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Carbon isotope dynamics in Abies amabilis 
stands in the Cascades

N. B uchm ann , T.M. H inckley, and  J .R . Eh leringer

Abstract: Carbon isotope ratios (S13C) of canopy air and carbon isotope discrimination at the ecosystem level were studied in 

three montane Pacific silver fir (Abies amabilis (Dougl. ex Loud.) Dougl. ex J. Forbes) stands, an old-growth and two younger 

stands. Spatial and temporal variations of canopy CO2 concentrations ([CO2]) and their S13C were strongly related to stand 

structure. Within the old-growth stand, both daytime canopy [CO2] and canopy S13C stayed close to those of the troposphere, 

either indicating low overall photosynthetic rates or high turbulent mixing. Pronounced periods of photosynthetic drawdown 

below baseline [CO2] accompanied by more enriched canopy S13C were observed for the two younger and denser stands. 

Canopy [CO2] profiles seemed closely related to changes in soil conditions. Soil respiration rates were positively related to 

soil temperature, but negatively to soil moisture. S13C of soil-respired CO2 stayed relatively constant at -24.55 ± 0.20%o 

during the growing season. Significant relationships existed between canopy S13C and 1/[CO2] in all three stands. Using the 

intercepts of these regressions, we calculated an average S13C for ecosystem respiration o f-26.4 ± 0.1%o. Ecosystem carbon 

isotope discrimination (Ae), an integrating measure for carbon exchange between the troposphere and the entire ecosystem, 

stayed relatively constant through time. Ae showed no significant stand structure effect (leaf area index, density) and averaged 

18.9%o for the old-growth and 19.2 ± 0.2%o for the two younger stands.

Resume : Les ratios isotopiques du carbone (S13C) de l’air dans la canopee et la discrimination des isotopes du carbone a 

l’echelle de l’ecosysteme ont ete etudies dans trois peuplements d’Abies amabilis en region montagneuse : un vieux 

peuplement et deux plus jeunes. Les variations spatiale et temporelle des concentrations de CO2 de la canopee ([CO2]) et de 

leurs S13C etaient etroitement reliees a la structure du peuplement. Dans le vieux peuplement, le [CO2] diurne et le S13C de la 

canopee sont demeures semblables a ceux de la troposphere indiquant soit des taux de photosynthese generalement faibles, 

soit un important mixage par turbulence. Des periodes marquees de baisse de la photosynthese en-dessous du niveau de base 

de [CO2], accompagnees par un S13C plus enrichi de la canopee ont ete observees dans les deux peuplements plus jeunes et 

plus denses. Les profils de [CO2] de la canopee semblaient etroitement relies aux variations dans les conditions du sol. Les 

taux de respiration du sol etaient positivement correles a la temperature du sol, mais negativement correles a l’humidite du sol. 

Le S13C du CO2 provenant de la respiration du sol est demeure relativement constant a -24,55 ± 20%c pendant la saison de 

croissance. Il y avait des correlations significatives entre le S13C de la canopee et 1/[CO2] dans les trois peuplements. Grace 

aux points d’intersection de ces regressions, nous avons calcule un S13C moyen pour la respiration de l’ecosysteme de -26,4 ± 

0,1%c. La discrimination de l’isotope du carbone au niveau de l’ecosysteme (Ae), une mesure integratrice des echanges de 

carbone entre la troposphere et l’ensemble de l’ecosysteme, est demeuree relativement constante dans le temps. La structure 

du peuplement (LAI et densite) n’a pas affecte de fagon significative Ae qui atteignait 18,9%o dans le vieux peuplement et 

19,2 ± 0,2%o dans les deux peuplements plus jeunes.

[Traduit par la Redaction]

In troduction

Understanding global carbon dynamics and the coupling of 

terrestrial and atmospheric fluxes has become increasingly im 

portant, since atmospheric CO2 concentrations ([CO2]) con

tinue to increase (Komhyr et al. 1985; Conway et al. 1994).

Stable carbon isotopes have proved useful as tools for assess

ing the significance of the terrestrial carbon sink and its con

tribution to the global carbon fluxes relative to the oceans.
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When carbon isotope ratios (513C) of atmospheric CO 2 are 

incorporated into global inverse models, the simulations sug

gest that large carbon sinks occur in the Northern Hemisphere 

(Ciais et al. 1995; Francey et al. 1995). However, lacking suf

ficient data from terrestrial ecosystems, important physiologi

cally based input parameters such as the ratio of internal to 

atmospheric [CO2] (c;/ca) and the carbon isotopic composition 

of respired CO 2 have been estimated using models for the 

dominant plant species within different biomes. Further uncer

tainties arise due to regional and temporal variability of these 

estimates. Better quantification of ecophysiological parame

ters and understanding of seasonal variation in these parame

ters could prove useful in identifying potential mechanisms 

constraining atmosphere/terrestrial ecosystem dynamics.

The fundamental mechanism underlying carbon isotope 

studies is the discrimination against the heavier 13C isotope 

during photosynthesis (Farquhar et al. 1989). While atmos

pheric CO 2 has a S13C of about -8%c, organic material is much 

more depleted (e.g., -27%o for a C3 plant). Since there seems
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to be no significant discrimination during respiration (Lin and 

Ehleringer 1997), respired CO 2 has a S13C close to that of the 

organic substrate. This information has been successfully used 

to describe the mixing of tropospheric and respired CO 2 within 

the canopy of terrestrial ecosystems (Keeling 1958; Sternberg 

1989; Lloyd et al. 1996). How does one relate S13C to leaf or 

ecosystem physiology? Farquhar et al. (1989) proposed a re

lationship between the carbon isotope discrimination of a leaf 

(Aleaf) and its c;/ca. Further studies revealed close relationships 

between leaf carbon discrimination and the ratio of CO2 to 

water fluxes at the leaf level (water use efficiency; Ehleringer 

et al. 1993). Lloyd and Farquhar (1994) extended this applica

tion and modeled carbon isotope discrimination of entire cano

pies (Aa), using data sets for ecophysiological parameters from 

the dominant plant species (stomatal responses to leaf-to-air 

vapor mole fraction differences) and for climate (temperature, 

precipitation, and relative humidity), which was then scaled 

for the global distribution of vegetation. They validated their 

model by calculating the difference between the S13C of at

mospheric CO 2 within the nocturnal boundary layer and the 

estimates of S13C of respired CO2. This modeling effort pro

vided encouraging support for such a bottom-up approach, but 

some initial caution is necessary, since the two terms compared 

integrate over very different temporal as well as spatial scales: 

Aa estimates integrate over periods of as long as a single grow

ing season and represent values of a few overstory species 

only; in contrast, the estimates of S13C of respired CO 2 repre

sent the carbon respired above ground by all plant species as 

well as released below ground by roots and microorganisms.

