
I n t e r a c t i v e

S im u l a t i o n a n d

V is u a l i z a t i o n

A s com putational s c ie n c e and engineerin g a p p lica tio n s grow in
com plexity , w orking with the data b eco m e s in cre a sin g ly difficult. An
e m ergin g te ch n o lo g y—ca lled com puta t ional s teer ing—a d d r e s s e s th is
problem by providing a m echanism to integrate m odeling, sim ulation,
data a n a ly s is , and v isu a lizatio n .

Christopher
Johnson
Steven G.
Parker
Charles
Hansen
G ordon L.
Kindlmann
Yarden
Livnat
Center for

Scientific

Computing

and Imaging,

University of

Utah

ost of us perform data analysis and visu

alization only after everything else is fin

ished, which often means that we don’t

discover errors invalidating the results

of our simulation until postprocessing.

A better approach would be to improve the integra

tion of simulation and visualization into the entire

process so that you can make adjustments along the

way. We call this approach computational steering.

Computational steering is the capacity to control

all aspects of the computational science pipeline—the

succession of steps required to solve computational

science and engineering problems. When you interac

tively explore a simulation in time and space, you steer

it. In this sense, you can rely on steering to assist in

debugging and to modify the computational aspects of

your application.

Recently, several tools and environments for com

putational steering have begun to emerge. These tools

range from those that modify an application’s perfor

mance characteristics, either by automated means or

by user interaction, to those that modify the underly

ing computational application. A refined problem

solving environment (PSE) should not only facilitate
everything from algorithm development and perfor

mance tuning to application steering, but should also

provide a rich environment for accomplishing com

putational science.

dering, and volume rendering. In the sidebar “Volume

Visualization,” we describe methods for achieving

interactivity with the first method and also point out

the power of volume rendering.

The standard, nonaccelerated method for isosurface

extraction is the Marching Cubes algorithm,1 which

checks each cell of the data set to see if it contains an

isosurface. But using this algorithm means that you’re

checking many cells repeatedly, even when they don’t

contain data that contributes to the final image.

To avoid unnecessary cell checking, you can pre

process the data and build specific data structures that

let you rapidly extract isosurfaces. One such method

is the Near Optimal IsoSurface Extraction (NOISE)

algorithm.2 Using a new representation of the under

lying domain, called the span space, the isosurface

extraction algorithm relies on a worst-case complex

ity parameter that reduces the search domain for a par

ticular isosurface from all the cells to only those cells

that contain an isosurface.2,3 Figure 1 shows a screen

shot from an interactive parallel rendering system built

with the NOISE algorithm.4

While algorithms such as NOISE have effectively

eliminated the search phase bottleneck, the cost of con

structing and rendering an isosurface remains high.

Many of today’s simulation data sets contain very

large, complex isosurfaces that can easily overwhelm

even state-of-the-art graphics hardware.

FACETS OF INTERACTIVE VISUALIZATION

One common method for visualization is to explore

three-dimensional data sets by examining isosurfaces,

three-dimensional surfaces representing the locations

of a constant scalar value within a volume.

Visual isosurfaces
You can visualize isosurfaces in many ways, includ

ing geometric representation, direct isosurface ren-

Complex isosurfaces
These massive isosurfaces generally have two char

acteristics:

• many of the polygons that make up the isosur

face are smaller than a pixel, and

• these polygons have a significant amount of depth

complexity, which means that the number of poly

gons represented by a single pixel is quite high.

Authorizedlicensed uselim itedto:TheUniversity of Utah. Downloaded on August 28, 2009 at 18:20 from IEEE Xplore. Restrictions apply.^ ember 1 999 59

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276285793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Volum e V isu a liza tio n

In direct volume rendering, optical properties, like color and

opacity, make the individual values in the data set visible. The

appeal of direct volume rendering is that no intermediate geo

metric information needs to be calculated, so the process maps

from the data set directly to an image.

In practice, you have to do a significant amount of work to cre

ate an intelligible rendering. The basic problem is to create the

mapping from data values to optical properties. This process,

called the transfer function, requires selecting those aspects of the

data set to appear in the rendering. You generally find a good

transfer function only after a slow process of trial and error.

