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Abstract
Energy efficiency in microarchitectures has become a 

necessity. Significant dynam ic energy savings can be real­
ized fo r  adaptive storage structures such as caches, issue 
queues, and register files  by disabling unnecessaiy storage 
resources. P rior studies have analyzed individual struc­
tures and their control. A  common theme to these studies 
is exploration o f  the configuration space and use o f  sys­
tem IPC  as feedback to guide reconfiguration. However, 
when multiple structures adapt in concert, the num ber o f  
possible configurations increases dramatically, and assign­
ing causal effects to IP C  change becomes problematic. To 
overcome this issue, we introduce designs that are reconfig­
ured solely on local behavior. We introduce a novel cache 
design that pem iits direct calculation o f  efficient configura­
tions. For buffer and queue structures, limited histogram- 
ming perm its precise resizing control. When applying these 
techniques we show energy savings o f  up to 70% on the in­
dividual structures, and  savings averaging 30%  overall fo r  
the portion o f  energy attributed to these structures with an 
average o f  2.1%  perform ance degradation.

1 Introduction
The philosophy of high performance microprocessor 

design has been to push for ever greater performance as 
the primary goal. Energy consumption used to be a sec­
ondary consideration, but with today’s smaller and much 
faster designs energy has become one of the critical sys­
tem design parameters. There are two basic approaches to 
reducing energy. The first approach is static: redesign ba­
sic hardware with energy efficient features that are always 
enabled. A complementary approach is to permit dynamic 
resource allocation and attempt to match the minimal re­
source requirements of an application. This paper explores
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the integration of multiple adaptive structures within a high 
performance general purpose microprocessor.

To achieve high performance across a wide range of 
applications, key structures in the microarchitecture are 
generally sized for worst-case applications within technol­
ogy constraints (area and cycle time). In particular, the 
caches and the instruction scheduling structures consume a 
considerable portion of the chip’s dynamic energy (20-35% 
and 55%, respectively, for the Alpha 21264 [21 ]). Since ap­
plications have differing needs, resources are often under­
utilized and can be reduced in size in order to save energy 
with minimal impact on performance; though, the particu­
lar resources which can be reduced depend on the appli­
cation. Unfortunately, with multiple adaptive structures, 
changes to one may affect the behavior of another, either 
positively or negatively. One approach to minimizing the 
complexity of controlling multiple adaptive structures is to 
provide designs in which only local information is required 
for good configuration decisions, i.e., greedy optimization. 
Such components can then be used as the basis for simpli­
fied meta-control for global optimization.

In this paper, we demonstrate that multiple indepen­
dent adaptive caches and adaptive scheduling logic can use 
local information for effective control. We introduce a new 
adaptive cache structure called an accounting cache. Prior 
adaptive caches use changes in system metrics to initiate 
a search of the configuration space. Invariably, the sys­
tem IPC is used as a fail-safe measure of the appropriate­
ness of the cache configuration. In contrast, the accounting 
cache design leverages LRU state in set associative caches 
to directly calculate  ideal configurations for performance 
and/or energy and eliminate search from the control pro­
cess. We demonstrate that three instances of the account­
ing cache, the LI instruction and data caches and the L2 
unified cache, operate simultaneously and independently to 
save energy with minimal performance impact.

For the instruction scheduling logic, we incorporate a 
buffer design from [6 ] and extend a control strategy from 
[ 17] to show that all buffers involved with scheduling can 
save energy using this dynamic design. The buffer design 
is space efficient and electrically isolates partitions of the
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buffer so they can be  selectively  tu rned  off. T he control 
strategy estim ates bu ffer resource  requ irem en ts  th rough  
lim ited  h is tog ram m ing  o f  the occupancy  statistics. T he in­
tu ition is that a full bu ffer stalls the p ipeline, so  the bu ffer 
shou ld  be  sized  w ith  ju s t  enough  partitions that the over­
flow ra te  is w ith in  a specified  m arg in . T he h is tog ram  in fo r­
m ation  p rov ides the con tro lle r w ith  p rec ise  in form ation  on 
the m in im um  size that m ee ts this criterion . T he con tro llers 
fo r all struc tu res use a to lerance setting  that d ic ta tes how  
aggressively  to  trad eo ff additional delay  fo r low er energy. 
We evaluate  the potential fo r red u ced  energy  consum ption  
w ith  the adap tive caches and  instruction  schedu ling  logic 
separately  and  in concert. A t the m idd le  to lerance setting, 
w e show  energy  sav ings o f  up  to  70%  on individual struc­
tures w ith  an average sav ings o f  34%  w hen all struc tu res 
are com bined . T h is energy  sav ings is ach ieved  w ith  an av­
erage  perfo rm ance  degradation  o f  2.1 %.

M ost re la ted  w ork  has ana lyzed  one or tw o individual 
struc tu res and  the ir con tro l. A lbonesi [ 1 ] described  a cache 
o rgan iza tion  —  selective cache ways —  that p rov id ed  the 
ability  to  reduce  energy  consum ption  by  res tric ting  the 
num ber o f  w ays accessed  on a cache access. B alasub ra­
m onian  et al. [2] expanded  th is w ork  w ith  a con tro llab le  
cache  and  T L B , w here bo th  the num ber o f  w ays and  sets 
o f  the cache  cou ld  be  set in a lim ited  m an n er th rough  ex ­
plo ra tion . D h odapkar et al. [9] a lso  re ly  on exp lo ration  for 
reconfiguring  the instruction  cache  bu t reduces the search  
overhead  w ith  a m ethod  to  iden tify  and  resto re  prev iously  
se lec ted  configurations. Pow ell e ta l.  [18] describe the de­
sign o f  an energy-effic ien t instruction  cache w hose access 
m ode is dynam ically  reeonfigurab le . B uyuk tosunog lu  et 
al. [6] describe  the design and  contro l o f  an adap tive issue 
queue w hich  uses IPC  as feed b ack  to  gu ide reconfiguration  
cho ices. G hose e ta l.  [17] expand  this w ork  to im prove the 
contro l a lgorithm  and  apply  it to  the reo rd er bu ffer in ad ­
dition  to  the issue queue. We ex tend  the w ork  fu rth er to 
include the physical reg ister files as adap tive structu res and  
incorporate  the use o f  u tilization  variance  ra ther than aver­
ages to  contro l reconfiguration  decisions. We d iscuss the 
special contro l needs fo r this extension .

T he rest o f  the pap er is o rgan ized  as fo llow s. Section  2 
describes the overall arch itec tu re , h igh ligh ting  all the adap ­
tive sto rage structu res that w e con tro l. Section  3 describes 
the contro l a lgorithm  and  hardw are  add itions to  the design 
o f  the adap tive instruction  and  data  caches (the account­
ing cache design). Section  4 describes the design  and  co n ­
trol o f  the adaptive bu ffer struc tu res —  the reg ister file, is­
sue queue, and  reo rd er bu ffer —  using  lim ited histogram- 
ming. Section  5 describes our experim ental m ethodology . 
We p resen t o u r evaluation  o f  the poten tia l benefits o f  the 
adaptive structu res in iso lation  as w ell as in concert in S ec­
tions 6 to  8. F inally , w e com pare  our design to  re la ted  w ork  
in Section  9 and  conclude  in Section  10.