If  the goal is to describe the carbon dynamics of the entire 

ecosystem, then one has to (i) consider all species present, 

including those in the understory, (ii) account for microbial 

and root respiration, and (iii) consider isotopic disequilibrium 

effects (Enting et al. 1993, 1995; Bird et al. 1996; Trumbore 

et al. 1996). A measure for carbon exchange between terres

trial ecosystems and the troposphere is the ecosystem carbon 

isotope discrimination, Ae (Buchmann et al. 1998), defined as

[1 ]
513Ct - 513Cr

Ae ' 1 + 513Cr

where S13Ct is the carbon isotope ratio of the troposphere and 

513Cr is the carbon isotope ratio of respired CO2. Thus, the 

familiar concept of carbon isotope discrimination at the leaf 

level is transferred to the ecosystem level.

Ae values are based on S13C of tropospheric CO 2 and on 

field measurements of canopy air to estimate S13C of respired 

CO2. Thus, detailed knowledge about canopy profiles of [CO2] 

and S13C is needed. Several factors affect the canopy CO 2 
concentration and its S13C: turbulent mixing with the tropo

sphere (Wofsyetal. 1988; Kruijtetal. 1996; Lloyd etal. 1996), 

carbon exchange responses of over- and under-story plants to 

abiotic factors, as well as soil carbon exchange as influenced 

by soil respiration and litter decomposition (Baldocchi and 

Vogel 1996; Brooks et al. 1997; Buchmann et al. 1996,1997a, 

1997b; Flanagan et al. 1996). Daily and seasonal variations 

have been assessed in different biomes, ranging from boreal to 

temperate to tropical forests (Sternberg 1989; Buchmann et al. 

1997a, 1997b; Flanagan et al. 1996). However, the influence 

of stand structure on canopy profiles and the isotopic compo

sition of canopy air are less understood (Valentini et al. 1996).

Only limited information is available about how Ae changes 

with stand density or leaf area distribution (Buchmann et al. 

1997a), although feedback mechanisms of stand structure on 

stand functioning are well known.

The Pacific Northwest of the United States is dominated by 

dense evergreen coniferous forests that exhibit very high leaf 

area indices (LAIs) and considerable longevity of both indi

vidual trees and foliage (Waring and Franklin 1979; Edmonds 

1982). As a result, Pacific Northwest forests not only comprise 

the largest vegetative and soil carbon pools of the contermi

nous United States, but they also show the highest net uptake 

of carbon as well as net carbon release by decay compared with 

all other regions of the United States (Turner et al. 1995). The 

Pacific Northwest is characterized by a mild, maritime climate, 

with high wintertime precipitation, low evaporative demand, 

and moderate temperatures (Walter 1973). Cloud and fog often 

occur in summer. The climate and ecophysiological charac

teristics of the evergreen conifers ensure long periods of car

bon gain at low respiratory costs (Waring and Franklin 1979; 

Teskey et al. 1984; Lassoie et al. 1985; Brooks et al. 1996). 

Stomata open at low light intensities, maximum stomatal con

ductance is reached at 200 |j,mol-m-2-s-1 photons (Lassoie et al.

1985), and light saturation occurs at around 1000 |j,mol-m-2-s-1 
photons (Teskey et al. 1984). Because of low air temperatures, 

maintenance respiration tends to be low (Sprugel 1990; Brooks 

et al. 1991). As a result, canopy gradients within Pacific silver 

fir (Abies amabilis (Dougl. ex Loud.) Dougl. ex J. Forbes) 

stands might be small under varying turbulence regimes, e.g., 

throughout the growing season, and Ae estimates might be 

rather constant. One might also expect Ae values to be higher 

for Pacific Northwest stands compared with evergreen stands 

in a much drier environment such as semiarid Utah (Buchmann 

et al. 1997a), where water is a limiting factor and plants de

velop more water use efficient strategies.

The terrestrial biota is at an isotopic disequilibrium (Enting 

et al. 1993, 1995) because carbon uptake and carbon release 

are temporally decoupled. Since the S13C of the atmosphere 

becomes increasingly depleted as a result of fossil fuel com

bustion (Tans et al. 1990), the S13C value of carbon released 

is not equal to the difference between the tropospheric S13C 

value and the photosynthetic carbon isotope fractionation. In

stead, the S13C value of carbon released is more positive due 

to a less depleted tropospheric S13C value. Thus, the magnitude 

of the disequilibrium effect is dependent on the size of the 

carbon pools involved, their turnover rates, and the fractiona

tion and the isotopic signals of the carbon pools. Since the 

carbon turnover is relatively slow in Pacific Northwest forests, 

and carbon pools in both vegetation and soils are large, espe

cially in old-growth stands, one would expect a more enriched 

(positive) S13C of respired CO2 in an old-growth stand and 

more depleted signals in younger stands. Thus, we would fur

ther expect Ae estimates to be lower for an old-growth stand 

compared with younger stands.

In this study, we chose three montane forest stands of 

A. amabilis that varied in age (40 to >220 years old) and can

opy structure (two younger stands: stand density between 2200 
and 70 000 trees/ha). We asked two questions: how are vertical 

profiles of canopy [CO2] and S13C influenced by leaf area 

distribution in these dense Pacific Northwest stands (LAI >6) 

and how do canopy profiles and Ae estimates vary in stands 

with different canopy structure, which creates large differences

© 1998 NRC Canada



8 1 0  C a n ,  J .  For,  R e s .  Vo I. 2 8 ,  1 9 9 8

Table 1. Site characteristics of high-elevation Abies amabilis stands in the central Cascade Mountains, 

Washington.