Visualizing scanned medical data
Our work on this problem focuses on a specific use of direct

volume rendering: visualizing scanned medical data to display

the surfaces of organs or bone. While showing these boundaries

may seem to be a problem of edge detection (a problem, in other

words, of computer vision), the two problems differ in a subtle

but important way. While edge detection seeks to locate edges

within the two or three spatial dimensions of an image, we need

to locate boundaries within the range of data values occurring in

the data set, values which represent some physical property like

radio-opacity or proton density. It is the lack of a spatial com

ponent to this process that makes it unintuitive.

Our solution is to create the transfer function in two distinct

steps. The first step requires performing an automated analysis

using metrics borrowed from edge detection; we then project the

results into the space of data values. We use the information accu

mulated this way to compute a distance function, which gives

the signed distance to an object boundary as a function of data

value. Having the distance function simplifies the user’s task

immensely, because it can constrain the otherwise unwieldy para

meter space of transfer functions to only those that emphasize the

boundaries within the data set. In the second step, the user gen

erates a boundary appearance function, which maps distance

(rather than data value) to color and opacity.

Essentially, you create the transfer function as a composite of

the distance function and the boundary appearance function.

Doing so allows you to retain control over the transfer function

but at a comfortable distance from the underlying space of raw

data values.

More complex rendering
The two-step approach has immediate relevance to more com

plex rendering tasks. The domain of the transfer function may

not be just the one-dimensional range of data values, as described

here, but some higher dimensional feature space. As long as a

i f

Figure A. Manipulation of an automatically generated two-dimensional
opacity function to selectively render different material boundaries:
skin (upper right), bone (lower right), and the registration cord laced
around the body prior to scanning (lower left).

distance function can be computed, the same boundary appear

ance function can used to create the transfer function. One exam

ple of such a domain is the two-dimensional space of data value

and gradient magnitude.

Figure A shows volume renderings from the visible woman

data set made with two-dimensional opacity functions, shown

here as the inset gray-scale images. The horizontal and vertical

axes represent data value and gradient magnitude; brightness

represents opacity. If the initially generated opacity function

shows more features than desired (upper left), the structure of

the opacity function makes it simple to select individual bound

aries for rendering.

Abstracted levels of interaction become more important as the

size of data sets—and hence required rendering time—grow with

advances in measurement equipment and techniques. Also,

where data sets and associated volume-rendering methods are

more complex, methods for guiding the user toward useful para

meter settings become a necessary part of generating informa

tive visualizations. Research in these areas is currently under way.

By reducing the required generation of nonvisible iso

surfaces, we can increase the interactivity for such

data sets.

Recall that Marching Cubes examines every cell

and that search acceleration methods reduce that

search to only those cells containing an isosurface. If

we can further reduce the search to only those iso

surfaces that are visible in the final image, we can gain

more interactivity. Since single pixels represent many

polygons, we can achieve this goal by using a view-

dependent algorithm.

The Wise algorithm,5 for example, prunes sections

of data that are visually obscured by sections of the

isosurface already extracted. The algorithm works

these tests in software against a one-bit-per-pixel vir

tual screen and then forwards the triangulation of the

visible cells to the graphics accelerator for rendering

by the hardware. It is at this stage that the PSE resolves

the final graphics.

This kind of work explores the middle ground

between a mostly hardware-based algorithm (like

Marching Cubes) and a purely software-based algo

60 Authorized licenseduse limited to: The University of Utah. Downloaded on August 28, 2009 at 18:20 from IEEE Xplore. Restrictions apply.

rithm (like ray-tracing). The goal in doing so is to

reduce the load on the network and graphics hard

ware by performing some of the visibility tests in

software.

This approach can lead to an output-sensitive

method that reduces the load of other components in

the visualization pipeline,6 such as transmission of the

isosurface geometry over a network.