2 System overview
Figure 1 show s a schem atic  o f  the m icroarch itec tu re  

u sed  in this study. T he arch itec tu re  is rep resen ta tive  o f  
a typical ou t-o f-o rd er superscalar design. T he adap tab le

F ig u re  1. T h e  B a s e  M ic ro a rc h ite c tu re : A d a p ta b le  
c o m p o n e n ts  a re  s h a d e d

com ponen ts are the shaded  structures. T he set o f  adap tab le  
caches inc ludes the L I instruction  and  data  caches and  the 
L2 un ified  cache. All three caches are in stan tia tions o f  an 
accoun ting  cache. T he set o f  adap tab le  sto rage buffers in ­
c ludes the re -o rd er bu ffer (R O B ), load /sto re  queue (LSQ ), 
in teger issue queue (H Q ), floating po in t issue queue (FIQ ), 
the in teger physical reg is te r file (IPR E G ), and  the floating 
po in t reg is te r file (FPR E G ). T he buffers are im plem en ted  
as R A M  structu res tha t are res ized  by  d isab ling  partitions, 
o r g roups o f  entries.

3 The accounting cache design

T he accounting cache is a reeonfigurab le  cache  de­
sign w ith  the un ique  fea tu re  that the perfo rm ance  o f  ev ­
ery  possib le  configuration  can be  d irectly  ca lcu la ted  from  
data  reco rded  each  in terval. T h is is regard less o f  the ac­
tual configuration  o f  the cache  fo r the in terval. R ecord ing  
the req u ired  data  is inexpensive and  done via a handfu l o f  
coun ters. T he system  designer specifies one configuration  
as the base configuration  and  the am oun t o f  perfo rm ance 
degradation  that can be  to le ra ted  in exchange fo r low er en ­
ergy consum ption . F rom  these constrain ts, the accounting  
cache  tracks w hat the perfo rm ance  o f  the base  cache co n ­
figuration  w ou ld  have been  and  reconfigures to  the low est 
energy  configuration  that perfo rm s w ith in  the specified  per­
fo rm ance  degradation  lim it. T h is section  p resen ts the ac ­
cess p ro toco l to  the cache, the additional LRU  inform ation  
req u ired  to  do  the perfo rm ance  track ing , and  the p e rfo r­
m ance and  energy  cost equations.

3.1 Access protocol

T he accoun ting  cache design is based  on the resizab le  
Selective Ways Cache p roposed  by  A lbonesi [1], R esiz­
ing is accom plished  by  d isab ling  w ays in a set-associative 
cache, w hich  reduces energy  because  few er w ays are a c ti­
va ted  on a read . F igure  2 show s the data  portion  o f  a 4-w ay 
set associative cache  w ith  w ays 2 and  3 d isab led  (shaded). 
T he tag array  can be sim ilarly  p a rtitioned  (not show n).

T he access p ro toco l is show n in F igure 2 and  is as fo l­
low s. T he initial access to  the cache is the prim ary access 
or the .4 access. A h it w ith  th is access UiitA) re tu rn s the 
data. O n a m iss w ith  the .4 access, ano ther access ca lled
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A Read from primary (miss)
B Read from secondary (miss)
Ci Write data from L2 into primary LRU
c 2 Move primary LRU to secondary

Discard/writeback secondary LRU
D Increment miss count

Data from 
'ey  L-2 Cache

/  MRU stats
Way 0 Way 1 /  Way 2 Way 3

i
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| MRU i |

mru|0] mruLl] mrtf|2] mru|3] | MRU 2 |
| MRU ? | 

| Misses |

@ ( 'b) 1
Increment

primary secondary ( D
read (miss) read (miss)

F ig u re  2. A c c o u n tin g  c a c h e  m is s  o n  re a d

the secondary access, or B  access, is made to the remain­
ing ways. A secondary access stalls subsequent accesses 
to the primary partition. A hit in the secondary (hitB) re­
turns the data but also swaps the block with one from the 
primary. An access that misses in both the primary and 
secondary graduates up to the next level in the cache hier­
archy. The returned data on a miss is placed in the primary 
and the displaced block is swapped into the secondary. The 
displaced block in the secondary is writtenback if it is dirty. 
The cache maintains full LRU information for true LRU re­
placement. We discuss the LRU details in Section 3.2.

The tag array for the cache can be partitioned identi­
cally as the cache or the tags can be partitioned indepen­
dently. For practical considerations, the tags are limited to 
two configurations: 1 ) the partitioning is identical to that 
of the cache (A-B tags), or 2) all tag ways are accessed 
in the primary group (full tags). The fu l l  tags option re­
quires additional tag energy on the primary access (all tag 
arrays are activated) but cache misses are detected without 
reading the secondary data cache (which has a high energy 
cost). Thus, application phases with lots of cache misses 
will benefit from the fu ll tags configuration while phases 
with few cache misses will prefer the A-B  tag  option. Ad­
ditionally, the access to the data may be done serially or in 
parallel to the tags. As one would expect, serially access­
ing the tag and data will be of most value in the secondary 
cache but, surprisingly, our results show that the this op­
tion sometimes can be of value in the primary cache. Ta­
ble 1 lists the configuration parameters. As an example, the 
base configuration of the level 1 data cache in a processor 
is Ar-way, fu l l  tags, and parallel tag and data. The three 
parameters are orthogonal to each other, so a 4-way cache 
would have 4 x 2 x 2 ̂  1 =  15 configurations (with a 4-way 
data primary both fu ll  and A-B  tag options are identical).

Table 1. Cache Configuration Parameters
Parameter Values
Ways (primary)
Tags
Tag/Data Access order

[LN]
{full, A-B} 

{parallel, serial}

3.2 LRU operation and implementation
3.2.1 LRU space requirements

In general, designers refrain from using true LRU replace­
ment due to the additional bits to maintain the LRU state. 
Simplified algorithms that perform nearly as well as true 
LRU track only the most recently used way to not replace 
or use a round robin policy. Both of these policies require 
only log2 (Ar) bits where Ar is the associativity. True LRU, 
on the other hand, requires log(Ar) bits per tag to maintain 
a full ordering of the sets for a total of Ar log2 (Ar) bits. A 
4-way set-associative LRU cache requires 8  bits vs only 2 
bits for the other policies, and an 8 -way requires 24 ver­
sus 3 bits. To put the additional resource requirements into 
context, in this study we use a 4-way 64KB level-1 data 
cache with 64 byte lines. In a machine with a 48-bit physi­
cal address, the tag for such a cache is 34 bits and the data 
512 bits. LRU state adds 2 additional bits per tag or 5.9% to 
the tag RAM, but only 0.4% additional space when includ­
ing the data RAM. We accurately account for the energy 
overhead due to this additional state.

3.2.2 LRU operation

Next-state transitions for true LRU are easily implemented 
using Ar counters of log2 (Ar) bits each. Assume an 8 -way 
set-associative cache as an example. Stalling with the fol­
lowing as the LRU state of the tags for the current cache 
access, assume a hit in way 4.

Way ID
1 2 3 4 5 6 7 8

LRU State before access
0 1 2 3 4 5 6 7

LRU State after hit on way 4
1 2 3 0 4 5 6 7

Upon a hit, all LRU states with a smaller count, i.e., 
more recently accessed, increment in parallel (ways 1-3). 
The tag that hit has its LRU state set to zero (way 4). If the 
LRU state is a higher count then it remains the same. The 
updated LRU state is written back to the LRU RAM. This 
update activity occurs for any replacement policy except 
random, which does not require any state.

