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Quantum phase transition in a multicomponent Bose-Einstein condensate in optical lattices
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We present a general lattice model for a multicomponent atomic Bose-Einstein system in an optical lattice.
Using the model, we analytically study the quantum phase transition between the Mott insulator and a super­
fluid. A mean-field theory is developed from the Mott-insulator ground state. When the interspecies interactions 
are strong enough, the Mott insulator demonstrates the phase separation behavior. For weak interspecies 
interactions, the multispecies system is miscible. Finally, the phase diagram is discussed with emphasis on the 
role of interspecies interactions. The tip and the shape of the Mott insulator lobes do not depend on the 
interspecies interactions, but the latter indeed modify the position of the phase boundaries.
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I. INTRODUCTION

The study of quantum phase transitions (QPT) has at­
tracted much interest in recent years [1,2- The term ‘‘quan­
tum’’ is used to emphasize that it is the quantum fluctuations 
that play a vital role in driving the transition from one phase 
to another. In contrast, the usual thermodynamic phase tran­
sition at finite temperature is driven by thermal fluctuations, 
which are experimentally controlled by tuning the tempera­
ture of the system. As temperature is lowered, the thermal 
fluctuations are suppressed and finally they are not strong 
enough to drive a finite-temperature phase transition. How­
ever, this by no means implies that there would be no phase 
transition at very low temperature, since quantum fluctua­
tions still exist and they may be sufficiently strong to drive a 
phase transition even at zero temperature. We call such a 
zero-temperature phase transition a QPT, and it is experi­
mentally accessible by tuning parameters of the system other 
than temperature.

Several prominent examples have been extensively stud­
ied to demonstrate QPT. One example is quantum Hall QH 
systems, where different QH phases can be achieved by tun­
ing either the magnetic field or the carrier concentration 1 . 
The second example is a network of Josephson junctions 3 . 
A Josephson junction is a tunnel junction connecting two 
superconducting metallic grains. A Cooper pair of electrons 
is able to tunnel back and forth between the grains. If the 
Cooper pairs can move freely from grain to grain in the 
network, the system is superconducting. However, since the 
grains are very small, it costs a charging energy to move a 
Cooper pair to neighboring grains. When the charging energy 
is big enough, the Cooper pairs fail to propagate among the 
grains and the network will be in an insulating phase.

A third system that exhibits QPT involves the superfluid 
4He. When the superfluid 4He is absorbed in the porous 
media or on different substrates, the bosonic atoms in 4He 
experience external forces from the other medium. When the 
interactions between atoms are much weaker than the above 
external forces, the system is expected to be a superfluid. In 
the opposite limit, the superfluid phase cannot be maintained, 
and the system will exhibit a Mott-insulator behavior. Thus a 
superfluid-Mott-insulator phase transition is expected to 
happen, if one can tune the strength of atomic interactions.

Detailed discussions can be found in Ref. [4] by Fisher and 
co-workers. The starting point is the following boson- 
Hubbard model:

1

Here a i and a j correspond to the bosonic annihilation and 
creation operators on the ith lattice site, n ^ a j a i is the 
atomic number operator on the i th site, and i the energy 
offset of the atom on the i th site due to external harmonic 
confinement. The last term corresponds to the on-site repul­
sion between atoms, while the first term describes the tun­
neling of atoms between neighboring sites. At mean-field 
level, starting with a strong-coupling expansion, namely, 
treating the hopping term as a perturbation, the system is 
found to have a QPT at the following critical value [4-7] for 
the ratio U/ J :

U
~J = z n 0, (2)

where z 2d  for a d -dimensional simple lattice and n0 is the 
inverse fraction of condensed atoms in a canonical ensemble. 
For instance, n 0 5.83 for the three-dimensional case.

Experimentally, such critical point of QPT is very hard to 
access. Temperature is an annoying factor for a convincing 
demonstration of the QPT: The intrusion of thermal fluctua­
tions often washes out the effects of quantum fluctuations. 
This makes the temperature window to observe the QPT 
small. Moreover, to make the system cross the quantum criti­
cal point, we need to tune the controlling parameter care­
fully. In most of the studied cases, this is hard to manipulate. 
Even if one can tune the parameter, the range of tunability is 
normally very small. Until very recently, in most cases only 
the magnetic field 1,8 is the tunable parameter. Finally, the 
presence of disorder makes the observation of QPT even 
more difficult.