Old-growth Young-high Young-low

Elevation (m above mean sea level) 1145 1140 1 140

Stand age (years) >220 47 40

Stand density (ha-1) 488 2241 70 000

Maximum height (m) 42 22 8
Leaf area index (m2-m-2) 6.4 9.4 8.8

Note: Data provided by D. Sprugel and T. Martin (University of Washington). LAI was calculated using 

projected leaf area.

in turbulence regimes. We were further interested whether the 

carbon isotopic composition of respired CO 2 and therefore the 

Ae estimates differ among old-growth and young A. amabilis 

stands.

M ethods

Sites
The research area was located in the central Cascade Mountains, 

Washington, U.S.A., within the City of Seattle’s Cedar River Water
shed, 70 km southeast of Seattle (47°19'N, 121°35'W). Three mon
tane A. amabilis stands were chosen ranging in age from 40 to >220 
years and in stand density from 488 to 70 000 stems/ha (Table 1). The 
old-growth stand (located in the Findley Lake Basin) originated after 
fire (Meier et al. 1985) and was dominated by A. amabilis (73 %), 
with western hemlock (Tsuga heterophylla (Raf.) Sarg.) and moun
tain hemlock (Tsuga mertensiana (Bong.) Carr.) as associated spe
cies. Understory vegetation included suppressed A. amabilis trees 
(<1 m tall), Vaccinium parvifolium Smith, and Xerophyllum tenax 
(Pursh.) Nutt. Due to higher stand densities and LAI, no understory 
was present in the two younger stands, the 40-year-old young-low 
and the 47-year-old young-high, both dominated by A. amabilis (ap
proximately 90%, with T. heterophylla as associated species). The 
young-low stand is located outside the Findley Lake Basin, but on its 
southwestern ridge, and established in 1955 following clear-cutting. 
The young-high stand is located approximately 10 km southwest of 
the other two stands and established from released advanced regen
eration between 1948 and 1950 after windthrow and salvage cutting. 
The young-high stand is older, much taller, and supported more leaf 
area than the young-low stand (Table 1; for more details on LAI 
determinations, see Martin et al. 1997; Hinckley et al. 1998). Soil 
nitrogen availability for plant uptake is lower in the young-low stand 
than in the young-high stand, as reflected by lower foliar nitrogen 
concentrations (Martin 1997).

The Pacific Northwest is characterized by maritime climate, with 
high precipitation, low evaporative demand, and moderate tempera
tures (Walter 1973). Annual mean precipitation at Findley Lake (up
per Cedar River Watershed) is 2730 mm, with >80% occurring as 
snow (Grier et al. 1981). Mean annual temperature averages 5.4°C, 
with mean air temperatures of -3.2°C in January and 14.4°C in July 
(Grier et al. 1981). Soils are classified as Typic Cryohumods 
(Zabowski and Sletten 1991) and show pronounced litter accumula
tion on the forest floor.

Continuous CO2 and micrometeorological measurements
Canopy air was sampled from different heights within the canopy 

(0.3, 2.0, 7.0, 19.0, 30.0, and 40.0 m in the old-growth stand, 0.3, 1.0, 
6.7, 11.8, 15.3, and 21.4 m in the young-high stand, and 0.3, 3.7, 6.1, 
and 8.7 m in the young-low stand). The setup (for more details, see 
Buchmann et al. 1997b) provided continuous air sampling from all 
heights and two standards (one CO2-free air source and a calibrated 
CO2 source). A run of the entire profile was completed within 10 min. 
[CO2] values were measured each second with an infrared CO2 gas

analyzer (LI-6262, LiCor, Lincoln, Nebr.). Every 3 h, both calibration 
gases were measured. Measurements were taken continuously during 
8- to 10-day periods simultaneously in all stands three times during 
the 1995 growing season: June 8-17, August 13-21, and September 
11-20. Air temperatures were measured at 42.0, 21.4, or 8.1 m (old- 
growth, young-high, and young-low, respectively) and at 1.0 m 
height (all three stands); soil temperatures were measured at 0.05 m 
soil depth by using copper-constantan thermocouples. Thermocou
ples for air temperature were shielded against direct sunlight, but 
installation allowed free air movement. Photosynthetic active radia
tion (PAR) was measured at the same heights as air temperatures with 
a photodiode (GaAsP 1118, Hamamatsu, Bridgewater, N.J.) after 
calibration against a quantum sensor (LI-190, LiCor, Lincoln, Nebr.).

Exact tropospheric [CO2] and S13C were not known for the area of 
our study sites. However, within the NOAA Cooperative Flask Sam
pling Network (Conway et al. 1994), two locations were potentially 
suitable for comparisons: Cape Meares, Oreg., and Cold Bay, Alaska. 
Unfortunately, measurements at Cape Meares were stopped in June 
1995; thus, the station at Cold Bay (55°12'N, 162°43'W; 11 m above 
mean sea level) was used for comparison in this study (data provided 
by T. Conway, NOAA/CMDL, Boulder, Co., and M. Trolier, Univer
sity of Colorado, Boulder, Co., INSTAAR). On average, tropospheric 
[CO2] values during the summer months (May-September) were 
about 1 ppm higher at Cape Meares than those at Cold Bay. The 
precision of the NOAA data is <0.5 ppm for [CO2] and ±0.03%o for 
S13C. Natural temporal variability for data, collected at the same sta
tion over a 1-month period, is <0.2%o (M. Trolier, University of Colo
rado, INSTAAR, personal communication). Further isotopic shifts 
may occur as the air mass moves above continental areas before it 
reaches the study area. However, variability between stations at a 
similar latitude is between 0.5 and 1 ppm and around 0.25%o (see 
Conway et al. 1994 and Ciais et al. 1995, respectively).

Collection of canopy air for isotope analyses
Canopy air was collected for isotopic analyses from the same 

heights as used for the continuous CO2 measurements with a second 
set of Dekoron tubing (for details, see Buchmann et al. 1997a, 1998). 
Dry air was collected in a preevacuated 1.7-L glass flask (with two 
high-vacuum stopcocks). After pumping for 20 min, [CO2] coming 
out of the flask was measured with a portable photosynthesis system 
(LI-6200, LiCor, Lincoln, Nebr.), and then, both stopcocks of the 
flask were closed. Up to four flasks were collected at the same time. 
Canopy air was collected for isotopic analyses in June, August, and 
September for both young-high and young-low stands and in August 
for the old-growth stand. During the 1995 growing season, 48 flasks 
were collected at night (between 19:30 and 23:00) and 75 flasks dur
ing the day (between 08:00 and 17:30).

