
1066 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL 18, NO. 8, AUGUST 2007

Power-Efficient Approaches to
Redundant M ultithreading

Niti M adan , Student Member, IEEE, and R a jeev B a lasubram on ian , Member, IE EE

Abstract—Noise and radiation-induced soft errors (transient faults) in computer systems have increased significantly over the last few
years and are expected to increase even more as we move toward smaller transistor sizes and lower supply voltages. Fault detection
and recovery can be achieved through redundancy. The emergence of chip multiprocessors (CMPs) makes it possible to execute
redundant threads on a chip and provide relatively low-cost reliability. State-of-the-art implementations execute two copies of the same
program as two threads (redundant multithreading), either on the same or on separate processor cores in a CMP, and periodically
check results. Although this solution has favorable performance and reliability properties, every redundant instruction flows through a
high-frequency complex out-of-order pipeline, thereby incurring a high power consumption penalty. This paper proposes mechanisms
that attempt to provide reliability at a modest power and complexity cost. When executing a redundant thread, the trailing thread
benefits from the information produced by the leading thread. We take advantage of this property and comprehensively study different
strategies to reduce the power overhead of the trailing core in a CMP. These strategies include dynamic frequency scaling, in-order
execution, and parallelization of the trailing thread.

Index Terms— Reliability, power, transient faults, soft errors, redundant multithreading (RMT), heterogeneous chip multiprocessors,
dynamic frequency scaling.

--------------------- ♦ ---------------------

1 In tr o d u c tio n

A recent study [24] shows that the soft-error rate [16] per
chip is projected to increase by nine orders of

magnitude from 1992 to 2011. This is attributed to growing

transistor densities and lower supply voltages that increase

susceptibility to radiation and noise. Such soft errors or
transient faults do not permanently damage the device but
can temporarily alter the state, leading to the generation of

incorrect program outputs.
Fault tolerance can be provided at the circuit or process

level. For comprehensive fault coverage, every circuit would

have to be redesigned. This not only increases design
complexity, but also has the potential to lengthen critical
paths and reduce clock frequencies. For this reason, many
recent studies [1], [7], [17], [19], [21], [25], [27] have explored
architecture-level solutions that can provide fault tolerance
with modest performance and complexity overheads. In most
solutions, generally referred to as redundant multithreading
(RMT), an instruction is executed twice and results are
compared to detect faults. Most studies on reliability have
paid little attention to power overheads in spite of the fact that
future microprocessors will have to balance three major
metrics: performance, power, and reliability. A recent paper
by Gomaa and Vijaykumar [8] opportunistically employs
redundancy, thereby deriving a desirable point on the
performance-reliability curve. Because redundancy is occa­
sionally turned off, this approach also indirectly reduces

• The authors are w ith the School o f Com puting, U niversity o f Utah, 50 S.
Central Campus Drive, Rm . 3190, Salt Lake City, U T 84112.
E-mail: (niti, rajeevl@cs.utah.edu.

M anuscript received 1 Sept. 2006; revised 28 Jan. 2007; accepted 23 Feb. 2007;
published online 28 M ar. 2007.
Recommended fo r acceptance by R. Iyer and D M . Tullsen.
For information on obtaining reprints o f this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0270-0906.
Digital Object Identifier no. 10.1109/TPDS.2007.1090.

1045-9219/07/125.00 © 2007 IEEE

power overheads. In this paper, we focus on maintaining a
constant level of error coverage and explore different
strategies to improve the power efficiency of reliability
mechanisms (while occasionally compromising marginal
amounts of performance).

In a processor that employs redundancy, the "checker
instruction'' can be made to flow through a similar pipeline as

the "primary instruction.''1 This approach is well suited to a

chip multiprocessor (CMP) or simultaneous multithreaded

processors (SMTs), where the processor is already designed

to accommodate multiple threads. With minor design

modifications, one of the thread contexts can be made to

execute the checker thread [7], [17], [21], [27], Furthermore,

thread contexts can be dynamically employed for either
checker or primary threads, allowing the operating system or

application designer to choose between increased reliability

and increased multithreaded performance. However, this

approach has significant power overheads as each checker
instruction now flows through a complex out-of-order (OoO)

pipeline. In an alternative approach, the checker thread can

flow through a heavily modified helper pipeline that has low
complexity [1], [25]. Even though the area overhead is

modest, the area occupied by this helper pipeline is not

available for use by primary threads even if reliability is not a
primary concern for the application. As we shall show in this

paper, heterogeneous CMPs can allow us to derive the better

of the two approaches above.
As a starting point, we consider the following RMT

architecture based on the Chip-level Redundantly Threaded
multiprocessor with Recovery (CRTR) model proposed by