Recently Ref. [9] reported the success in realizing a 
superfluid-Mott-insulator phase transition in a gas of ultra­
cold atoms in an optical lattice. This is a revolutionary break­
through for the experimental observation of a controllable
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QPT. They cooled the atomic gas of 87Rb down to 10 nK to 
realize the atomic Bose-Einstein condensation (BEC). More­
over, the BEC is loaded into a perfect, simple-cubic, optical 
lattice formed by six criss-cross laser beams. By controlling 
the intensity of the laser beams, they can efficiently control 
the potential height of the above simple-cubic lattice in a 
very large range. In addition, such a unique invention of the 
artificial lattice has the great advantage that the system is 
basically defect-free. By using this setup, they successfully 
and repeatedly observed the QPT at the critical value given 
by Eq. 2 . Thus an ideal playground for QPT has been cre­
ated in the atomic BEC system, which provides us an oppor­
tunity to test many theoretical predictions.

A significant difference between the atomic BEC super­
fluid and the 4He superfluid is that the former allows atoms 
to condense with different internal states due to hyperfine 
splitting. This allows the order parameter of the superfluid to 
possess a larger symmetry than the familiar U(1) [10,11]. It 
is referred to in the BEC community as a spinor BEC. As 
pointed out by Ho [10,11 and many others [12,13], the 
spinor BEC possesses a whole host of quantum phenomena 
that are absent in the scalar cases: For instance, vector and 
quadrupolar spin-wave modes, Skyrmions, and other quan­
tum orders, etc. Experimentally, one can condense different 
matter species into one single internal state and study the 
effects of cross-species interactions. Throughout this paper, 
we would like to call such systems as multicomponent BEC 
systems.

In the Mott insulator to superfluid quantum phase transi­
tion, quantum fluctuations and atomic interactions play a vi­
tal role. Without interactions, one has only the so-called band 
insulator. In the atomic gas, due to laser cooling technology, 
BEC can be realized simultaneously in several internal hy- 
perfine levels 14 . This makes the experimental study of the 
multicomponent BEC possible. Among all the interesting 
physics discovered in the multicomponent BEC, the interspe­
cies repulsive interactions play a very important role. There­
fore, it would be very interesting to study how interspecies 
interactions affect the transition from the Mott insulator to 
the superfluid.

Motivated both by the experimental progress and by the­
oretical curiosity, we shall study in the present paper the 
superfluid-Mott-insulator transition in a multicomponent 
BEC system in the presence of a periodic potential created 
by criss-cross laser beams. The layout of the paper is the 
following: In Sec. II the multispecies boson-Hubbard model 
is derived for the general case and for several special cases 
as well. In Sec. III, we study the ground state and its stability 
in the strong-coupling limit. The phase boundary between 
the superfluid and the Mott insulator is determined for the 
two-component case in Sec. IV, while Sec. V is devoted to 
the presentation of a schematic phase diagram. Finally, we 
summarize our results in Sec. VI.

II. THE MODEL

A. The general boson-Hubbard model for a multicomponent
BEC

After including the optical lattice potential, the most gen­
eral model Hamiltonian for a multicomponent boson gas can 
be written, in the second-quantization notations, as

H =  d~x
■' ft2V2

8ij+ U i j W  + V i W S i j )  iff Ax)

x) l / j x )  t/jk(x) ll)i(x) 3

where m a is the mass of an individual atom, the indices 
i , j ,k , i  label the components of the atoms, and the summa­
tion is assumed for repeated indices. Generically we allow 
the external potential Uij to have a nondiagonal part in the 
hyperfine spin basis, in which it represents a Josephson-type 
coupling between spin components [15]. V;(x) denotes the 
optical lattice potential seen by the atoms of species i . For 
the experimental configuration in Ref. [9 , this lattice is mod­
eled by

V(x ,y ,z) = Vo(sin2 k x +  sin2 ky + sin2 k z ), (4)

with k  is the wave vector of the laser light and V0 is the 
depth of the potential well. In the multicomponent case, the 
depth V0,i may depend on the species index i . The inter­
atomic interactions in Eq. 3 have been approximated as a 
contact interaction in which the coefficients g ij kkl describe 
the strength of various elastic and inelastic collisions.