Soil respiration rates and soil moisture
Soil respiration rates were measured using a soil respiration cham

ber (LI-6000-09S, LiCor, Lincoln, Nebr.) connected to a portable 
photosynthesis system (LI-6200). Three PVC tubes (25 cm long, 
10 cm inside diameter) to which the chamber could be attached were

© 1998 NRC Canada
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Fig. 1. Typical “Keeling plot”: relationship between the inverse of 

canopy [CO2] and its carbon isotope ratio (S13C). The August flask 

data for the old-growth stand are presented. Daytime and nighttime 

flasks can be described by one regression equation (see Table 2 and 

text for more details).
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inserted into the soil 24 h prior to measurement. To avoid long-term 
disturbance effects, collars were placed at different locations for each 
sampling time. The protocol recommended by LiCor (LiCor 6000
09S manual) was changed to five observations of 5 ppm change per 
measurement (J. Norman, University of Wisconsin, personal commu
nication). CO2 concentrations within the system were scrubbed with 
soda lime in an open configuration until the CO2 level was 50 ppm 
below ambient. After closing the system, [CO2] was allowed to in
crease by 20 ppm before measurements were taken. Four to eight 
measurements were taken at each site and sampling time (old-growth: 
August; young-high and young-low: June, August, and September).

Gravimetric water content of litter and soil material (0-0.05 and 
0.05-0.10 m depth, respectively) was determined at the sites where 
soil respiration had been measured. Three replicates were taken per 
measurement, and sampling containers were sealed in the field with 
Parafilm. The wet soil samples were weighed, then dried until mass 
constancy, and reweighed. Soil moisture is expressed as percent dry 
mass (% dm).

Collection of soil respired CO2 for isotope analyses
The setup described for soil respiration measurements was modi

fied to collect soil-respired CO2 for isotopic analyses. A closed sys
tem was designed where soil CO2 efflux was drawn from the soil 
respiration chamber through the LI-6200 and an ethanol - dry ice 
water trap into a 1.7-L sampling flask and pushed back into the cham
ber. The 1.7-L flask was filled with CO2-free N2 gas and connected to 
the top inlet of the soil respiration chamber. The air within the entire 
system was scrubbed with soda lime for 10-20 min. As soon as [CO2] 
dropped below 50 ppm, the soda lime was taken out of the line. The 
system’s [CO2] was allowed to increase to approximately 350 ppm 
before the stopcocks of the flask were closed. Three flasks were col
lected at each site and sampling time (old-growth: August; 
young-high and young-low: June, August, and September).

Sampling and isotope analyses
Litter and soil samples (0-0.05 and 0.05-0.10 m depth, respec

tively) were collected at each site and sampling time when soil respi
ration had been measured (three replicates per site and depth). Litter 
samples were dried for 48 h at 70°C and then ground with mortar and 
pestle to a fine powder. Soil materials were acid washed and then 
sieved (mesh size 1 mm). A 2-mg subsample was combusted and 
analyzed for 13C/12C using an isotope ratio mass spectrometer (delta 
S, Finnigan MAT, Bremen, Germany).

CO2 in the flask samples was extracted cryogenically using a four- 
trap vacuum line (each trap with a triple loop) and transferred into a 
sampling tube within 12 h after flask collection. Due to possible in
terferences at mass 44, CO2 was separated from N2O by using a gas 
chromatograph (GC-14A, 3-M Poraplot Q column, Shimadzu Corpo
ration, Kyoto, Japan) prior to isotope analysis. The CO2 gas was 
introduced manually into the mass spectrometer and canopy air S13C 
(canopy S13C) analyzed from the same sample.

The S13C was calculated as

[2] S13C = (fisample/Kstandard - 1) X 1000%o

where Rsample and Rstandard are the 13C/12C ratios of the sample and the 
standard (PDB for carbon), respectively (Farquhar et al. 1989). The 
overall precision of the carbon isotope measurements was ±0 .1 1 %o for 
organic carbon and 0.03%o for carbon isotopes in gas samples.

Modeling of canopy 813C and estimates of Ae

Canopy S13C are the result of turbulent mixing of two major CO2 
sources with different S13C (tropospheric and respired CO2) and of a 
photosynthetic effect due to discrimination during carbon assimila
tion (Keeling 1958; Sternberg 1989). Thus, canopy S13C are linearly 
related to the inverse of the corresponding canopy [CO2] (Fig. 1; 
so-called “Keeling plot”).

The intercept of this linear regression is an indicator of the isotopic 
composition of respired CO2 and was used to estimate ecosystem 
discrimination against the heavier 13C during photosynthesis of the 
entire stand (Ae). Since results from several dozen forest stands 
showed that day and night data lie on the same regression line, we 
used all flask data in this regression approach (Buchmann et al. 1998). 
Using a Keeling plot to obtain the S13C of respired CO2 has certain 
advantages over soil respiration chambers or other enclosures. It rep
resents a weighted average of all respiration processes within the 
ecosystem, not only of a relatively small area. Further, it includes 
foliage and branch/stem respiration; thus, all respiration fluxes are 
covered and weighted by their respective flux rates. Provided no frac
tionation occurs during respiration (Lin and Ehleringer 1997), Ae is 
calculated using eq. 1. Data for S13Ct (-8.13%o in June 1995, -7.47%c 
in August 1995, and -7.67%o in September 1995) were provided by 
M. Trolier (University of Colorado, INSTAAR); S13Cr values were 
the intercepts of the respective linear regressions (see above). Thus, 
the error expected with these Ae estimates is associated with the error 
of knowing the S13C of tropospheric CO2 and with the error of deter
mining the S13C or respired CO2. The larger of the two error terms 
(S13Cr) is due to the regression analysis. Using this approach for 49 
stands in 10 different ecosystems globally, Buchmann et al. (1998) 
gave a standard error for S13C of respired CO2 of ±0.98%o.