3.2.3 Exploiting LRU information

In the following, it simplifies the discussion if we express 
the LRU order with its dual, the m ost-recently-used (MRU) 
ordering. We denote the most recently used way at a par­
ticular cache index as mr«o, the next most recently used as 
m ni i , and so on. Thus, the least recently used way in an
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N-way set associative cache is also m n i \  i (the subscript 
numbering starts at zero).

An LRU replacement policy provides considerable in­
formation if we notice that all hits to the most recently used 
set, m r«o, would be hits in a direct-mapped cache. Simi­
larly, hits to either rnru0 or rnrui would hit in a 2 -way set 
associative cache. In general, a hit to the n lh most recently 
accessed block mru„  would be a hit in a cache having at 
least n + 1 ways. Counting how many hits occur for each 
rnru state provides sufficient information to reconstruct the 
hit ratio for any partitioning of the cache. The cost is one 
counter per rnru state and one for misses; e.g., a 4-way 
cache requires a total of only 5 counters to record the activ­
ity of the whole cache. For any cache of practical size, the 
additional energy due to this small set of counters is about 
3 orders of magnitude smaller than a cache read access. We 
account for this (nominal) additional energy in our simula­
tions.

3.3 Performance and energy cost equations
For any configuration, we can directly calculate the to­

tal delays in accessing the cache and the energy in the fol­
lowing manner. Assume a given partitioning having c ways 
in the primary and N  — c ways in the secondary. Let us de­
fine the number of hits to the primary partition as 
to the secondary as hitsglc], and misses as Misses (we 
need no configuration parameter here because a miss will 
miss in all configurations). Assume the operation of the 
cache is such that every access first tries the .4 partition, 
then the B  partition on a primary miss, and finally the next 
level of the memory hierarchy on a true miss. From the 
MRU counts we can directly calculate how many .4 and B  
hits would occur for any configuration given the same ac­
cess pattern. We can use this information in simple cost 
functions to directly calculate the delay or energy for the 
set of accesses. The cost functions are given in Table 2.

Let us denote the primary, secondary, and miss RAM 
data access delays as dA, d%, and ddM, and the correspond­
ing tag access latencies as and tg  (there is no corre­
sponding tag access delay for a miss), using the superscript 
d as a mnemonic for delay. We also include a bus delay 
variable bus'1 to account for non-RAM access overhead in 
transfers (bus transfer delay). The energies are likewise la­
beled d(:A, dg, d(:M, t(:A, and t(:B. The parameters and 
l'full are the delay and energy of the tags in the full config­
uration. Note that each individual cache will have its own 
values for these factors. In Table 2, Equations 5a-f detail 
the costs for delay and energy for a cache configured using 
parallel tag/data and A-B tags. Using A-B tags means that 
a second access to the secondary partition must take place 
on a miss in the primary. In contrast, using full tags on the 
primary access eliminates the access to the secondary on 
a cache miss. In Equation 5a, the delay on a hit in .4 is 
the bus transfer costs busd plus the access time to the data 
RAM with the (faster) tag access time hidden behind the 
data access. The energy is that of the data and tag RAMs 
configured with c ways. On a hit in the secondary, the de­
lay includes the access to .4 and then B. Since blocks must

be swapped on a hit to the secondary, the energy includes 
these writes to the data and tag RAMs. Each write is to 
only one way and has energy dcs. = d\ for the data RAM 
and tcgw = t\  for the tag RAM. The remaining equations 
in Table 2 should be self explanatory. Not shown are the 
equations for the configuration combinations parallel/full 
and seriaUA-B as they are easily derived from the above 
examples.

T ab le  2. A c c o u n tin g  c a c h e  c o s t  fu n c t io n s
G eneral cost functions

1. T o ta lGA
2. l o t a h - H
3. T o ta lCM

4 . T o t a lc f -

c] =  h its  .\ lc \ x  C.a[cJ 
c] =  h i t s j j [ c ] x  P b [ c ]
=  M is s e s  x  C'm
=  T o t a l c ,  \c] +  T o ta lC a \c] +  T o t a l s ,

D elay  cost o f  p a ra lle l tag/data w ith  A -B  tags

5a. D elay  
5 b. E nergy

.1 h it D  \ [ c ]  =  bus '1 +  d ‘\
e a [c] =  d \ + 1 : \  ‘

5c. D elay  
5d. E nergy

B  h it Db [c] =  bus '1 +  d \  +  d%
E B [c] =  +  t%) +  (tfjj +  1%)

4- f 6 ^1 y^swav 1 swap>
5e. D elay  
5f. Energy

m iss D m  [c] =  bus '1 +  d ‘\  +  d dB  +  d ^ j  
E m [c]  =  E b [c] (  s e e 5 d )  '

D elay  cost o f  se ria l tag/data w ith /if // tags

6a. D elay  
6b. E nergy

A  or B  hit D  x / b  [c] =  bus'1 +  lf jM  +  d f

U a / b [c] = c t i +  l.%u

6c. D elay  
6d. E nergy

m iss D m  [c] =  i f M  +  d ,f{

+  ( k wap +  t iWap)

3.4 Accounting and configuration selection

Our goal is to improve energy efficiency with minimal 
degradation in CPI relative to a specified base system. The 
strategy is to minimize energy with the constraint that the 
portion of the memory access time attributable to the cache 
is within a specified percentage of the delay that the same 
accesses would have in the base system. The base con­
figuration defines the latency to which the dynamic cache 
must compare. The performance degradation percentage is 
called the tolerance setting. For this study, we use toler­
ance values of 1.5%, 6.2%, and 25%, which correspond to 
the fractions 1/64, 1/16, and 1/4, respectively.

Configurations are selected by gathering MRU (or 
equivalently, LRU) statistics for an interval and then calcu­
lating the delay and energy costs. A hardware timer triggers 
an interrupt to run a small, fast software cache analysis rou­
tine. A PAL-code routine like the A1pha21264 [8 ] supports 
does not have to save register state so the overhead is min­
imal. The analysis routine reads the MRU register values 
containing how often blocks were accessed with the corre­
sponding MRU state, and calculates the delay and energy 
values for all possible cache configurations. For example, if 
our MRU counts are r n r u o  = 0, r n r u i =  0, m ni > = 100, 
and rn ru ? , = 0, both a 3- and 4-way cache would have the 
same performance since all the rn ru -2 accesses would hit, 
but the controller selects a 3-way configuration because the 
energy cost of the accesses is lower. The MRU state coun­
ters are cleared by the handler before returning. In our sim­
ulations we use an interval of 1 0 0 , 0 0 0  instructions between
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reconfigurations. We estimate a highly tuned handler will 
be on the order of 1 0 0  instructions and have a high degree 
of parallelism (high IPC). The reconfiguration is accom­
plished by writing a value to a system register. The energy 
and delay of the handler is the cost of reconfiguration. We 
do not include the interrupt handler in our simulations.