Gomaa et al. [7], The primary thread executes on an OoO

1. The main program thread is referred to as the primary or leading thread.
The redundant thread is referred to as the checker or trailing thread.
Correspondingly, these threads execute on primary/leading cores or checker/
trailing cores.

Published by the IEEE Computer Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276285745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:rajeevl@cs.utah.edu
mailto:tpds@computer.org

MADAN AND BALASUBRAMONIAN: POWER-EFFICIENT APPROACHES TO REDUNDANT MULTITHREADING 1067

Fig. 1. An example of the effect of scaling the checker core’s frequency. In this example, by operating at half the peak frequency, the checker’s

dynamic power is reduced from 80 to 40 W. Leakage power is not affected.

core and the checker thread executes on a different OoO

core within a CMP. Branch outcomes, load values, and

register results produced by the primary thread are fed to

its checker thread in the neighboring core, so it can detect

and recover from faults (as shown in Fig. 1). In an effort to

reduce the power overhead of CRTR, we make the

following observations: The checker thread experiences no

branch mispredictions or cache misses because of the values

fed to it by its primary thread. The checker thread is

therefore capable of a much higher instruction-per-cycle

(IPC) throughput rate than its primary thread. This allows

us to operate the checker core in a low-power mode while

still matching the leading thread's throughput. Fig. 1 shows

how the checker core's frequency can be scaled down in

order to reduce dynamic power. We also explore the

potential of using an in-order pipeline for the checker core

and show that some form of value prediction is required to

enable it to match the throughput of the primary thread. We

also extend our evaluation to multithreaded workloads

executing on a CMP of SMTs. Finally, we examine the

potential of dynamic voltage scaling and of parallelization

of the verification workload. Some of the conclusions of this

work resonate well with prior research such as the proposal

of Austin to employ in-order checker pipelines that are fed

with leader-generated inputs [1]. On the other hand, some

of our conclusions argue against the voltage scaling

approach proposed by Rashid et al. [19]. The major

contributions of this paper are listed as follows:

• dynamic frequency scaling (DFS) techniques that

match throughputs of leading and trailing threads

and that are able to execute the trailing core at an

effective frequency as low as 0.42 times peak

frequency,

• techniques that increase intercore traffic to enable

the use of simple and power-efficient trailer cores,

• a combination of the above ideas that helps reduce

the overhead of redundancy to merely 10 percent of

the leader core's power consumption,

• an exhaustive design space exploration, including

the effects of parallelizing the verification workload

and employing voltage scaling,

• quantifying the power performance trade-off when

scheduling the redundant threads of a multi­

threaded workload, and

• analytical models that enable rough early estimates

of different RMT organizations.

The paper hasbeen organized as follows: Section 2 outlines

th e rela ti onshi p of this work wi th pri or a rt. Section 3 d escribes

the RMT implementations that serve as baseline processor

models in this study. Section 4 describes various power

reduction strategies for the trailing thread. The proposed

ideas are evaluated in Section 5 and we summarize the

conclusions of this study in Section 6.

2 R e la te d W o rk

Many fault-tolerant architectures [1], [7], [17], [20], [21], [22],

[27], [28] have been proposed over the last few years and

our baseline models are based on previously proposed RMT

designs. Most of this prior work has leveraged information

produced by the leading thread, but the focus has been on

the performance-reliability trade-off, with few explicit

proposals for power-efficiency. Active-Stream/redundant

Stream SMT (AR-SMT) [22] was the first design to use

multithreading for fault detection. AR-SMT proposed

sending all register values to the trailing thread to boost

its performance. In our work, we exploit register values to

enable in-order execution of the trailing thread for power

efficiency. Mukherjee et al. later proposed fault detection by

using simultaneous multithreading and chip-level RMTs

[17], [21], Vijaykumar et al. augmented the above techni­

ques with recovery mechanisms [7], [27], Most of these

research efforts have been targeted at improving thread-

level throughput and have not been optimized for power

efficiency. Gomaa etal. [7] discuss techniques such as Death

and Dependence-Based Checking Elision (DDBCE) to

reduce the bandwidth requirements (and, hence, power

overheads) of the intercore interconnect. Our proposals, on

the other hand, advocate transferring more data between

threads to enable power optimizations at the trailer.