Statistics

The statistical package JMP (version 3, SAS Institute Inc., Cary, 
N.C.) was used for most of the data analyses. Analyses of variance 
(ANOVA) were done with site, sampling time, or height as a main 
factor. We used sampling time as a main factor (and not a repeated 
measures analysis) because the experimental units (litter, soils, air 
masses) were not identical for the three sampling times. The Student 
f-test or Tukey-Kramer HSD (honestly significant difference) test (at 
the 0.05 level) was used to distinguish among the means of two or 
more groups, respectively. All linear regressions are stated with r2 
adjusted. When both x and y variables were associated with an error 
(such as for 1/[CO2] versus S13C), slopes and intercepts were calcu
lated by geometric mean regressions (Sokal and Rohlf 1995). Slopes
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Fig. 2. Mean daily course of photosynthetic active radiation (PAR), air and soil temperatures, and canopy [CO2] for three Abies amabilis 

stands at a representative day in September 1995: (a, d, g) old-growth, (b, e, h) young-high, and (c, f, i) young-low. Hourly averages of 

10-min records from a 10-day period are presented. If standard error bars are absent, bars are smaller than symbol size. Mean daytime 

tropospheric [CO2] for Cold Bay, Alaska, (broken line) was 354.64 ppm (provided by T. Conway, NOAA/CMDL).

and intercepts of regressions were tested against each other by 
introducing indicator variables (“dummy” variables) into a multiple 
regression model (Neter et al. 1985).

Resu lts

Variations in canopy [CO2] associated with stand 
structure

The daily course of canopy [CO2] on a sunny day in Sep

tember 1995 differed considerably among the three A. amabi

lis stands (Fig. 2). Although canopy [CO2] were well stratified 

in all three canopies (highest [CO2] near the forest floor and 

lowest [CO2] at the top canopy), daily fluctuations, absolute 

values, as well as overall canopy [CO2] gradients were differ

ent among these three stands. Within the old-growth canopy, 

[CO2] rarely dropped below tropospheric background values 

whereas [CO2] in both younger and denser stands (see Table 1) 

showed a pronounced period of photosynthetic drawdown be

low baseline [CO2] (up to 8 ppm lower than tropospheric 

[CO2] in the young-high stand and up to 17 ppm lower in the 

young-low stand). Thus, the much higher stem and foliage 

densities of the young-low stand compared with those of the

young-high stand seemed to be reflected in canopy [CO2]. 

Canopy [CO2] gradients in the old-growth stand were main

tained throughout the day (daily mean ± SD: 21.7 ± 6.7 ppm), 

similarly to the gradients in the two younger stands (18.2 ± 

7.8 ppm in the young-high stand and 36.9 ± 13.7 ppm in the 

young-low stand). W ind speeds, recorded above the young- 

low canopy (T. Martin, College of Forest Resources, Univer

sity of Washington, Seattle, Wash., personal communication), 

were low during this day. Maximum speeds (between 1.5 and 

1.75 m-s-1) were measured between 12:00 and 16:00, while 

wind direction stayed stable during this time period.

During the night, the buildup of canopy [CO2] was only m i

nor, before dissipation set in due to turbulent mixing and pho

tosynthetic drawdown in the morning. For example, in the 

old-growth stand, we found only a 1 0 -ppm difference between 

01:00 and 10:00 for [CO2] at 40.0 m height, about 13 ppm at 

7.0 m, and about 20 ppm at 0.30 m height. Concentration dif

ferences at 6-7 m in the young-high and young-low stands 

over this same time period were only about 5 and 14 ppm, 

respectively. Instead, by early afternoon, [CO2] throughout the 

canopies were again increasing (fastest in the young-low 

stand), although maximum PAR and air temperatures were not
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Fig. 3. Height profiles of foliage density and canopy carbon isotope 
ratio (S13C) within three montane Abies amabilis stands: (a and b) 
old-growth, (c and d) young-high, (e and f  young-low. Night and 
afternoon values of original flasks are given. Data on projected 
foliage leaf area were provided by D. Sprugel (College of Forest 
Resources, University of Washington). The tropospheric S13C 
(-7.47%o for Cold Bay, Alaska; vertical broken line) was provided 
by M. Trolier (University of Colorado, INSTAAR).

photosynthesis. Highest canopy S13C values were found 
throughout the young-low canopy. Near to the forest floor, 
most depleted S13C were found. Similar to the [CO2] gradients, 
daytime gradients o f canopy S13C were highest in the stand 
with highest stem and foliage densities (young-low ) and the 
least in the least dense stand (old-growth). Nighttime S13C in 
the main canopy were quite similar among all stands and were 
near to the tropospheric background values.
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reached until 14:00-15:00. However, the increase in afternoon 
[CO2] coincided with steadily increasing soil temperatures 
(while air temperatures stayed constant or decreased; Fig. 2).

Isotopic composition o f canopy air
Profiles o f canopy S13C were affected by foliage leaf area 

distribution in all three A. amabilis canopies (Fig. 3). While 
the peak leaf area (projected) in the old-growth stand is located 
near 27 m, maximum foliage leaf area is found at 12 m in the 
young-high stand and at about 4 m in the young-low stand. 
Understory vegetation is only present in the old-growth stand; 
however, some branches in the young-low stand extend almost 
to the forest floor. Higher foliage density in the young-low 
stand resulted in more enriched daytime canopy S13C, with 
S13C above the background value o f the troposphere (by
0.4-0.7%o), reflecting carbon isotope discrimination during

Seasonal variations of canopy [CO2]
Comparing canopy [CO2] or S13C within a stand during the 

course o f a growing season, one has to account for changes in 
the physiological and metabolic activities o f plants and micro
organisms as well as for changes in the turbulence regime. The 
seasonal comparison o f canopy [CO2] within the young-low 
stand revealed that average daytime [CO2] decreased steadily 
throughout the growing season (by 10-15 ppm), although the 
tropospheric [CO2] started to increase again in September 
(Fig. 4, broken lines). While turbulent mixing o f canopy and 
tropospheric air is responsible for the uniform [CO2] profiles 
(very small gradients), CO2 depletion o f canopy air can only 
be due to photosynthetic activity. [CO2] just above the forest 
floor (0.3 m height) increased steadily from June to Septem
ber, as did nighttime [CO2] (by up to 20 ppm). Such changes 
near to the forest floor could be due to (i) entrainment o f air 
with higher [CO2] from the convective boundary layer or 
(ii) higher respiratory fluxes from the forest floor (autotrophic 
or heterotrophic respiration). As seen earlier, the greatest daily 
fluctuations in canopy [CO2] and the largest canopy gradients 
were observed at higher temperatures, especially higher soil 
temperatures. Since stronger turbulent mixing (e.g., in Septem
ber) should have resulted in smaller, not larger, canopy gradi
ents and soil respiration generally dominates the ecosystem 
respiratory flux (e.g., Goulden et al. 1996), we conclude that 
soil respiration was the major reason for the observed [CO2] 
gradients that did not collapse during the day. The young-high 
stand exhibited similar temporal and spatial patterns, but with 
smaller absolute fluctuations o f [CO2] (data not shown).