For a single atom in the trap and the periodic potential, 
the energy eigenstates are Bloch states. In the tight-binding 
limit, we can superpose the Bloch states to get a set of Wan- 
nier functions that are localized on individual lattice sites. 
Within the single-band approximation, we can expand the 
field operators in the Wannier basis as

</'i(X) = 2  b„iWi(x - x „) 5

where w;(x - x n) is the Wannier function around lattice site 
n . Using Eq. 5 , the general Hamiltonian 3 is reduced to a 
generalized boson-Hubbard Hamiltonian for the multicom­
ponent BEC:

H  J mn(bmib nj^~ HX.) &mibmib mi

+ —2 ^  2  blibijbmkbmi  •2 m
(6)

Here Jmn is the hopping matrix element between two adja­
cent lattice sites m and n . It is defined by

J m n = ~  d  X \ r f ( X  X , : )

2 2

2 m a Sij + V A j +Uij

2 ( UH+ —jj) W A X - X j . (7)

Within the Hubbard approximation, the hopping integral is 
lattice site independent, i.e., J j ^ J ' i .  s ni describes the en­
ergy offset on each site due to the trap confinement. It is 
defined as
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(8)
P 2

- + V(x , y , z) 4>{x, y , z) = E 4>{x, y , z ) . (12)

(Here we only consider the lowest band in the optical lattice, 
whose bottom is taken to be the zero point for energy.) Fi­
nally, to get the on-site interactions in Eq. 6 , the Hubbard 
approximation has been used to approximate the multicenter 
integral as a single-center one; namely, we have

U ij,ki = gij,ki J  d ' x w f i x  .v, hr ft.V ,v,-i

X w k( x - x „ 3) W f a - X ^ )

' " | d ix w f ( x ) w f ( x ) w k( x ) w l(x).  (9)

The general form of the boson-Hubbard model 6 con­
tains a large number of parameters. In the following, we 
would like to discuss several special cases that might be 
relevant to experiments. The first simple case is, of course, 
given by Eq. 1 for a single component BEC. It was first 
derived and studied in the context of atomic BEC in Ref. 
[16]-

B. Two-component boson-Hubbard model

The second example we will discuss is the two- 
component BEC. Experimentally, the simultaneous conden­
sation of 87Rb atoms in the two internal states (F =  2,M 
= 2) and (F =  2,M = -  1) has been accomplished by Myatt 
et al. [17]. For this case, we discuss Bose condensed atoms 
with two internal hyperfine levels |A) and |B ). The atoms 
interact only through the following three channels: AA-, 
BB-, and AB-type elastic collisions. Then our Hamiltonian 
6 is reduced to

H  2 = , 2 ,  \ jA bOTnAb nA + J BbOTnBb nB + jABb]nAb nB + H.c.]

The lattice sites are given by the minima of the lattice po­
tential V (x , y , z); around them the potential V  is approxi­
mately quadratic:

V ( x , y , z )~  2 m ^ ( x  2 + y 2 + z2),

where is given by

(o = 2 m ak 2V 0.

(13)

(14)

Here, for simplicity, we assume that the depth of the optical 
potential is the same for different species; it is straightfor­
ward to generalize our results to the case with V0—> V0,; de­
pendent on the species index i . Therefore, within the single­
band approximation, the Wannier function is approximately 
given by the ground-state wave function of a three­
dimensional harmonic oscillator. Namely,

wA/B~ exp ^ a 2( x  2 + y 2 + z 2) (15)

where a =  \lmaoo/h. Noting that the Wannier functions are 
independent of species indices within our approximations. 
Thus we can take

16

Finally, the on-site energy is the original interatomic interac­
tion with an extra numerical factor / [w(x ,y ,z )]4. Therefore, 
the Hamiltonian 10 can be cast into