We call the delay that the base cache configuration 
would have incurred for the interval dbasc- We add dbasc 
to an accumulating delay counter Dbasc- This counter 
maintains the total delay cost for all prior accesses for a 
base cache configuration. A second counter D actuai ag­
gregates the calculated delays dactuai per interval for the 
actual cache configurations used. Cache configurations are 
selected to maintain the relationship relative to a tolerance 
setting T  of D actuai < Dbasc x (1 + T ), while minimizing 
energy usage. The difference ((1 + T ) x Dbasc — D actuai) 
is a cache’s delay account value V d. The account builds 
savings (credits) that the controller can spend on additional 
delay in exchange for lower energy. In addition, a simi­
lar energy account V c is kept as a fail-safe in the event of 
pathological behavior (discussed below).

To select the next configuration, we assume the pattern 
of accesses in the next interval will be identical to that of 
the prior one. From this assumption, we estimate the per­
missible delay for the next interval that is within the toler­
ance setting, dncxi < dbasc x ( 1  +  T) +  V d (this includes 
delay credits, or possibly debits, accumulated in prior inter­
vals via V d). If the quantity V d +  dbasc x T  < 0 
then dncxi < dbasc ar|d the controller is forced to 
select the fastest possible configuration to make up the 
debit. Otherwise, the configuration with the lowest en­
ergy is selected whose estimated delay cost is within 
dbasc x (1 +  T) +  \ d.

A key feature of the cache accounts is that they per­
mit the controller to amortize costs or credits across many 
intervals. Thus, cache selection can be aggressive and per­
formance glitches due to phase shifts in access patterns will 
be corrected. As we discuss in our results, in the case of 
over-performance the extra accumulated margin permits a 
more aggressive energy saving configuration to be selected 
periodically, even though the per interval delay for the en­
ergy saving configuration is above the per interval toler­
ance. The delay account V d also helps at phase shifts. The 
controller does not need to explicitly detect phases. A sig­
nificant change in the access pattern will manifest itself in 
a different ordering of configurations based on their total 
delay costs for the new access pattern. The delay account 
ensures that the additional delay incurred during a phase 
shift is eventually paid for in future configurations. The 
account permits the controller to atone for guessing wrong 
at that interval. In the event of pathological, rapid phase 
shifts when the prior interval is a poor estimate of the next, 
the delay and/or energy accounts for the cache will become 
negative. A negative account forces the controller to de­
fault to the baseline configuration because that configura­
tion guarantees zero difference in performance. Over suc­
cessive intervals, credits accrued due to the tolerance factor 
will eventually repay the debit and make the accounts sol­
vent once again. This important feature limits the perfor­

mance and energy impact of pathological behavior to that 
of the baseline performance, but also permits reconfigura­
tions again when (and if) that erratic behavior ends.

The accounting cache design requires a set associative 
organization in which all of the ways are accessible. This 
condition is sufficient to simulate how larger cache config­
urations would have performed on any pattern of accesses. 
With the LRU (MRU) statistics, reconfiguration decisions 
are independent of the system-wide IPC effects. This is 
in sharp contrast to exploration-based cache reconfigura­
tion schemes [1, 2, 9] and is the primary advantage of the 
accounting cache design when combined with other dy­
namic structures, which can affect the IPC. The account­
ing cache design as presented here requires a cache to be 
set-associative. However, we believe other dynamic en­
ergy saving schemes (e.g., [2 , 18]) can incorporate the ba­
sic accounting concept to enhance their efficiency or, at a 
minimum, to detect and prevent pathological CPI degrada­
tions arising from mismatches between the cache configu­
rations and the application (e.g., possibly due to rapid phase 
changes in the application).

Finally, the delay calculations are only estimates of the 
effects on the processor’s CPI. There are multiple reasons 
why: memory accesses account for only a percentage of an 
application’s execution time; the memory hierarchy may 
have slack relative to the other parts of the processor so an 
increase in delay may not significantly increase CPI; and 
parallelism between the caches, particularly between the 
level-1  instruction and data caches, decouples the effects of 
delays as well. Selecting cost parameters that assume max­
imum parallelism ensures that the calculated CPI degrada­
tion is an upper bound on the I rue CPI degradation due to 
cache reconfigurations. A future direction of study is on 
how to tighten this bound on the CPI effects by accounting 
for the above situations more accurately.

4 The adaptive buffer design

Buffers throughout the processor store instructions in 
order to decouple timing dependencies between the stages, 
as well as to increase the effective window of available in­
structions in order to exploit instruction-level parallelism. 
Our microarchitecture (Figure 1) has individual queues for 
the separate types of functional units. Specifically, we 
modified Simplescalar to split its centralized RUU into a 
set of buffers: a reorder buffer (ROB), one integer issue 
queue (IIQ), one floating point issue queue (FIQ), and one 
load/store queue (LSQ). In addition, there are the separate 
physical integer register file (IPREG) and the floating point 
physical register file (FPREG). In this study, we assume 
all buffers are implemented as RAMs, with associative ad­
dressing capabilities in the IIQ, FIQ, and LSQ.

To save energy, each buffer’s RAM is partitioned by 
bit-line segmentation. Bit-line segmentation electrically 
isolates regions of the RAM to reduce dynamic energy on 
accesses [6 ]. Figure 3 shows how bit-line segmentation re­
duces the access energy by reducing the capacitance on the 
bit-lines. Only the enabled partitions expend dynamic en­
ergy [6 ]. An alternative RAM design based on banking is
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partition to be disabled must be freed by moving their con­
tents to different physical registers that will remain active 
(the logical registers are the same).

The rename logic complicates resizing in comparison 
to the issue queues. In the integer register file, for example, 
when a load is fetched, the rename logic selects a register 
from the free list and records the logical to physical map­
ping in the map table. A mapped physical register becomes 
free when the following are satisfied:

1. The instruction writing the value has been committed.

2. All in-flight instructions using the value have read it.

F ig u re  3. R e s iz a b le  b u ffe r w ith  2 p a r t i t io n s  d ia b le d

used in [17]. The underlying structure of the RAM does not 
impact the control. In both designs, the electrically optimal 
partitioning was found to be the same: 16 entry partitions 
for the ROB and 8  entry partitions for all other buffers.

4.1 IIQ, FIQ, LSQ, and ROB resizing

When downsizing a buffer we always turn off the parti­
tions in the order of highest address to lowest, and resize up 
in the reverse order. Restricting the resizing in this manner 
simplifies the circuitry [6 ]. However, before downsizing 
the IIQ or FIQ, we must wait until existing instructions in 
the partitions to be turned off have issued. Furthermore, 
we must restrict instructions from being dispatched into 
these partitions. Additional care must be taken in resiz­
ing the ROB and LSQ because of their circular FIFO-like 
structure. The physical implementation uses a head and 
tail pointer with wrap-around at the buffer limit. Before 
resizing, we must ensure the head and tail pointers do not 
straddle the partition to be disabled otherwise buffered in­
structions could be caught in the disabled partition [17].