Soil respiration
Soil respiration, an indicator o f root and soil microbial ac

tivities, fluctuated seasonally due to changes in soil tempera
ture and soil moisture, factors apparently affected by stand 
structure (Fig. 5). However, differences among stands were 
small. Multiple regression analysis revealed that soil tempera
ture and soil moisture at 0.10  m soil depth were the most im
portant parameters in explaining the variance in soil 
respiration rates (r2 = 0.34; coefficients o f partial determina
tion were 0.20 and 0.18, respectively). Soil CO2 efflux in
creased with increasing soil temperature and decreasing soil 
moisture at 0.10 m depth. Thus, soil water status influenced 
CO2 exchange negatively in these Pacific Northwest forest 
soils. Adding moisture o f the litter layer and soil moisture at
0.05 m depth into the multiple regression model increased the 
r2 to 0.45 (coefficients o f partial determination were 0.13 and
0.05, respectively). During the 1995 growing season, this 
negative effect o f  soil moisture on soil respiration resulted in 
the highest soil respiration rates being noted in the young-low 
stand, the stand maintaining the lowest levels o f soil moisture 
throughout the soil profile. This observation might be associ
ated with differences in soil physical properties (e.g., water
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Fig. 4. Mean daily course of photosynthetic active radiation (PAR), air and soil temperatures, and canopy [CO2] for a young, nitrogen-poor 
Abies amabilis stand (young-low) throughout the 1995 growing season: (a, d, g) June, (b, e, h) August, and (c, f, i) September. The 10-min 
records of the entire sampling period are averaged and presented as hourly means over a day. If standard error bars are absent, bars are smaller 
than symbol size. Mean daytime tropospheric [CO2] for Cold Bay, Alaska (broken line) was 361.64 ppm in June, 350.82 ppm in August, and 
354.64 ppm in September (provided by T. Conway, NOAA/CMDL).

holding capacity) or with greater rain interception (less 
throughfall) in this very dense stand compared with the old- 
growth and young-high stands (see Table 1). The same 
mechanism might be responsible for the high soil moisture 
values in the old-growth stand during August 1995, where 
lower foliage densities might be related to low rain intercep
tion and therefore high throughfall inputs.

813C of respired CO2 and ecosystem discrimination
For all three A. amabilis stands, tight relationships existed 

between canopy S13C and 1/[CO2] (Table 2). Stands differing
in overstory LAI by almost 3 m2 m-2 (old-growth versus
young-low) showed very similar intercepts, with a maximum 
difference o f 0.9%o (well within the error range o f this coeffi
cient; see Methods). Moreover, relationships did not change
significantly with sampling time during the 1995 growing sea
son, indicating that the S13C o f ecosystem respiration (S13CER) 
and the photosynthetic effect on canopy [CO2] stayed rela
tively stable during the study period. Actual measurements of 
the S13C o f soil-respired CO2 (S13Csr) confirmed that the S13C 
of biogenic sources did not change significantly during the

1995 growing season (Fig. 6 ; AN OVA with time as main fac
tor: P = 0.12 for young-high, P = 0.66 for young-low). The 
average 5 13CSR value for all three A. amabilis stands was 
-24.55 ±  0.20%o (Table 3), slightly more enriched than the 
overall intercept (-26.17 ±  0.74%o; Table 2). The average S13C 
o f soil organic carbon (5 13CSOC) did not show a clear trend 
among the three A. amabilis stands. S13CSOC values became 
more enriched with increasing soil depth (2%o for old-growth 
and young-high and 3%o for young-low), indicating age ef
fects or fractionation during litter decomposition and soil or
ganic matter formation in these Pacific Northwest forest soils.

Since tropospheric S13C values at Cold Bay also changed 
by 0.7%o within the study period and due to the errors associ
ated with the Ae estimates, the small seasonal trend in ecosys
tem discrimination for A. amabilis stands was not significant 
(Fig. 6). Furthermore, average Ae estimates for the stand with 
highest stand and foliage densities (young-low : 19.2 ±  0.3%o) 
were almost identical to those for the stand with the highest 
LAI (young-high: 19.1 ±  0.4%o), indicating similar foliar c;/ca 
and low intrinsic water use efficiency of all stands. Comparing 
August data only, both young stands showed very similar
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Table 2. Linear regressions between canopy carbon isotope ratio (S13C) and the inverse of canopy [CO2] for three Abies 
amabilis stands with different age and leaf area index (LAI) throughout the 1995 growing season.

LAI Site Regression r2 n F
June 8-20 8.8 Young-low y = 6779(±483)x -  26.67(±1.31) 0.93 15 184

9.2 Young-high y = 6689(±366)x -  26.35(±1.02) 0.94 22 314

Aug. 10-21 6.4 Old-growth y = 6484(±223)x -  25.92(±0.63) 0.98 19 830
8.8 Young-low y = 6881(±861)x -  26.74(±2.38) 0.85 12 64
9.2 Young-high y = 6712(±398)x -  26.78(±1.14) 0.93 20 267

Sept. 11-20 8.8 Young-low y = 6404(±441)x -  26.13(±1.24) 0.94 13 199
9.2 Young-high y = 6399(±156)x -  26.00(±0.43) 0.99 22 1674

Overall All y = 6546(±256)x -  26.17(±0.72) 0.82 123 535
Note: Equations are given with 1 SE in parentheses; P < 0.0001 for all equations. No significant differences were found among the 

regression equations (F-test at the 0.05 level).

Fig. 5. (a) Soil temperature and (b) soil moisture at 0.10 m depth as 
well as (c) soil respiration rates for three Abies amabilis stands 
throughout the 1995 growing season. Means (±SE) are presented 
(n = 4-8). Different letters within a panel represent significantly 
different means (Tukey-Kramer test at the 0.05 level).