FACETS OF COM P UTATIONAL STEERING

One of the primary goals of computational steer

ing is to make scientific applications more interactive

and flexible. Unfortunately, many codes are neither

intuitive nor flexible. Adapting complex, rigid appli

cations to computational steering methods can be dif

ficult. To complicate matters, many steering systems

force you to adopt a particular methodology or rely on

a particular software tool.

Such rigidity is especially undesirable given the long

life span of most scientific applications and the wide

range of computational requirements found in these

applications. Before we can achieve acceptable inter

action and flexibility, however, we need to address four

facets of the problem:

• control structures,

• data distribution,

• data presentation, and

• user interfaces.

These facets may not all be present in every problem—

and they don’t portray the entire problem—but they

do outline fundamental considerations.

Effective systems must foster efficient extraction of

relevant scientific information, from simple x-y plots

to sophisticated three-dimensional visualizations. This

kind of efficiency requires that the system be tightly

coupled with the simulation code to provide more

information than would normally be available in a

separate data analysis system.

The programming model
A computational steering programming model

describes the software architecture that integrates

computational components to extract information

efficiently and permit changes to simulation parame

ters and data. This new architecture often requires

some modification of the original scientific code, but

the extent and nature of the changes will depend on

the model you choose.

At one extreme, you will have to rewrite the scien

tific program to support steering. Less radical

approaches may reuse pieces of the computation or

use off-the-shelf visualization packages to simplify the

construction of a steerable system.78

The means by which a system permits you to spec-

ify various types of changes to be made in the simula

tion is critical. For example, various devices may allow

you to specify changes in the computation that range

from simple text files to sophisticated scripting lan

guages to graphical user interfaces. Having flexibility

in each of these areas can mean the difference between

efficient and inefficient computation.

Another less obvious issue is that of integrating

changed data into the simulation in a scientifically

meaningful fashion. In most coupled systems, it does

not make sense to change one quantity without mak

ing corresponding changes in others. For example, in a

fluid dynamics system, it would not make sense to allow

sudden changes in pressure without making corre

sponding changes in another quantity, like tempera

ture, to maintain balance for the ideal gas law.

Several approaches can be used to make scientific

applications into steerable systems. Each approach

has strengths and weaknesses. In many cases, you

could use components of all of these approaches.

Program instrumentation
One way to implement steering is to make small

modifications in the source to provide access points for

the parameters and results. This process is called instru

mentation and typically takes the form of subroutine

calls inserted in the code wherever results become avail

able or when new parameters can be used.

These calls can transmit data to and from a sepa

rate visualization process. They might perform visu

alization tasks internally or might trigger a thread that

siphons the data while the computation continues con

currently. Systems such as Falcon9 and Progress10 rely

on this approach.

The instrumentation technique has the advantage

of being minimally intrusive to an existing scientific

code. Instrumentation works well for domain-specific

applications and development of new applications

when you clearly define your parameters.

However, it may provide only limited control over

the existing applications, as you may access only the

Figure 1. An earth
mantle convection
system showing mul
tiple isosurfaces
extracted with the
Near Optimal IsoSur
face Extraction
(NOISE) algorithm.

Authorized licensed use limited to: The University of Utah. Downloaded on August 28, 2009 at 18:20 from IEEE Xplore. Restrictions apply.^ em ber 1999 61

Contributing to Medical Science

Much of our research focuses on SCIRun,12 an environment

we use to create and steer scientific applications. SCIRun can

construct an application by connecting computational elements

to form a program, which can contain several computational

elements as well as several visualization elements, all of which

work together to orchestrate a solution. You can change inputs

and parameters interactively in SCIRun and you can get imme

diate feedback on these changes.

Simulating the human thorax
Every year, approximately 500,000 people die suddenly

because of abnormalities in their hearts’ electrical systems and

from coronary artery disease. While medical professionals have

used external defibrillation units for some time, their use is lim

ited because it takes such a short time for a heart attack victim

to die from insufficient oxygen to the brain.