4.2 Register rename operation

Register renaming [16] performs logical (architec­
tural) to physical register mappings, thereby eliminating 
write-after-read and write-after-write dependences when 
there are sufficient physical registers. In a processor such as 
IBM’s Power4, which can support up to 200 instructions in 
flight through the pipeline simultaneously [2 0 ], register re­
naming is critical for exploiting the processor’s superscalar 
capabilities. The approach to register renaming proposed 
by [16] utilizes the pool of registers more efficiently than 
alternative designs that maintain a separate pool of archi­
tected registers in addition to a register set for renaming. 
In this design, upon instruction commit the architected reg­
ister’s contents are updated. A design with a single com­
mon pool of registers offers better opportunity to turn off 
more physical registers. However, since the physical regis­
ters remain mapped until the logical register is over-written, 
before buffer resizing can occur, all active registers in the

3. The physical register has been unmapped by a subse­
quent write to the same logical register.

Until all three conditions are satisfied, a physical regis­
ter cannot be freed. It may be possible that a logical regis­
ter is used early in the program and never assigned again by 
the compiler. The physical register mapped to that logical 
register can never be freed. The implication to dynamically 
resizing the register file is that we cannot guarantee a parti­
tion of the register file RAM will ever have all its physical 
registers unmapped. Because of this issue, simply disabling 
partitions as is done in the issue queues will not work. This 
condition would seem to greatly diminish the likelihood of 
ever being able to downsize the register files.

To turn off a partition in the register file requires the 
following: remove the registers to be disabled from the free 
list: move the contents of active registers to be disabled to 
other registers that will remain enabled, and remove the 
newly freed registers to be disabled from the free list.

This additional complexity for resizing the register 
files necessitates a software handler. To move a logical 
register to a new physical register, the software handler is­
sues a move instruction from the logical register back to it­
self: mov r7, r7. The normal operation of the rename logic 
will move the contents into a new physical register from 
the free list and unmap the physical register in the partition 
to be disabled. The map table contains the information for 
logical to physical register mappings so the software han­
dler could have direct access to this information. Turning 
a partition back on is then just a matter of adding the par­
tition’s registers back onto the free list. Because the RAM 
is disabled from the top (highest numbered register) down 
(lowest), an ID can be set and any register with an address 
greater than the ID is considered removed from the free list 
and cannot be selected by the renaming logic.

4.3 Reconfiguration control

The controller is an extension of the design in [17]. In 
that work, the buffer is sampled at periodic intervals and 
the number of entries are accumulated in a counter. At the 
end of the interval, a simple shift of the count provides the 
average buffer occupancy. The buffer is sized to the num­
ber of partitions that will hold the average occupancy. An 
overflow counter ensures against a buffer being sized too
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small. Every cycle the buffer is full increments the over­
flow counter. When the count reaches a threshold it triggers 
an immediate upsizing of one partition.

Our implementation uses a different emphasis for the 
design. The intuition is that we want to size the buffer such 
that overflows occur with a frequency below a set threshold 
during the interval. In a finely partitioned buffer, choosing 
the average occupancy size means that half of the time we 
would then actually require a size greater than the average. 
We take the position that the upper tail of the occupancy 
distribution is the proper metric. The proper sizing is that 
which selects a sufficient number of partitions such that the 
portion of the distribution that would extend beyond the re­
sized buffer (i.e., the overflows) is less than the threshold. 
We histogram the occupancy at the granularity of the parti­
tions, p  entries per partition. In particular, for a buffer with 
four partitions each with p  elements, there are three coun­
ters. The first counter ho increments when the occupancy 
N  is greater than or equal to p, the next counter h i  incre­
ments when N  >  2p, the third counter increments when 
N  >  3p. The counters are associated logically with the 
buffer and track the true number of entries occupied and 
not the actual locations occupied in each partition (i.e., the 
histogram is a virtual compaction of the queue). Since we 
are only concerned if the overflow threshold would have 
been exceeded, the counters saturate at the overflow limit. 
The saturation reduces the number of cycles the counter 
is active. We downsize the buffer to the partition whose 
counter has not saturated. The highest numbered histogram 
counter of the active partitions simultaneously acts as the 
overflow counter. We also immediately upsize when the 
overflow threshold is reached. We use the same three tol­
erance settings as in the cache simulations: 1.5% (1/64), 
6.2% (1/16), and 25% (1/4). The overflow threshold is the 
tolerance fraction of the interval period, e.g., 6.2% of 8 K 
cycles.

5 Evaluation methodology

Our evaluation methodology uses Simplescalar [5] 
for the Alpha AXP instruction set and the Wattch power 
model [4], We simulate an out-of-order superscalar pro­
cessor similar to the Alpha 21264 in that there are separate 
issue queues for the different types of functional units. Ta­
ble 3 lists the microarchitectural parameters and Table 4 
lists the benchmark suite.

We model the memory hierarchy in detail to account 
for all actions and side-effects of the configurable cache 
operation, including the swapping of cache blocks between 
primary and secondaiy partitions. The TLBs are not config­
urable in this study. Our timing analysis reveals that serial 
accesses have a latency that is approximately 1 .6  that of a 
parallel access. We use this multiplier to set the access time 
for a cache configured to serially access tag and data, thus, 
the access latency of the LI caches increases to 4 cycles 
from 2 in serial tag/data mode and the L2 access latency 
increases to 19 from 1 2  cycles.

Table 3. Architectural parameters
Fetch queue 8 entries
Branch predictor comb, o f bimodal and 2-level gshare; 

bimodal/Gshare I.evel 1/2 entries- 
2048, 1024 (hist. 10), 4096 (global); 
Combining pred. entries - 1024;
RAS entries - 32; BTB - 4096 x  2-w>ay

Branch raispred. latency 10 cycles
Fetch, decode, width 4 instructions
Reorder buffer 128 entries
Integer issue 32 entries
Floating point issue 32 entries
Physical INT regs 96
Physical FP regs 96
Load entries 32 entries
Store entries 32 entries
Instruction TI.B 256 (64 x  4-w'ay) 8K pages, 30 cycle miss
Data TI.B 512 (128 x  4-way) 8K pages, 30 cycle miss
Memory latency 80 cycles
1-1 I-cache 64 KB, 4-w'ay, 64B line, 2 cycle
1.1 D-cache 64 KB, 4-w'ay, 64B line, 2 cycle
1.2 unified 2 MB 8-w'ay, 128B line, 12 cycle

6 Accounting cache results
Due to space constraints, we condense the results for 

the benchmark suite into Table 5 using arithmetic averages. 
We summarize the energy and delay data in Figure 4. In Ta­
ble 5 the first line lists the thresholds used. The thresholds 
are 1.5%, 6.2%, and 25%, which approximately correspond 
to 1/64, 1/16, and 1/4 (so the controller can use shift as a 
fast divide). The results compare the adaptable cache to a 
baseline configuration using the maximum number of ways 
with parallel tag/data access. We also compare against a 
base L2 with serial tag/data access.

6.1 Instruction cache

The instruction cache data is the first group of data in 
Table 5. The energy saving is 54.3% at 1.5% and 58.6% 
at tolerances of 6.2% and 25%. The reason for the large 
savings is clear from the breakdown of the average time 
spent in each of the cache configuration parameters. The 
most revealing metric is that the average number of ways 
is no larger than 1.2 (out of 4) across the tolerance levels. 
Thus, the minimum configuration of a direct-mapped 16 
KB instruction cache is generally sufficient for the bench­
marks and the controller correctly configures the cache to 
use minimum energy. An exception is vortex which uses
2.6 ways on average at 1.5% tolerance saving only 25% 
energy. At the lowest tolerance setting, the full tags config­
uration is selected during phases of cache misses to elim­
inate the delay for unnecessary accesses to the secondary 
and keep within tolerance.