H 2 J  , i b mAb nA^~b mBb nB^r H.c0

^ UBnm ^ nmB 1) 2 UABnmAnmb]. (10)

A similar energy-level and interaction pattern has been dis­
cussed by another group in a different context [18]. To be 
concrete, we focus on the situation in which the trap poten­
tial is diagonal in internal space, namely, U j  only have di­
agonal components Uu . In this case, it follows from Eq. (7) 
that

Jab= 0J mn 11

To get more insight into the parameters in Eq. 10 , we have 
to use the explicit form of the Wannier functions. To do so, 
we notice that the optical lattice potential is sinusoidal. The 
Wannier function could be constructed as the localized one 
determined by the following eigenvalue problem:

J tUBn mB(nmB ^  + 2 UABnmAnmb] . 17

Our Hamiltonian 17 is different from the two-species 
boson-Hubbard model proposed in Ref. 16 , where the au­
thors assumed that two species A and B are placed in two 
different optical lattices with a relative half-period shift. Also 
a drive laser has been applied to induce a transition between 
species A and B. In this situation, Ja and J b in Eq. (10) 
should be neglected since they represent the next-nearest- 
neighbor hopping. Moreover, the on-site mutual interactions 
between two species are of higher orders compared with the 
on-site interactions for the same species. In this way, we 
recover their Hamiltonian 16

2

3
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-^2 J  (b mAb nB̂ ~ H-c-) ^  (®mAnmA^ ®mBnmB')(m, fi) m

^  2 [ UAnmA.nmA 1 ) UBnmBinmB 2 m

+ 2 UABnmAnmB] •

C. Boson-Hubbard model for the spinor BEC

(18)

Another well-studied example of the multicomponent 
BEC is the so-called spinor BEC [11,15. For a system of 
spin f = 1 bosons, such as 23Na, 39K, and 87Rb atoms, the 
form of the interatomic interactions is largely constrained by 
symmetries. In this case, the number of the interaction pa­
rameters is reduced to two. The interaction potential can be 
written as

Vi„t(x 1,x2) = (g 0 + g 2F 1 - F 2) 8( x ^ x 2), 19

where the parameters g 0 and g 2 are defined by the scattering 
lengths a 2 and a 0 as

g 0
4 2 2a 2 a 0

ma 3 ,

g 2
4 2 a 2 a 0

ma 3

(20)

21

To facilitate the discussion, we choose a basis to make the 
trapping potential Uij in Eq. (3) diagonal. Thus the hopping 
integral is nonvanishing only between the same species. In 
addition, the on-site interactions are reduced to the following 
eight terms:

22

H 3 (J  bmAb nÂ ~ H.c.) ^  ®mAnmAm,n A mA

2 21 UAnm A nmA 1 ) 2 2 )  UABnmAnmB .2 mA 2 m, A B

23

In the following section, we will discuss the possible mean- 
field phase diagram for the superfluid-Mott-insulator phase 
transition by starting with the two-component boson- 
Hubbard Hamiltonian 10 .

III. MOTT GROUND STATE AND ITS STABILITY

We are going to employ the strong coupling expansion to 
develop a mean-field theory. In the strong-coupling limit, the 
hopping term can be treated as a perturbation. In the zeroth- 
order approximation, we ignore it for a while. The Hamil­
tonian is then decoupled for the site index. The ground state 
is given by the occupation number state |nA, n B) , with the 
wave function

| ground) m f ~ b j
mA n A  b j  nmB)bs | 0). 24

To get the ground-state energy, we need to minimize the 
energy at each site for this purpose, we neglect the site 
index in the following discussions ; namely, we need to 
minimize the energy function E (nA , nB) given by

E ( n A ,nB) = SAnA + SBnB+ 2 [Ua^ & a -  1) + U B n ^ n ^  1) 

+ 2 UABnAnB^. (25)

If we skip over the fact for the moment that the occupation 
number nA and nB are integers, then the conditions to mini­
mize the above energy function are given by

UA
U AnA+ UABn B~~

UB
UABnA^~ UBn B~  2 BB .