Lately, researchers have begun to look for a practical way of

implanting electrodes within the body to defibrillate a person

automatically upon onset of cardiac fibrillation. Because of the

complex geometry of the human thorax and the lack of sophis

ticated thorax models available to researchers, most work on

defibrillation devices has relied on animal studies. In order to

provide an alternative to animal testing, we constructed a large-

scale computer model of the human thorax, the Utah Torso

Model.

Using the Utah Torso Model, we can simulate a multitude of

electrode configurations, electrode sizes, and magnitudes of

defibrillation shocks. Given the large number of possible exter

nal and internal electrode sites, magnitudes, and configurations,

it is a daunting problem to test and verify various configurations.

Measuring brain voltage
Excitation currents in the brain produce an electrical field that

can be detected as small voltages on the scalp. By using elec

troencephalograms (EEGs) to measure changes in the patterns of

the scalp’s electrical activity, physicians can detect some forms of

neurological disorders. However, these measurements provide

physicians with only a blurred projection of brain activity. A per

vasive problem in neuroscience is determining which regions of

the brain are active, given voltage measurements at the scalp.

If accurate solutions to such problems could be obtained, neu

rologists would gain noninvasive access to patient-specific cor

tical activity. Access to such data would ultimately increase the

number of patients who could be effectively treated for neural

pathologies such as multifocal epilepsy.

Putting SCIRun to work
We use SCIRun to solve these two bioelectric field problems in

medicine. In the first case, illustrated in Figure B, we use SCIRun

to design internal defibrillator devices and measure their effec

tiveness in an interactive graphical environment. In the second

case, we use SCIRun to develop and test computational models of

epilepsy and localize the focus of electrical activity within the brain.

Since trial and error has in the past determined placement of

the electrodes for either type of defibrillator, one of our goals is

to use SCIRun to assist in determining the optimum electrode

placement to terminate fibrillation. Figure C shows an image of

our algorithm running within the SCIRun environment. By inter

acting with the model, the user can seed the algorithm with

sources placed in physiologically plausible regions of the model.

In practice, this computational steering capability translates into

more than a 50 percent reduction in the number of iterations

required.

Saving resources
Even simulated experiments of such complexity can be time

and cost prohibitive. By using SCIRun, however, you can inter

actively steer such a simulation, which can have a direct impact

on both time and cost.

Long before the system completes a detailed solution, you

might determine that the configuration isn’t acceptable and might

therefore try a new configuration and restart the simulation.

Instead of throwing everything away and starting over, SCIRun

parameters that you've instrumented. This technique

also has implementation complications, such as data

transmission overhead if you send data to a separate

visualization process, computation stalling if you do

visualization internally, and complicated synchro

nization between visualization and computation

components.

Directed scientific computation
An alternative approach to program instrumenta

tion is to break a code up into various modules that

you control explicitly by issuing a sequence of com

mands. One popular approach for doing this is to rely

upon scripting languages such as Python or T cl. Many

developers have used this model successfully in com

mercial packages such as IDL, Matlab, or Mathema-

tica. And large labs, like Los Alamos and Lawrence

Livermore National Laboratories,711 use this model

for physics applications.

By using this method you can reuse almost all of

the original scientific code. Also, this method is quite

easy to implement on most systems, since it avoids

the problems of managing multiple threads and syn

chronization. This makes it suitable for controlling

most kinds of applications—including large parallel

applications on both distributed-memory and shared-

memory systems.

The scripting language interface also provides

expert users with a fine degree of control over most,

if not all, program parameters. This means that the

system can be used for scripting long-running simu

lations, prototyping new features rapidly, and even

debugging.

As an added benefit, most scripting languages pro

vide access to Tk, a toolkit for building graphical user

interfaces. Thus, you could implement a graphical

user interface over a command-driven system if you

need to.

Dedicated steering systems
If you’re fortunate enough to be designing a new

model with computational steering in mind, you’ll

have more room for innovation. For example, we

designed the SCIRun system specifically for compu-

62 Authorized licenseduse limited to: The University of Utah. Downloaded on August 28, 2009 at 18:20 from IEEE Xplore. Restrictions apply.