Ae estimates (young-low : 19.79%o; young-high: 19.84%o) 
whereas the old-growth stand, as expected, exhibited a lower 
Ae value (18.

Fig. 6. Seasonal course of estimates of (a) ecosystem 
discrimination (Ae) and (b) carbon isotope ratios of soil-respired 
CO2 (S13Csr) for three Abies amabilis stands during the 1995 
growing season.
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D is c u s s io n
Spatial and temporal variations o f canopy [CO2] and its 

513C were strongly related to stand structure o f A. amabilis 
stands in the Pacific Northwest. Canopy gradients o f [CO2] 
and S13C seemed to be more closely related to changes in soil 
temperatures than to changes in light. 5 13CSR stayed relatively 
constant during the 1995 growing season as did S13CER. Ae 
estimates for the two younger A. amabilis stands showed no 
significant differences resulting from differences in stand 
structure. However, the Ae estimate for the old-growth stand 
was almost 1 %o lower than for the two younger stands.

The amount and distribution o f foliage as well as stand density 
had profound effects on canopy [CO2] and S13C. In the old- 
growth stand, the stand with the lowest LAI and the most uni
form vertical leaf area distribution (Fig. 3), canopy gradients 
o f [CO2] and S13C were small. Daytime [CO2] and S13C close
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Table 3. Carbon isotope ratios of ecosystem respiration (S13CER, 
intercepts from Table 2, August), soil-respired CO2 (813CSR), and 
soil organic carbon (813CSOC) at three soil depths.

Old-growth 
(LAI = 6.4)

Young-high 
(LAI = 9.2)

Young-low 
(LAI = 8.8) P

S13Cer (%„) -25.9±0.6 -26.8±1.1 -26.7±2.4 0.44
S13Csr (%„) -25.4±0.3a -23.9±0.4b -24.9±0.2a 0.0151
S13Csoc (%«)

Litter -28.1±0.4b -27.8±0.2b -28.8±0.1a 0.0015
0.05 m -26.7±0.1 -25.6±0.3 -26.8±0.4 0.0560
0.10 m -26.4±0.1 -25.7±0.2 -26.0±0.2 0.0624
Note: LAI, leaf area index. Different letters following the means 

represent significantly different S13C among the stands (Tukey-Kramer test 
at the 0.05 level). The P-values are given for one-way ANOVA. For S13Csr, 
sampling time and interaction term (sampling time X site) were not 
significant (P = 0.0853 and 0.2988, respectively); n = 3 (old-growth) and 
n = 9 (young-high and young-low). For S13Csoc> sampling time and 
interaction terms (sampling time X site) were not significant (lowest P = 
0.194 and 0.195, respectively); n = 6 (old-growth) and n = 9 (young-high 
and young-low) for each horizon.

to tropospheric baseline values implied that either the photo
synthetic activity o f the old-growth canopy was lower or that 
the daytime turbulent mixing was relatively higher than for the 
two younger stands. Since the old-growth stand had the lowest 
LAI and foliage densities throughout the canopy (Table 1), 
turbulent mixing may be the dominant factor responsible for 
the observed patterns. However, ecophysiological processes 
coincide with micrometeorological fluxes in forest stands. 
Several studies have shown that decreasing productivity with 
stand age (Gholz 1982) is not due to increased maintenance 
respiration o f a tree, but to reduced foliage growth and net 
photosynthesis (Grier et al. 1981; Yoder et al. 1994). Mature 
old-growth forests, an important feature in the Pacific North
west, appear to have foliar overstory production similar in 
magnitude to litterfall (Long 1982). Thus, one could speculate 
that these ecosystems are functioning ecophysiologically near 
a carbon equilibrium, where fluxes of respired CO2 equal pho
tosynthetic fluxes, as modeled by Cohen et al. (1996). Then, 
one would expect diurnal variations in canopy [CO2] mainly 
due to turbulent mixing, and no pronounced photosynthetic 
drawdown o f [CO2] or 13C enrichment o f canopy air, similar 
to the patterns observed (Figs. 2 and 3). Unfortunately, eddy 
covariance measurements above old-growth forests are rare 
(Hollinger et al. 1994), although they could provide the means 
to describe the carbon exchange and verify our observations. 
Nevertheless, net ecosystem carbon exchange, defined as the 
difference between net primary productivity and heterotrophic 
respiration, is generally reduced by 30 to 50% for forests older 
than 100 years compared to maximum values (Buchmann and 
Schulze, in preparation2).

In contrast, [CO2] depletions up to 17 ppm below the tro
pospheric background and pronounced 13C enrichments of 
canopy air were observed in the youngest A. amabilis stand 
with the highest stand and foliage densities (young-low). Pat
terns were even more pronounced than those in the 
young-high stand despite similar LAIs (8.8 versus 9.2). Thus, 
LAI alone might not be the appropriate factor to explain the

2 Buchmann, N., and Schulze, E.D. Net CO2 and H2O fluxes of 
terrestrial ecosystems.

observed canopy profiles; leaf area densities might be the more 
appropriate index. [CO2] and S13C o f tropospheric air will also 
change when air masses move over continental areas. How
ever, the observed daytime CO2 depletions and 13C enrich
ments were much larger than any daytime tropospheric 
fluctuation (see Methods). Furthermore, for canopies with 
relatively low overstory LAI (<4.5, A cer  spp. and trembling 
aspen (Populus fremuloides Michx.)) in semiarid environ
ments, even doubling the overstory LAI did not affect upper 
canopy CO2 concentrations or S13C, when turbulent mixing 
was high (Buchmann et al. 1996, 1997a). However, canopy 
gradients o f [CO2], S13C, and S18O were greater in a dense 
riparian Acer spp. stand (LAI = 4.5) than in an open stand 
(LAI = 2.1). Yet, these differences were mainly due to the 
presence o f a vigorous understory vegetation in the open stand, 
resulting in a large photosynthetic drawdown of [CO2] below 
and 13C enrichment above tropospheric baseline values. Stand 
density and foliage distribution affected canopy [CO2] and 
S13C more than just overstory LAI. Unfortunately, these fac
tors are more difficult to obtain, e.g., by remote sensing, than 
LAI. Thus, scaling from representative forest stands to larger 
scales such as a region remains a challenging step in ecosystem 
modeling.