(26)

27

Solving the two coupled linear equations, we get

A2

Here the species index A = 1,0,1( = -  1). UA, UAB, and U0 
are determined by the parameters g 0 , g 2 and the Wannier 
functions. In particular, the parameter U0 is proportional to 
g 2. Moreover, g 2 is determined by the difference between 
scattering lengths as shown in Eq. 21 . For the sodium case, 
the difference between the two scattering lengths is very 
small 0.29 nm compared with 2a 2 a 0 7.96 nm. There­
fore, g 2 g 0 so that we can neglect the spin-relaxation chan­
nel in the interaction terms. Namely, we set U0 = 0 as the 
zeroth-order approximation. Within this approximation, we 
get the following boson-Hubbard model for a spin-1 spinor 
BEC, when it is loaded into the optical lattice potential:

u b( u a u ab ) + 2 (s  b u ab s a u b ) . .
n A ~ -----------------------------2--------------- , (28)

2( Ua Ub - U A b )

u a ( u b - u ab) + 2 ( s a u a b ^  s b u a) , .
n^ = -----------------------------2--------------- . (29)

2( Ua Ub - U A b )

Now we take care of the fact that the occupation numbers 
must be integer. So the actual numbers to minimize the en­
ergy are the two integers closest to the above nA/B. To do so, 
we can write nA/B in terms of the closest integer numbers 
nA/B and the decimal parts, i.e.,
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0 0  nA nA , nB nB ,

where the numbers and satisfy

= n A ~ n  A< 2,

2 </3 n B n B*'' 2.

30

31

32

That is, when the parameters of the system satisfy the fol­
lowing conditions:

U UAB(UAB UB + 2s b )  2 e A U B 0
n A-  1 < -------------------------- 2------------- < n  A, (33)

2( Ua Ub - U A b )

0 , u ab (u a b - u a + 2 s a ) - 2 s b u a 0 
n 0 - 1 < -------------------------- ;------------- < n  0

2( Ua Ub - U A b )
34

the occupation numbers (nA , nB) minimize the energy 
E (nA ,nB).

One loose end in the above discussions is that we have 
assumed the minimal occupation numbers are nonzero. If 
one of the occupation numbers is zero, then it means that our 
ground state is not stable due to the mutual interactions be­
tween different species. To get the stability condition for the 
uniform ground state, we need to diagonalize the interaction 
terms, namely, the following quadratic form:

U(nA ,nB) = K  UAnA+ UBnB + 2 UABnA^ ) . (35) 

The eigenvalues of this quadratic form are

n± = K ( U ^  U b ) ± 4 U a +  Ub)2 + 4 ( u 'A b -  UaUb)].
36

Therefore, n may become negative; if so, the interaction 
manifold is saddlelike and one cannot really minimize the 
ground-state energy with two nonzero occupation numbers. 
Thus, in one spatial region, one of the species must have zero 
occupation. In other words, the ground state of the system 
must be phase separated when the following condition is 
satisfied:

Ua Ub ^  UAb . 37

This condition 37 for phase separation is analogous to that 
of an ordinary two-component BEC without being loaded 
into an optical lattice 19-21  . In the case when the Wannier 
functions are the same for both species, this condition is 
reduced precisely to that in the absence of the optical lattice.

IV. PHASE TRANSITION TO A SUPERFLUID

In this section, to study possible phase transitions, we are 
going to present a mean-field theory based on the ground 
state developed in the preceding section. The hopping pro­
cesses correspond to moving bosons from one site to another. 
This process allows bosons at different sites to communicate 
with each other and finally they conspire to establish macro­
scopic coherence under appropriate conditions. In this way

the system can enter a superfluid state with indefinite filling 
of bosons at each site.

To study phase transitions, it is more convenient to start 
with the grand canonical ensemble, so we add the chemical 
potential term, -  fj,A2,mnmA —fj,B2 mnmB, to the Hamil­
tonian. For simplicity, we consider the homogeneous case, 
with mA 0 and mB 0. When a slowly varying trapping 
potential is included, we only need to shift locally A/B 
^ /A 4/B_  em,A/B in the final formulas.)