We selected a relatively large 64 KB cache that is sim­
ilar in size to the Alpha 21264 [15]. An drastically smaller 
cache would have been needed for the benchmarks to stress 
it. We feel that the data cache results showcase the con­
troller’s abilities appropriately. We report the instruction 
cache energy contribution so its effects can be judged rel­
ative to the total energy. The row labeled Account Used 
is the portion of the extra cycle account actually used by 
the controller. Even at the highest tolerance of 25% degra-
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Table 4. Benchmarks
Benchmark Suite Datasets Instruction Window 64KB 4-w'ay DL 1 miss rate

em3d Olden 20K nodes. 20 iters 1000M-1100M 23%
health Olden 4 levels. 1000 iters SOM-MOM 18%

mst Olden 2K nodes 500M-600M 2%
compress SPBC95 INT ref 1900M-2100M 11%

gcc SPBC95 INT ref 1650M-1750M 6%
parser SPBC2K INT ref 2000M-2200M 3%

perlbmk SPBC2K INT ref 2000M-2200M Wo
twolf SPBC2K INT ref 1000M-1200M 5%
vortex SPBC2K INT ref 2000M-2200M \%

vpr SPBC2K INT ref 2000M-2200M 2%
applu SPBC95FP ref 200M-400M 3%

art SPBC2K FP ref 300M-500M 22%
swim SPBC2K FP ref 1000M-1200M %%
wave5 SPBC95FP ref 200M-400M \%

dation, the controller only needed to withdraw less than 
M25th of the accounts value.

6.2 Data cache

The level-1 data cache has more interesting behavior. 
As the tolerance level is increased, the energy savings also 
increase from 29.6% up to 45.2% due to adjustments in 
all three configuration parameters. The A-B tag option is 
selected over 30% of the time at the 6.2% and 25% tol­
erance settings. Somewhat surprisingly, the serial tag/data 
option is sometimes selected (2.9%) at the aggressive tol­
erance setting. The most energy savings, however, come 
from reducing the ways from 4 ways to nearly a direct- 
mapped cache, 1.3 ways on average at the 6.2% tolerance 
level. Notice that there are very few hits in the secondary 
(B) partition. The controller will always select configura­
tions to keep these accesses to a minimum.

6.3 L2 unified cache (parallel tag/data)

The first set of data for the L2 cache is relative to a high 
performance base configuration using parallel tag and data 
access. We can see that the controller aggressively uses the 
A-B and serial configuration options to save energy and is 
less aggressive at decreasing the number of ways (to 6 .1  

out of 8 ). The reason is that serializing the tag and data 
accesses is, in general, the single most effective means of 
decreasing energy consumption. The large memory access 
latency of 80 cycles provides a significant amount of credit 
to the L2 cache account that it can then trade for serializing 
the tags and data. The L2 controller uses over half of its 
tolerance limit (16% out of 25%), but this results in only a 
3.9% average slowdown. As mentioned previously, a cycle 
slowdown in the memory hierarchy usually does not trans­
late to a similar slowdown in the pipeline.

6.4 L2 unified cache (serial tag/data)

In Table 5, configuring for serial tag/data results in a 
small net loss of energy relative to the serial tag/data base 
configuration. The reason is due to the large difference be­
tween the tag energy and that of a data block access. In 
this architecture, reading all the tags requires only about 
1 /4th the energy of reading one data block. Recall that on

a miss blocks are swapped between the primary and sec­
ondary partitions. With such a disparity between energies, 
any additional data cache activity swamps any energy sav­
ings from partitioning the tags. The controller correctly 
detects this state of affair's and defaults to the base config­
uration. However, in this configuration the extra LRU bits 
of the accounting cache require additional energy not in the 
baseline cache and this results in a small net loss of 1 .1  % 
across the benchmarks.

A conclusion one might draw is that parallel tag/data 
access is not an attractive option. This conclusion is not 
necessarily correct. Table 6  lists the CPI values for each 
of the benchmarks for both parallel tag/data access and se­
rial tag/data access for our base system without adaptable 
caches. The ratio of the serial vs parallel base performance 
is shown in the last row. Most applications show little 
performance impact. However, compress and health show 
11% and 30%, respectively. Thus, some applications can 
run significantly faster if the L2 cache can be optionally 
configured for parallel tag/data as well as serial tag/data. If 
the additional performance is important then the dynamic 
cache can realize energy savings of 49.1% in the L2 for 
compress at the small 1.5% delay tolerance setting (and 
only 0.3% actual slowdown). For fair comparison, the se­
rial tag/data option offers an 85% energy savings (about 
twice) but incurs the 1 1  % slowdown.

Figure 4 graphs the relative energy savings for the dif­
ferent cache levels and also the aggregate relative perfor­
mance degradation. The first three groups of bars are for 
the individual cache levels. The fourth set is the relative 
energy savings for the complete cache hierarchy assuming 
an L2 with parallel tag/data access. In the third grouping, 
the lighter portionis the relative energy savings excluding 
the instruction cache (thus, the savings are relative to the 
data and L2 base energy). The dark portion is the additional 
savings if the instruction cache is included. The rightmost 
set of bars is the system performance degradation for each 
of the tolerance settings that was reported in Table 5. Se­
lecting the modest tolerance setting of 6 .2 % results in over 
40% energy savings relative to the caches, but incurs less 
than a maximum of 2 .8 % performance degradation across 
all the benchmarks with the average at 1 .1 %.

The average performance degradations are well below 
the tolerance setting. While the conservative design of the 
controller is such that this relationship always holds, feed-
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Table 6. Base Configuration CPI: Parallel vs Serial L2 Tag/Data
em M health mst compress gcc parser perlbmk

Parallel
Serial

1.2270 
1.2720

1.7912
2.3252

0.3170
0.3174

0.6074
0.6742

0.6173
0.6182

0.6328
0.6731

0.6247
0.6372

S/P Ratio 1.0367 1.2981 1.0013 1.1100 1.0015 1.0637 1.0200

tw olf vortex vpr applu art swim waveS
Parallel
Serial

0.6513
0.7108

0.4319
0.4646

0.7001
0.7143

0.5263
0.5266

0.8426
0.8756

0.6311
0.6342

0.3488
0.3495

S/P Ratio 1.0914 1.0757 1.0203 1.0006 1.0392 1.0049 1.0020

T ab le  5. E nergy , de lay , a n d  p e rc e n t  o f tim e  a  
c o n f ig u ra tio n  o p tio n  is  s e le c te d ,  a v e ra g e d  a c r o s s  
b e n c h m a rk s _____________________________________

Averages Across Benchmarks
Threshold 1.5 % 6.2 % 25.0 %'
Delay Increase 0.3 % 1.1 % 3.9 %'

Instruction L1 Cache
Bnergy Savings 54.3 % 58.6 % 58.6 %'
Tags full 5.4 % 0.1 % 0.1 %'

A-B 94.6 % 99.9 % 99.9 %'
Data parallel 100.0% 100.0%' 100.0%'

serial 0.0 % 0.0 %' 0.0 %'
Ways Ave 1.2 1.0 1.0
Hits B 0.2 % 0.4 %' 0.4 %'
Account Used 0.5 % 0.9 %' 0.9 %'

D ataL I Cache
Bnergy Savings 29.6 % 42.1 %' 45.2 %'
Tags full 89.7 % 68.3 %' 61.8%'