Since stand structure has profound effects on stand micro
climate, we found an interesting interaction between soil mois
ture and soil temperature on soil respiration rates. A multiple 
regression analysis revealed that soil moisture in 0.10  m depth 
had a negative effect on soil CO2 efflux, while soil temperature 
affected soil respiration positively. This pattern in a wet tem
perate climate is very similar to conditions in tropical rainfor
ests where soil CO2 efflux decreased by about 40% after strong 
rain events, resulting in a rapid decrease o f [CO2] just above 
the forest floor by about 50 ppm (Buchmann et al. 1997b). 
Thus, high soil moisture contents (>150 % dm) might have 
limited soil CO2 efflux considerably in the old-growth stand, 
probably related to larger throughfall amounts (less rain inter
ception) than received by the two denser stands (young-high 
and young-low ; Fig. 5). This inhibition by environmental fac
tors even compensated the higher fine root production and the 
distribution o f roots in more shallow horizons in the old- 
growth stand compared with that in the young-low  stand 
(Grier et al. 1981; Meier et al. 1985). Although slow decom
position rates in the Pacific Northwest are reflected by the 
large buildup o f organic matter (Long 1982), it remains unclear 
to what extent soil respiration by roots compared with decom
position by microorganisms contributed to the total soil CO2 
exchange.

In agreement with previous observations in boreal (Flana
gan et al. 1996) and tropical forests (Buchmann et al. 1997b), 
S13Csr remained stable throughout the season (Fig. 6), imply
ing that the carbon sources for soil respiration stay relatively 
constant over a single growing season. A similar pattern was 
observed for 5 13CER (Table 2). Interestingly, both parameters 
differed from each other by approximately 2%o. One can 
speculate on whether this difference might have been associ
ated with an isotopic disequilibrium between the soil and the 
above-ground components. The term “ isotopic disequili
brium” (Enting et al. 1993) has been used to describe the dif
ference between the carbon isotope ratios o f soil respiration 
and above-ground (plant) respiration. This difference is 
thought to be associated with older soil carbon that was fixed
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under conditions when the tropospheric S13C was different 
than it is today. Ecosystem respiration is the sum o f autotrophic 
respiration (including root, stem, and foliage respiration) and 
heterotrophic respiration, with the latter being the dominant 
fraction (up to 85%; Fan et al. 1990; W ofsy et al. 1993). Since 
there is no fractionation during mitochondrial respiration (Lin 
and Ehleringer 1997), above-ground respired CO2 should have 
a similar carbon isotope ratio to newly fixed carbon; in our 
case, approximately -28.9%o for 0- and 1-year-old foliage 
(Buchmann et al., in preparation3). However, 5 13CSR will de
pend on the S13C and the different fractions o f older soil or
ganic matter that are being respired and on root respiration 
which would be similar to that o f the above-ground com po
nents. Because turnover rates in the soil are slow and the at
mospheric signal was more positive several decades ago (Tans 
et al. 1990), the S13C value o f soil respiration should be more 
positive than that o f current above-ground respiration (assum
ing constant carbon isotope discrimination over time). This 
theoretical consideration is consistent with the more positive 
S13C we measured for soil respiration and soil organic matter 
in deeper horizons (-25  to -26%o compared with -29%o for 
foliage), although the soil respiration signal still includes some 
root respiration.

Since ecosystem respiration is integrating over both auto
trophic and heterotrophic respiration, its S13C (overall mean 
about -26%o) reflects the stand history, including decades 
when the tropospheric S13C signal was less depleted than to
day. Furthermore, these disequilibrium effects should become 
more pronounced the older the respired organic matter. Thus, 
we might expect a more positive 513CER and a smaller Ae esti
mate for the old-growth compared with the two younger stands 
(Table 3; Fig. 6). However, hydraulic limitation o f gas ex
change characteristics o f  older trees might confound this inter
pretation, since older and taller trees often show lower stomatal 
conductance rates which are then reflected in more positive 
foliar S13C (Ryan and Yoder 1997). The S13C values o f sunlit 
foliage (current and 1 year old) marginally support this latter 
possibility, however; the differences o f foliar S13C values 
among stands were minor (P =  0.07; Buchmann et al., in prepa
ration3).

Changes in Ae during the growing season were small, but 
consistent for both younger stands: August Ae values tended to 
be slightly higher than those in June or September (Fig. 5). 
This small seasonal course for A. amabilis stands agreed well 
with results reported for boreal evergreen forests, where Ae 
remain constant throughout the growing season (Flanagan et 
al. 1996). However, the balance between photosynthesis and 
stomatal conductance (intrinsic water use efficiency) o f forest 
canopies might also influence carbon isotope discrimination at 
the ecosystem level, which may explain some o f the observed 
variations in Ae estimates among coniferous forests. Ae o f bo
real black spruce (Picea mariana (Mill.) BSP) and jack pine 
(Pinus banksiana Lamb.) stands averaged 19%c (Flanagan et 
al. 1996). Estimates for the two younger A. amabilis stands in 
the Pacific Northwest were on average 19.2%o (this study). Ae 
for temperate evergreen forests were about 18.3%o for lodge- 
pole pine (Pinus contorta Dougl. ex Loud. var. latifolia

3 Buchmann, N., Hinckley, T.M., and Ehleringer, J.R.
Intra-canopy variation in the carbon isotope composition of 
Abies amabilis needles.

Engelm.) stands during a very wet and cool year (Buchmann 
et al. 1997b) as well as for Pinus spp. stands in California and 
Montana (calculated from Lancaster 1990 flask data by using 
tropospheric data from Francey et al. 1995). On regional or 
global scales, a decreased Ae might therefore reflect an in
creased assimilation to conductance ratio among biomes, un
der conditions when precipitation decreases and (or) the 
evaporative demand increases. Understanding the ecophysiol
ogy o f entire ecosystems will help to interpret these variations 
in 513Cer and Ae among stands. Although estimates o f Ae from 
a wide variety o f ecosystems are important for interpreting 
global CO2 flask data, these data sets are still uncommon 
(Buchmann et al. 1998). In the future, 5 13CER and Ae data will 
be needed to validate the modeled [13C]CO2 exchange between 
ecosystems and the atmosphere and to improve our estimates 
o f the extent to which terrestrial ecosystems serve as sinks or 
sources in the global carbon budget.
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