Figure B. A SCI Run three-dimensional rendering of an internal de fibril
lation simulation. A user can interactively investigate the voltage sur
faces and the lines of electric current flow as well as change the posi
tion and shape of the electrode source.

uses temporal and spatial coherence to compute only those

aspects that have changed between the previous simulations and

the new one. In scenarios where you make only small changes to

input parameters, you can achieve a significant CPU and stor

age savings.

There are many engineering design problems that could ben

efit from such a system. These range from the biomedical prob

lems discussed here to traditional mechanical design.

References

1. S.G. Parker, D.M . Weinstein, and C.R. Johnson, “The SCIRun

Computational Steering Software System,” Modern Software

Figure C. A SCIRun EEG rendering. A user can select physiologically
plausible regions of the model in which to seed the algorithm, thereby
steering the algorithm to a more rapid convergence.

Tools in Scientific Computing, E. Arge, A.M. Bruaset, and H.P.

Langtangen, eds., Birkhauser, Boston, 1997, pp. 1-44.

2. C.R. Johnson and S.G. Parker, “Applications in Computational

Medicine Using SCIRun: A Computational Steering Programming

Environment,” Proc. Supercomputer 95, Springer-Verlag, New

York, pp. 2-19.

tational steering. (See the sidebar “Contributing to

Medical Science” for a description of how we’re using

SCIRun to solve certain medical problems.) It allows

you to construct a simulation using reusable compu

tational components connected within a visual pro

gramming environment. We designed each of these

components, in addition to the system as a whole, to

integrate modeling, computation, and visualization,

and to facilitate the interactive steering of all phases of

the simulation.

Unlike directed approaches, the SCIRun system man

ages each module as an independent execution thread,

which allows you to interact with the system even dur

ing long-running operations—although data depen

dencies between operations may force you to wait for

results. The dataflow model used by SCIRun also sim

plifies synchronization issues, making it relatively easy

to siphon data and feed it to various analysis and visu

alization modules as a simulation progresses.
A dedicated steering system such as SCIRun offers

many advanced features over traditional systems,

especially if you’re writing a new application. While

such systems offer a somewhat flexible model that can

accommodate existing code, applying them to existing

code can be difficult in practice. Scientific applications

may not have been written in a manner that is easily

translated to such a steering environment. In other

cases, there may just be too much dust on the deck, in

which case it would be easier just to start over.

Advanced steering systems like SCIRun may also

rely on a style of programming that is difficult to imple

ment on certain machines. For example, the compu

tational model used in SCIRun was designed for use

with shared-memory symmetric multiprocessing sys

tems. Implementing the system on a distributed mes

sage-passing machine involves different challenges.

Data pr esentation
Another consideration is presenting the informa

tion itself. Choices range from off-the-shelf visualiza

tion tools to custom analysis and visualization

programs.7,8,12 Ideally, a flexible control structure

would allow a variety of tools to be mixed and

matched for each specific problem.

Authorized licensed use limited to: The University of Utah. Downloaded on August 28, 2009 at 18:20 from IEEE Xplore. Restrictions app ly^ ember 1 999 63

Often, the full power of a computational

steering system comes from the tight integration

of scientific codes with visualization tools that

were designed for that problem. You would typ

ically use visualization to view the results of a

computation, but it can be used in other roles as

well, such as to visualize memory usage, algo

rithm performance, or multiprocessor commu

nication patterns. And you can also use

visualization to examine intermediate results,

matrix structures, mesh details, or domain

decompositions.

In other cases, it may be possible to use pre

existing software as a presentation mechanism. For

example, a system may use public domain graphing

libraries and image processing tools. Researchers have

also used commercial systems with success.7

Putting it all together
Because computational scientists have a wide vari

ety of needs, computational steering systems should

be able to serve different users and applications by

operating in different modes. For example, in a debug

ging or development mode, you may want to use a

highly interactive system that allows parameters and

simulations to be run in almost real time. However,

you may later want to run large simulations requir

ing hundreds of CPU hours. In this case, it may be eas

ier to use a control language and write batch scripts

than to use an interactive environment.