The consistent mean-field theory we shall use corresponds 
to the following decomposition of the hopping terms:

b n^b b m(b n ) - ( b m)(b n)=4>{b m + b J  ~  >
38

where <̂> = (bm) = ( b n) is the superfluid order parameter. In 
the case at hand, we have taken the order parameter to be 
real. In this decomposition, the higher-order fluctuations 
( b jm )(b n ) have been neglected. It reflects the fact 
that in the ground-state energy corrections we neglect the 
correlation energy. Generally speaking, this process will in­
crease the energy, and therefore the free energy as well, of 
the system; however, when the system parameters satisfy 
certain conditions, this process will not cost any free energy 
or even will lower the free energy of the system. This signals 
the occurrence of a phase transition. Therefore, the vanishing 
free-energy correction due to the hopping process should 
give us the phase boundary. In the following, we shall deter­
mine the phase boundary using second-order perturbation 
theory.

The resulting mean-field version of the hopping Hamil­
tonian can be written as

H eff= ^  H emf f = - z J X  [ ^ ( b mA + bmA)+4>B(bInB + bmb)

2A 2B . 39

Here z is the number of nearest-neighbor sites. Since it is a 
single sum over all lattice sites, we drop the site index from 
now on.

The first-order correction to free energy vanishes, due to 
the fact that the ground state is a product of number eigen­
states at each site, and thus the average of an annihilation or 
creation operator is just zero. The second-order correction to 
free energy is given by the following well-known expression:

E (2). H eJff \n}\
(0)_ 77(0)E

40
g

where n nA ,nB denotes the unperturbed state with nA 
and nB atoms for each species, respectively. Correspond­
ingly, |g) = |nA,n 0B) is the ground state and the occupation 
numbers are given by Eqs. 33 and 34 . A straightforward 
calculation gives the ground-state free energy up to second 
order as follows:

2

n
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E  g0) + E  g2) = J  2 z 24>A

1

UAn°A UABn°B

J 2z 2 2B
HB + UB(nb ~  1) + UABnA

P b UBn°B UABnA
Jz  2A

41

Here the last two terms are the zeroth-order contribution 
from the Hamiltonian (39.

Therefore, the phase boundaries between the Mott insula­
tor and the superfluid for species A and B , respectively, are 
given by the following conditions:

1 Jz
'V'A+ U A(nA -  UABnB

P a UAnA UABn B
0,

1 Jz
■^B+ Ub( uB ^  1) + UABnA

0.
^B UBnB UABnA

42

Solving above equations yields the phase boundaries

PA=I*A =  2[2 UABnB + UA  2 n 0A - J z

V. SCHEMATIC PHASE DIAGRAM

Now we are in the position to discuss the phase diagram 
of the system. Normally for the one-species boson-Hubbard 
model, which is known to be the model for one-species BEC 
in an optical lattice 16 , the phase diagram is drawn in U 
— fi  space (see, e.g., Fig. 2 in Ref. [7]). From Eqs. (43) and 
(44), it is easy to see that if UAB = 0, i.e., there are no inter­
species interactions, then the position of the lobe L A/B will be 
the same as for the single-species case. This motivates us to 
explore the UA/B — AiA/B space to make a schematic phase 
diagram for a two-species BEC in optical lattices; namely, 
we make the two two-dimensional UA — /jla and UB — f iB 
spaces coincident with each other. Then the two-component 
system is represented by two points A and B, with coordi­
nates ( UA ,/jlA) and ( UB ,/jlb), respectively, in this space. 
The phase boundaries described by Eqs. 43 and 44 , re­
spectively, are represented by two hyperbolas, labeled LA 
and LB , in this space with other parameters fixed . Some 
examples are shown in Fig. 1, where the axes in each dia­
gram are either /iA versus UA or jxB versus UB .