A-B 10.3 % 31.7 %' 38.2 %'
Data parallel 99.9 % 99.7 %' 97.1 %'

serial 0.1 % 0.3 %' 2.9 %'
Ways Ave 2.0 1.3 1.2
Hits B 0.7 % 2.0 %' 2.2 %'
Account Used 1.3 % 4.4 %' 6.6 %'

Uni tied L2 Cache (Parallel Tag/Data Base)
Bnergy Savings 25.5 % 41.1 %' 63.0 %'
Tags full 74.9 % 67.9 %' 60.6 %'

A-B 25.1 % 32.1 %' 39.4 %'
Data parallel 94.7 % 66.9 %' 32.9 %'

serial 5.3 % 33.1 %' 67.1 %'
Ways Ave 5.5 6.0 6.1
Hits B 1.9 % 1.8 %' 1.0 %'
Account Used 1.5 % 6.0 %' 16.0%'

Unitied L2 Cache (Serial Tag/Data Base)
Bnergy Savings -1.1 % -1.1 %' -1.1 %'
Tags full 67.5 % 67.8 %' 67.8 %'

A-B 32.5 % 32.2 %' 32.2 %'
Data parallel 0.0 % 0.0 %' 0.0 %'

serial 100.0% 100.0%' 100.0%'
Ways Ave 6.7 6.7 6.7
Hits B 0.3 % 0.3 %' 0.3 %'
Account Used 0.5 % 0.5 %' 0.5 %'

back to tighten this bound would in improve the energy 
savings. We are exploring how to measure the actual delay 
costs as they relate to the 11181111011011 commit rate. Informa­
tion from critical loads [10, 19] may help.

Due to the mismatch between reward and penalty in a 
serial tag/data access cache, the adaptive accounting cache 
design is most appropriate when a cache offers the paral­
lel tag/data access option. As an extended policy, a meta­
controller could activate the full LRU state and the adapt­
able capabilities of an L2 cache if high performance is re­
quired, but revert back to the simpler replacement policy (to

ENERGY PERFORMANCE

1.5 6.2 25 1.5 6.2 25 1.5 6.2 25 1.5 6.2 25 1.5 6.2 25

Latency Tolerance

F ig u re  4. R e la tiv e  c a c h e  e n e rg y  u s a g e  a v e ra g e d  
a c r o s s  a ll b e n c h m a rk s

save the 2% energy) when serial tag/data is determined to 
be sufficient. An interesting feature of the accounting cache 
is that its controller can easily determine the performance 
and energy trade offs and notify the meta-controller if, for 
instance, certain programmed pre-conditions are met.

7 Dynamic buffer results
Figure 5 shows the relative sizings for each of the 

buffers averaged across the integer benchmarks in the top 
graph and across the floating point benchmarks in the bot­
tom graph. Each group of bars represents one of the buffers 
and the three bars in the group are for each of the tolerance 
settings, 1.5%, 6.2%, and 25% from left to right. The dif­
ference in sizings is minimal between tolerances 1.5% and 
6.2%. The differences are small in system performance as 
well (far right) showing degradations of 0.3% and 0.8%. 
When the tolerance setting is pushed to 25% the struc­
tures are shrunk more aggressively and the average delay 
increases to 11.9%.

In the floating point benchmarks, again there is nom­
inal difference between the two lowest tolerances of 1.5% 
and 6.2%, and the highest threshold trades significant per­
formance (11.1%) to shrink the structures. Overall, these 
results track those in [ 17] which looked at a combined inte­
ger and floating point issue queue, the LSQ, and the ROB. 
In that study, the authors used a similar range of tolerances 
and the results showed similar variance in the performance 
degradation across the applications.

Both mst and waveS have large performance degrada­
tions at the 25% tolerance level, 41% and 39%, respec­
tively. In exploring this behavior, we discovered that in
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both benchmarks about half of the degradation was due 
to adapting the register files and the other half was due 
to adapting the queues. The performance degradation ef­
fects of adapting both sets of structures simultaneously are 
additive for these applications. This coupling of the ef­
fects appears to be fairly infrequent but it can occur and we 
specifically included mst and waveS to highlight this be­
havior. The adaptive cache takes into consideration some 
of the inter-cache effects via selecting proper values in the 
cost functions. Unfortunately, there is no equivalent inter­
buffer feedback. For the buffers, the tolerance setting effec­
tively bounds the per buffer effects on performance, but the 
possibility exists for the delay effects to be additive. Thus, 
the tolerance must be set conservatively. For future work, 
a method of assigning accurate performance costs to each 
of the buffers is needed so a system wide tolerance setting 
can be used.

8 Integrated system results
Figure 6  shows the results of combining all the adapt­

able structures in the system. The energy savings are shown 
on the left. In all groups, the energy savings are relative 
to the base energy of the components in the group. The 
first two groups of bars are the aggregated results for the 
cache hierarchy and buffers, respectively. The overall sav­
ings for the caches and buffers are 26%, 34%, and 48% for 
the tolerances 1.5%, 6.2%, and 25%, respectively. The per­
formance degradation has high variability at the aggressive 
tolerance setting of 25%. The raw data of the average num­
ber of cache ways and percent of buffer size activated is 
shown in Table 7 for all applications. Results for the 1.5% 
tolerance setting are omitted to save space. The large per­
formance degradations at the 25% tolerance level are due 
to the additive delays between the reconfigurable buffers.

To integrate the caches with the buffers we had to elim­
inate the need for tracking system IPC to guide cache con­
figuration decisions as is done universally in prior work. By

.100%
90%
80%
70%
60%
50%
40%
30%
20%
.1.0%

PERFORMANCE 
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F ig u re  6. S u m m a ry  of r e s u l ts

adding the accounting cache, each dynamic structure relies 
solely on local information for its resizing control. The 
disadvantage of this approach is that performance degrada­
tions due to reconfiguration actions can be additive (e.g., 
waveS), but the configuration controllers cannot account 
for this possibility. An important result of this exercise to 
integrate so many dynamic structures is that it highlights 
the fact that some method of global coordination is neces­
sary. A global controller will require mechanisms in mi­
croarchitecture to quantify these coupled effects between 
the reconfigurable structures. The ultimate goal should be 
to control the variability’ of the performance degradation 
when reconfiguring to save energy. Ideally, given a max­
imum performance degradation target the system should 
find energy savings without violating this constraint. Cur­
rent reconfiguration techniques (ours included) cannot of­
fer such a guarantee. We feel this is an important direction 
for future research.

9 Related work
This paper integrates a large number of dynamic struc­

tures that adapt independently to save energy with modest 
performance impact. The related work can be split into 
two groups: dynamic energy efficient caches and dynamic 
instruction scheduling logic. Distinct from dynamic con­
trol are static methods to improve energy efficiency. The 
static methods, such as subbanking, bit-line segmentation, 
and Gray coding, are orthogonal to the dynamic methods 
described here and both can be used together.

