R} . (22) 

If ~(n) falls outside this range, one can bring it inside the range by setting 
~(n) to the closest of 0 and 2/3tr(R}. Assuming that the system of 
evolution equations converges, we now proceed to study the steady-state 
behavior of the adaptive filter. 

Steady-State Properties of the Adaptive Pilter 

Let iJ:,~, 0;(00), and Koo represent the steady-state values ofE(~(n)}, 
E(~2(n)}. o;(n), and K(n), respectively. Substituting these values for their 

counterparts in equations (17), (18), (20), and (21), will yield the following 
steady-state characterization of the adaptive filter behavior 

p:;=p:; (I - p{~(00)tr(R2) + 2tr(R3Ko.,)}) + ptr(R2K.J, 

~ = ~ (1 - 2p{ ~(00)tr(R2) + 2tr(R3K.J}) 

+ 2pp:; tr R2Ko., + p2tr((2R2K~ + ~(00)R}2), 

0;(00) = ~min + tr(RKoo) 

(23) 

(24) 

(25) 

Koo = Koo + iJ:(RKoo + KooR) + ~(2RKooR + o;(oo)R) + %I. (26) 

Solutions for iJ: and ~ can be easily obtained in terms of 0;(00) and Koo as 

tr(R2~} 
p:; 2 3 

~(oo)tr(R ) + 2tr(R ~} (27) 

(28) 

Under several simplifying approximations, we can also show that 
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(29) 

Equations (27) - (29) describe the steady-state behavior of the adaptive 
filter. Unfortunately. they are highly coupled in the sense that each steady­
state parameter depends on several others. Obtaining closed-form 
expressions for each parameter independently of the others appears difficult 
and one has to resort to numerical solution of the above three sets of 
simultaneous. nonlinear equations. 

III. EXPERIMENT AL RESULTS 

In this section. we will present the results of several experiments that 
demonstrate the good properties of the algorithms presented in this paper and 
also verify some of the analytical results of the last section. All the results 
presented are averages of 50 independent runs. 
Sjmulation Example #1 We consider the problem of identifying a 5-point 
FIR filter with impulse response sequence 

(h(n); n = 0.1.2.3.4) = (O.2. 0.6.1.0.0.6.0.2) (30) 

from measurements of the input signal and the output signal that is 
corrupted by observation noise. The input signal (in all examples) was a 
pseudorandom zero mean and white Gaussian signal with unit variance. The 
observations noise was zero mean. white and Gaussian with variance 0.01 
and was independent of the input signal. In Figure 1. we have plotted the 
trace of the second moment matrix of the misalignment vector (mean­
squared norm of the coefficient misalignment vector) as a function of time. 
For the experiments. the coefficients of the adaptive filter were all set to 
zero initially. The other parameters were p = 0.001 for algorithm 1 and 
0.005 for algorithm 2; and ~(O) = 0.08. (All the parameters as well as the 
input signal and observation noise statistics are the same for all 
experiments.) Curves A and B are the theoretical and empirical curves. 
respectively. for algorithm 1. Curve C is the experimental results for 
algorithm 2. From the figure. we can see that the performance of both the 
algorithms are similar for this application. Furthermore. the analytical 
results show close agreement with the empirical results. In Figure 2. we 
have plotted the performance measure for the variation of the LMS 
algorithm [5] guaranteed to achieve the fastest rate of convergence against 
that of algorithm 1.. We can see that the algorithms presented in the paper 
have initial convergence speeds that are very close to that of the method in 
[5]. However. the squared norm of the misalignment vector is more than 12 
dB smaller for our algorithm after 20.000 iterations. 

In Figure 3. we have plotted the mean behavior of the convergence 
sequence ~(n){or the same problem. We can see that ~(n) goes up very fast 
initially and then comes down slowly and smoothly. This behavior 
explains the fast convergence and low misadjustrnent associated with the 
algorithms. Also notice the close agreement between the theoretical and 
empirical results. 

Simulation Example #2 In this example. we consider the identification of a 
time-varying system. The time-varying coefficients of the system are 
modeled using a random disturbance process as in (5). The initial values of 
the optimal coefficients were as in example # 1 and the disturbance process 
variance is 104 . In Figure 4. we have plotted the mean-squared norm of the 
misalignment vector obtained using the simulations as well as the analysis 
of Section II. Once again. note that the analysis predicts the behavior of the 
adaptive fIlter quite well. The straight-line curve in the figure corresponds 
to the steady-state value of the squared norm of the misalignment vector 
when the basic LMS algorithm was used with the optimal choice of the 
convergence constant ~ as given in [9]. Note that our algorithm is able to. 
achieve close to the best performance level possible by the LMS algorithm 
without really having to pick the optimal value of ~; or really having to 
know about the statistics of the operating environment. 

Simulatjon Example #3 In this example. we consider identifying a 
nonlinear system whose input-output relationship is given by a second-order 
Volterra expansion 

3 3 i 

y(n)= L ,\x(n-j)+ L Lbil(n-i)x(n- i). 
;.0 ;.oj=O 

(31) 

where 
(aj; i = 0.1.2.3) = (O.8. 0.6. 0.4. 0.2) (32) 
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bO.O 

=[~ b l •O b l •l .8 

.6 
l03) 

b2,O b2 •1 b2 •2 
.4 .5 

b3•0 b3•1 b3 ,2 b3 ,3 
.2 .3 .4 .4 

Note that since the output is linear in (x(n - i); i = O. 1.2.3) and 
(x(n - i)x(n - j); i = j. j + 1 •...• 3. j = O. 1.2.3), extension of the basic 
algorithm to the nonlinear problem is straightforward. Figure 5a displays 
the mean-squared norm of the misalignment vector corresponding to the 
linear coefficients and Figure 5b is the corresponding curves for the quadratic 
coefficients for both the algorithms. We can see that both the algorithms 
perform very well and about the same in this application. 

IV. CONCLUDING REMARKS 

This paper presented two stochastic gradient adaptive filtering 
algorithms with time-varying step sizes. The algorithms are different from 
traditional methods involving time-varying step sizes in that the changes in 
the step sizes were also controlled by a gradient algorithm designed to 
minimize the squared estimation error. We presented a theoretical 
performance analysis of one of the algorithms in this paper. Experimental 
results showed that (1) the initial convergence rate of the adaptive filters is 
very fast. After an initial period when the step size increases very rapidly. 
the step size decreases slowly and smoothly. given rise to small 
misadjustrnent errors; and. (2) in the case of nonstationary environments. 
the algorithms seek to adjust the step sizCls in such a way as to obtain close 
to the best possible performance. The good properties and the 
computational simplicity associated with our algorithms makes us believe 
that they will be used consistently and successfully in several practical 
applications in the future. 
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