You may also want to write extensions or use the

system with your own applications. Unfortunately,

doing so may require a detailed understanding of each

facet of the problem. Because researchers can see the

complexity of applying such systems to their own

work, many continue to ignore computational steer

ing efforts altogether. While there is no easy answer,

it is clear that this issue will need to be addressed in

order for steering to be adopted into mainstream sci

entific computing efforts.

STEERING EVOLUTION

The convergence of high-end graphics workstations

and supercomputers will allow more people to per

form both computations and visualizations. Instead

of transferring gigabytes of data to a visualization

workstation, you’ll be able to perform the visualiza

tion directly on a supercomputer.

Also, while most people did not have ready access

to graphics workstations a few years ago, today they

do. The popularity of advanced graphics cards means

that high-powered workstations are becoming fairly

commonplace.

While simulation is becoming more accessible, it is

also playing an increasingly important role in today’s

scientific and engineering worlds. Increased safety

Even though it seems

like computational

steering is well

poised for

widespread

popularity, there are

still a few barriers.

responsibilities, heightened environmental awareness,

and cheaper CPU cycles have all increased the moti

vation for many engineers to do simulation instead of

real-world experiments.

Even though it seems like computational steering is

well poised for widespread popularity, there are still a

few barriers. For example, many supercomputers are

currently set up for batch processing, not for interac

tive use. A computational steering system violates

many of the assumptions on which a batch mode sys

tem relies. As a result, site managers and system devel

opers need to recognize the benefits of steering

large-scale applications before they’ll implement the

technology.

Even though spending some time interactively set

ting up a simulation may save tens to hundreds of

hours of production time, the preconception that inter

activity wastes CPU cycles will remain difficult to over

come. Performing visualization and rendering tasks

using these cycles can be extremely expensive, partic

ularly since accounting systems at supercomputer sites

focus on CPU cycles used rather than on those saved.

Note, however, that costs are important to consider

for large problems run on supercomputers, but may

not be relevant to the scientist doing smaller problems

on a desktop superworkstation. Furthermore, with the

trend toward smaller machines placed at the super

computer center site, you can offload tasks from the

primary machines at large facilities, which means you

can reduce cycle costs up front.

FUTURE DIRECTIONS

Interactive simulation and visualization will suc

ceed only if such systems can be useful to scientists

and engineers. These systems need to be

• modular and easy to extend with existing code,

• upgradeable without encountering complex pro

gramming issues,

• adaptable to hardware ranging from the largest

of supercomputing systems to low-end worksta

tions and PCs, and

• demonstrably usable in scientific research.

Working prototypes are a start, but we hope that sci

entists and engineers will soon view steering systems

as among the most useful and necessary of their

working tools.

We are currently researching distributed steering

systems that would involve multiple platforms and

languages. Ultimately, we hope that this research will

lead to the development of steering systems that are

• highly interactive and easy to extend,

• capable of working well with large amounts of

data, and

64 Authorized licenseduse limited to: The University of Utah. Downloaded on August 28, 2009 at 18:20 from IEEE Xplore. Restrictions apply.

• adaptable to ordinary workstations, high-end

servers, and supercomputing systems.

Furthermore, while component-oriented designs

have achieved success in many areas, making such

component-oriented designs work for interactive

computational steering systems continues to be a

challenge.

Other advances in simulation technology, such as

the increased importance of adaptive mesh refinement,

present both a challenge and an opportunity for com

putational steering. While an adaptive structure is

more difficult to manage, it presents a natural vehicle

to perform multiresolution data transmission and visu

alization, and even to effect user-directed changes in

the computation.

W e hope that as the community addresses and

solves these problems, emphasis will shift

toward issues related to data management,

quality of service, and reproducibility of results. ❖

Acknowledgments

This research was supported in part by awards from

the DOE, NSF, and NIH. We recognize the valuable

resources available at the SGI Utah Visual Supercomputing

Center at the University of Utah and we thank David

Weinstein for his helpful comments and suggestions.