According to Eqs. 43 and 44 , the positions of LA and 
L B depend on the occupation numbers n (A0) and n (B0): Com­
pared to the case with UAB = 0, the effect of the interspecies 
interaction UAB is to shift L A or L B in the vertical (i.e., /iA/B) 
direction, by an amount of UABnB°/A that depends on the 
density of the other species. Unless nA°) = nB0), the amount 
of the shift is different for LA and L B . Therefore, the shape 
and the size of each phase boundary L A/B are the same as the 
single-species case, independent of UAB. An interesting con­
sequence is that the horizontal position of the tip i.e., the 
least value of UA/B) of each lobe LA or L B, determined by 
the condition A /B A/B , is independent of the interspecies 
interaction UAB, and thus it is independent of the occupation 
number of the other species too. Indeed, the tip of the lobe 
for species A or B ) is determined by the requirement that 
the expression under the square root in Eq. 43 should van­
ish, so they are given by

V u A - 2 UaJ z ( 2 n A+ 1) + J 2], (43)

PB=PB =  K 2 UABn A + Ub ( 2 n B- J z

UA/B
Jz 2 n A /b+ 1 + V(2 n A /b+ 1)2~ 1 46

V— B - 2 UbJz(  2 n B+ 1 ) + ( J z )2] . (44)

When the chemical potential A is in the region

^ X < ^ a < ^ A  , 45

the free-energy correction due to the tunneling events of spe­
cies A  is positive and thus the Mott insulator is the stable 
ground state. A similar result is valid for species B . When the 
interspecies interaction UAB and the intraspecies repulsions 
UA/B satisfy the condition (37), we see that the mutual inter­
actions and nonzero occupation for the other species indeed 
modify the phase boundary for both species. When the inter­
species interaction is strong enough to make the system 
phase separated, the system can be viewed as two totally 
independent single species in the optical lattice.

which is the same as for the single-species boson-Hubbard 
model. It is worth noting that this result is valid even if the 
hopping integrals are not equal, JA JB : The only change 
we need to make is to scale UA/B by the corresponding hop­
ping parameter JA/Bz .)

Keeping the above observations in mind, we see that there 
are three possibilities for the relative positions of lobes LA 
and L b in UA/B-fiA/B space.

(1) When nA°) = nB0), the lobes LA and L B coincide with 
each other, as shown in Fig. 1 a . The space is divided into 
two regions, labeled as SF superfluid and MI Mott insula­
tor , respectively. The region MI is enclosed by both lobes, 
and SF is outside both of them. When the representative 
point A  or B falls in SF, then the corresponding species A  (or 
B ) is in the superfluid phase. The meaning of region MI is 
similar.

0nA

A

0nB

1n B 2

0nA

0
A

0n B

0 1B

c

013606-6



QUANTUM PHASE TRANSITION IN A PHYSICAL REVIEW A 67, 013606 (2003)

FIG. 1. The schematic phase diagram of the two-component boson-Hubbard model. The axes are either ;u,A versus UA or pi,B versus UB , 
all in units of J z . [The system should be represented by two points A and B with coordinates ( UA ,fx,A) and ( UB B) , respectively.] The 
phase boundary for species A and B is given by two curves LA and LB . Depending on their relative positions, LA and LB may divide the 
diagram into two, three, or four regions, etc. Some examples are shown here with: (a) n°A = nR = 1, UAB= 10Jz; (b) nA= 1, nR = 2, UAB = 
— 10Jz; and (c) nA= 1, nR= 2, UAB= 10Jz. The meaning of the regions, labeled SF, SM, MS, and MI, and how to use the phase diagram are 
explained in detail below Eq. 46 .

(2) When nA0)< nR0) and UAB< 0, the lobes L A and L B do 
not intersect at all. One such case is shown in Fig. 1 b . 
This is because the lobe LA is lower than LB , and the down­
ward shift of LA is bigger than that of L B . Therefore, as 
shown in Fig. 1 b , there are three regions in the diagram, 
labeled as SF, MS (Mott insulator superfluid, and SM
superfluid-Mott insulator . The region, say, SM is outside 

LA and inside L B . The meaning of SM is that when point A 
falls in it, species A is in the superfluid phase, while if point 
B is in this region, species B is in the Mott insulator phase. 
And vice versa for the region MS.