In addition to the related work [1, 2] described in Sec­
tion 3, Dhodapkar and Smith [9] extend the work in [2]. 
As in [2], the configuration space is searched and a con­
figuration is selected based on observing the system IPC. 
The extension is a method to generate a unique signature 
that they associate with the configuration parameters and 
store in a table. If the same working set signature occurs 
then the stored configuration can be read and directly ap­
plied without another search. Due to space limitations, we 
do not compare the accounting cache to the above designs. 
However, results not reported here have shown the energy 
savings of the accounting cache to be comparable to those 
of [2] for similar cache architectures. We consider the pri-
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Table 7. Summary results’ raw resizing data
App Perf Ave cache wavs Buffer size (%)

(%) IL11DL1 L2 IIQ| IPR i;G |i!IQ |i!PRi;G | ROB|LSQ
Tolerance setting o f 6.2%

em3d 2.2 1.0 1.0 7.0 89 82 50 50 75 100
health 3.0 1.0 1.6 7.3 99 51 25 14 39 76

mst 2.7 1.0 1.0 8.0 97 99 25 12 75 87
compress 1.6 1.0 1.2 4.5 86 95 35 16 76 79

gcc 0.2 1.0 1.0 2.4 98 35 25 12 50 100
parser 3.6 1.0 1.1 6.0 92 85 25 12 64 80

perlbmk 2.0 1.0 1.3 2.9 86 63 25 12 44 68
twolf 2.6 1.0 1.7 6.4 97 90 26 15 64 79
vortex 2.7 1.0 1.2 5.1 95 85 25 12 67 93

vpr 2.1 1.0 2.1 6.5 92 96 42 30 82 97
applu 1.6 1.0 1.5 8.0 71 55 96 98 82 99

art 1.8 1.0 1.0 7.3 78 88 50 40 76 90
swim 2.0 1.0 1.0 8.0 46 41 82 99 79 86
wave5 0.8 1.0 1.4 4.7 96 99 96 76 99 99
AVI; 2.1 1.0 1.3 6.0 89 70 56 48 72 88

Tolerance setting of 25%
em3d 4.8 1.0 1.0 8.0 81 76 50 50 75 100
health 15.9 1.0 2.0 7.5 99 48 25 12 37 73

mst 40.9 1.0 1.0 8.0 44 37 25 12 27 25
compress 14.6 1.0 1.3 3.7 43 48 25 12 37 39

gcc 0.3 1.0 1.0 2.1 72 30 25 12 49 99
parser 16.0 1.0 1.0 6.5 60 59 25 12 45 54

perlbmk 13.5 1.0 1.0 2.4 37 28 25 12 22 30
twolf 13.6 1.0 1.6 6.8 71 51 25 12 36 44
vortex 25.7 1.0 1.0 5.9 45 35 25 12 29 47

vpr 10.9 1.0 1.3 8.0 70 60 27 22 48 59
applu 11.3 1.0 1.0 8.0 45 28 81 84 56 74

art 7.4 1.0 1.0 7.4 44 85 44 39 72 89
swim 2.7 1.0 1.0 8.0 42 41 83 98 79 82
wave5 39 4 1.0 1.0 2.4 26 30 31 25 27 38
AVI; 15.5 1.0 1.2 6.1 60 47 44 38 50 69

mary contribution of the accounting cache design to be its 
independence from the system IPC which enables the inte­
gration of the dynamic caches with the dynamic buffers.

As mentioned previously, the dynamic RAM design is 
from Buyuktosunoglu et al. [6 ]. The controller design [7] 
shares similar features to the controller of Ponomarev et 
al. [17], but [17] adds an important upsizing reflex that 
quickly increases the buffer when metrics indicate it is too 
small. We extend this work by using histogramming to 
record the occupancy. We feel the histogram is more ro­
bust relative to the average occupancy metric because the 
histogram reveals the tails of the occupancy distribution. 
This nuance is most significant when the partitioning is at 
a fine granularity. Folegnani and Gonzalez [ 12] study re­
sizing the issue queue and similarly use the system IPC to 
detect if resizing is needed.

Powell et al. [18] use selective direct-mapping to re­
duce energy on accesses to set associative caches. The 
method in [18] accesses the tags in full on the primary ac­
cess, but only reads data from one way. The equivalent 
configuration in our study is full tags and 1 -way for the pri­
mary partition. The difference in their work is that the low 
order of the address bits determine which partition acts as 
the primary partition. Conceptually, this is an extension to 
our definition of a primary and secondary partitioning. The 
selective direct-mapping cache has tables to record which 
lines exhibit thrashing behavior and should use the set as­
sociativity to mitigate the problem. The authors report that

swim exhibits pathological behavior that results in signifi­
cant slowdown on an 8 -way cache. Accounting techniques 
could be added to detect this behavior and reconfigure the 
cache to avoid this pathological case of thrashing.

Energy due to subthreshold leakage current is expected 
to become a signficant factor in the near future [3]. Most 
techniques gate the power to turn off portions of the pro­
cessor [13, 14, 22], With this technique data in storage 
elements is lost. This effect is not an issue when resiz­
ing the buffers as done in this study and the unused por­
tion of the buffers can be power gated. For reducing static 
energy in caches, the drowsy cache design proposed by 
Flautner et al. [11] significantly reduces the leakage current 
while maintaining the stored state. The accounting cache 
could be built with this circuit technology.

10 Conclusions
Dynamically resizing on-chip storage structures can 

result in energy savings in the processor. This study in­
tegrates the most extensive set of dynamic structures in one 
system, to date. Our goal was to explore the issues that 
arise in the simultaneous control and operation of these 
structures. Our approach uses local information at each 
component in order to allow independent reconfiguration 
decisions. This approach explicitly decouples each struc­
ture and lets the controllers make greedy control decisions.

We introduced the accounting cache design as the dy­
namic cache component. The accounting cache uses full 
LRU state to reliably account for energy consumption and 
delay attributable to each cache. The design uses an ac­
count to build performance equity to apply toward aggres­
sive energy configurations and as a mechanism to shut off 
reconfiguration when the access behavior is unpredictable. 
A tolerance metric is used to control the amount of per­
formance degradation (and thereby the size of the account) 
permissible. The contribution of this design is its ability 
to directly calculate the effect of different configurations 
relative to some base configuration and to protect against 
pathological behaviors.

We also refined and extended prior work in dynamic 
instruction scheduling buffers to include the physical reg­
ister files and to take the variance in the utilization of the 
structures into account (rather than relying on averages). 
Using a tolerance setting to control the aggressiveness of 
downsizing the buffers for energy efficiency, the six buffers 
adapted independently to the changing needs of the appli­
cations and with minimal slowdown in most applications. 
We show how to disable physical registers via injected 
MOV instructions that automatically update the logical to 
physical register mappings.

When using these designs for all levels of the instruc­
tion and data caches, the issue queues, reorder buffer, and 
register files, we show energy savings of up to 70% on the 
individual structures, and savings averaging 30% overall 
for the portion of energy attributed to the adaptive struc­
tures. These savings were achieved with an average per­
formance degradation of 2 .1 % (and a maximum perfor­
mance degradation of 3.6%) when using a 6.25% toler-
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ance  m etric  fo r our b enchm ark  suite. W hile  ou r resu lts 
show  tha t p erfo rm ance  degradation  is con tro llab le  (v ia  the 
to lerance  settings) an d  can b e  m in im ized , they a lso  re ­
veal the sensitiv ity  o f  the in teg ra ted  system  to the to ler­
ance  setting  an d  app lica tion  behavior. F u tu re  w ork  will 
exp lo re  how  the cu rren t m echan ism s perform  u nder m u lti­
ta sk ing /m u ltith readed  w ork loads and  w e are  experim en ting  
w ith m ethods to  en su re  p erfo rm ance  degradation  target can 
be  m et de term in istica lly  in exchange fo r energy  savings.
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