References

1. W.E. Lorensen and H.E. Cline, “Marching Cubes: A

High Resolution 3D Surface Construction Algorithm,”

Computer Graphics, July 1987, pp. 163-169.

2. Y. Livnat, H. Shen, and C.R. Johnson, “A Near Opti

mal Isosurface Extraction Algorithm Using the Span

Space,” IEEE Trans. Vis. Comp. Graphics, IEEE CS

Press, Los Alamitos, Calif., 1996, pp. 73-84.

3. H.W. Shen et al., “ Isosurfacing in Span Space with

Utmost Efficiency,” Proc. IEEE Visualization 1996,

IEEE CS Press, Los Alamitos, Calif., pp. 287-294, 1996.

4. J. Painter, H.P. Bunge, and Y. Livnat, “Case Study: Man

tle Convection Visualization on the Cray T3D,” Proc.

IEEE Visualization 1996, IEEE CS Press, Los Alamitos,

Calif., 1996, pp. 409-412.

5. Y. Livnat and C.D. Hansen, “View Dependent Isosur

face Extraction,” Proc. IEEE Visualization 1998, IEEE

CS Press, Los Alamitos, Calif., 1998, pp. 175-180.

6 . W. Schroeder, K. Martin, and W. Lorensen, The Visual

ization Toolkit: An Object-Oriented Approach to 3D

Graphics, Prentice Hall, New York, 1997.

7. P.M. Papadopoulos and J.A. Kohl, “A Library for Visu

alization and Steering of Distributed Simulations Using

PVM and AVS,” High Performance Computing Symp.,

Montreal, Canada, 1995.

8. Y. Jean et al., “An Integrated Approach for Steering,

Visualization, and Analysis of Atmospheric Simula

tions,” Proc. IEEE Visualization 1995, IEEE CS Press,

Los Alamitos, Calif., 1995, pp. 411-418.

9. W. Gu et al., “Online Monitoring and Steering of Large-

Scale Parallel Programs,” Proc. 5th Symp. Frontiers of

Massively Parallel Computing, IEEE CS Press, Los

Alamitos, Calif., 1995, pp. 422-429.

10. J. Vetter and K. Schwan, “Progress: A Toolkit for Inter

active Program Steering,” Proc. 24th In t’l Conf. Paral

lel Processing, IEEE CS Press, Los Alamitos, Calif., 1995,

pp. 139-142.

11. P. Dubois, “Making Applications Programmable,” Com

puters in Physics, Jan. 1994, p. 70.

12. D.M. Beazley and P.S. Lomdahl, “Lightweight Compu

tational Steering of Very Large-Scale Molecular Dynam

ics Simulations,” Supercomputing 96, ACM Press, N ew

York, 1996.

Christopher Johnson directs the Center for Scientific

Computing and Imaging at the University of Utah. His

research interests include inverse and imaging prob

lems, problem-solving environments, computational

steering, and scientific visualization. He received a PhD

from the University of Utah.

Steven G. Parker is a member of the Center for Sci

entific Computing and Imaging research staff. His

research interests include scientific visualization, com

puter graphics, user interaction, and scientific com

puting. He received a PhD in computer science from

the University of Utah.

Charles Hansen is an associate professor of computer

science at the University of Utah. His research inter

ests include large-scale scientific visualization, mas

sively parallel processing, parallel computer graphics

algorithms, 3D shape representation, and computer

vision. He received a PhD in computer science from

the University of Utah.

Gordon L. Kindlmann is a graduate student in the

department of computer science at the University of

Utah. His research interests include volume render

ing. He received an MS in computer graphics from

Cornell University.

Yarden Livnat is a research associate in the depart

ment of computer science at the University of Utah.

His research interests include computational geome

try, scientific computation and visualization, and com

puter-generated holograms. He received a PhD in

computer science from the University of Utah.

Contact the authors through Chris Johnson at

crj@cs.utah.edu.

Authorized licensed use limited to: The University of Utah. Downloaded on August 28, 2009 at 18:20 from IEEE Xplore. Restrictions apply.^ ber 1999 65

mailto:crj@cs.utah.edu