(3) When nA ^< «R0) and UAB> 0, the lobes LA and L B 
may or may not intersect, depending on the values of UAB, 
n A and n R . I n  this case, the lower lobe L A is always shifted 
upward more than the upper lobe L B ; so with fixed nA/R , if 
UAB is larger enough, LA can intersect with L B . One ex­

ample with such intersection is shown in Fig. 1 c , where 
there are four regions in the diagram, labeled as SF, MS, SM, 
and MI. The meaning of the labeling is the same as in the 
previous cases. If L A does not intersect with L B , the situa­
tion is similar to the above case 2 .

Recalling that the system is represented by two separate 
points A  and B , which generically can be anywhere in the 
diagram except respecting the constraint 37 , we conclude 
that depending on the parameters, the following three phases 
are possible: 1 both species A and B are in the superfluid 
phase; 2 one of the species is in the superfluid phase, while 
the other is in the Mott-insulator phase; 3 both species are 
in the Mott-insulator phase.

An interesting question arises when the system is a mix­
ture of the superfluid phase for one component and and Mott 
insulator phase for the other: Which phase corresponds to the 
larger scattering length? From the diagrams one can see that
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there is no universal answer to this question. In other words, 
the species with a larger scattering length can be either in the 
superfluid phase or the other way around, depending on other 
parameters of the system.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we have analytically studied the quantum 
phase transition between a superfluid and the Mott insulator 
for a multicomponent BEC system in an optical lattice. 
Theoretically, this is a generalization of the well-studied case 
of the boson-Hubbard model in the condensed-matter litera­
ture. Experimentally, the observation of such a quantum 
phase transition is accomplished by loading a one- 
component atomic Bose-Einstein condensate into an artificial 
optical lattice. These motivate us to study the role of the 
interspecies interactions in the QPT for the multicomponent 
cases.

In the first part of the paper, we have generalized the 
single-species boson-Hubbard model to the multicomponent 
case with most general interactions. To be precise, we have 
reduced our general boson-Hubbard model to the two- and 
three-component cases under appropriate conditions.

Starting with the two-component boson-Hubbard model, 
we developed a mean-field theory to study the quantum 
phase transition. Depending on interspecies interactions, the 
system may be in different ground states. If the repulsion 
between two species is not very strong, the two species can 
coexist; namely, the system is miscible. However, if the re­
pulsion is sufficiently strong, the two species may become 
immiscible, and the ground state will demonstrate the behav­
ior of phase separation; that is, two species of Mott insulator 
will stay in separate spatial regions. After turning on the 
tunneling terms, the ground-state free energy will get correc­
tions from tunneling. We calculated the free-energy correc­
tions up to second order and determined the boundary be-

tween the gain and loss in free energy. We found that the 
interspecies interactions indeed can change the position of 
the phase boundary for the Mott insulator. However, the in­
terspecies interactions cannot change the tip, i.e., the critical 
UA/B value, of the Mott-insulator lobes. The phase diagram 
of the two-component boson-Hubbard model also demon­
strates a rich structure. From our analytical treatment, we 
conclude that the following three different phases are pos­
sible: (1) Both species A  and B are in the superfluid phase;
2 one of the species is in the superfluid phase, while the 

other is in the Mott insulator phase; and 3 both species are 
in the Mott-insulator phase;

Finally, several further remarks are in order.
(1) Above results for a two-component system can be di­

rectly generalized to the spinor BEC and other systems with 
more components.

(2) One can check without difficulty that there is indeed 
an energy gap in the excitation spectrum of the Mott insula­
tor. The gap at zero momentum is determined by the in­
traspecies interactions UA /B and is independent of the inter­
species interactions UAB. Right at the phase transition, due 
to the gain of tunneling, the energy gap closes. Therefore, the 
system becomes compressible or gapless and therefore is in 
a superfluid phase.

3 In this paper, our studies of the phase diagram for the 
multispecies boson-Hubbard model have been restricted in 
the case where the Josephson-type tunneling term can be 
neglected. Under certain experimental conditions, such terms 
would be dominant and the physics is significantly changed. 
The results for this case will be published somewhere else
22 .
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