Mukherjee et al. [18] characterize the architectural vulner­

ability factors (AVFs) of various processor structures. Power

overheads of redundancy can be controlled by only

targeting those processor structures that have a high AVF.

Some designs, such as DIVA [1] and SHared REsource

Checker (SHREC) [25], are inherently power-efficient

because the helper pipelines that they employ to execute

redundant instructions are in-order-like. DIVA has two in­

order pipelines: Checkcomm, which checks all memory

values, and Checkcomp, which checks all computations.

These helper pipelines are fed with input values generated

by the primary pipeline. However, these designs require

(potentially intrusive) modifications to the pipeline of the

conventional primary microarchitecture and the helper

pipelines cannot be used to execute primary threads. We

extend this concept by executing the redundant thread on a

general-purpose in-order core augmented with register

value prediction (RVP) and by limiting the data that has

to be extracted from the primary pipeline. Even though

1068 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL 18, NO. 8, AUGUST 2007

DIVA was among the first RMT proposals, recent research

in this area has moved away from that concept and focused

more on the exploitation of heavily threaded hardware. Our

conclusions show that the DIVA concepts are worth
revisiting and are complexity effective in a processor with

heterogeneous in-order and OoO cores.
A recent paper by Rashid et al. [19] represents one of the

first efforts at explicitly reducing the power overhead of
redundancy. In their proposal, the leading thread is
analyzed and decomposed into two parallel verification
threads that execute on two other OoO cores. Parallelization
and the prefetch effect of the leading thread allow the
redundant cores to operate at half the peak frequency and
lower supply voltage and still match the leading thread's
throughput. Our approach differs from that work in several
ways: 1) In [19], redundant loads retrieve data from caches,
leading to complex operations to maintain data coherence
between multiple threads. In our implementation, redun­
dant instructions receive load results and even input
operands from the leading thread. We claim that, by
investing in intercore bandwidth, trailer core overheads
can be reduced. 2) Rashid et al. [19] rely on voltage scaling
and body biasing to benefit from parallelization. We have
explicitly steered away from such techniques because of the
associated overheads. Unlike their work, we leverage DFS
and in-order execution. 3) Our analytical results show that
parallelization of the verification workload yields little
benefit if we are already employing in-order cores
augmented with RVP.

Some papers have looked at reducing resource and
instruction redundancy for reducing performance and
power overheads in RMT techniques without reducing the
fault coverage. Kumar and Aggarwal [12] apply register
reuse and narrow-width operand register sharing techni­
ques to reduce the performance and power overheads in the
register file. In another recent paper by the same authors
[13], many instructions are classified as self-checking, such as
those that have a zero operand. The results produced by
these instructions will often be equal to their nonzero
operands and these instructions need not be redundantly
executed by the trailing thread. These techniques indirectly
reduce the power overheads by executing fewer instruc­
tions for verification. Other approaches that reduce the
power overheads indirectly are RMT techniques that reduce
the fault coverage such as opportunistic RMT [8], In that
work, in addition to exploiting instruction reuse, redundant
threads execute only when the primary thread is stalled on
level-2 (L2) cache misses. This paper explores techniques
that can reduce power and area overheads while maintain­
ing a constant level of error coverage. These techniques are
often orthogonal to other techniques that, for example, trade
off reliability for better performance or power.

3 Ba s e l in e R e l ia b le P r o c e s s o r M o d e l

We have based our reliable chip-multiprocessor architec­
ture on the model proposed by Gomaa et al. [7] and
Mukherjee et al. [17], The architecture consists of two
communicating cores that execute copies of the same
application for fault detection. One of the cores (the leading
core) executes ahead of the second core (the trailing core) by
a certain amount of slack. The leading core communicates
its committed register results to the trailing core for

comparison of values to detect faults (Fig. 1). Load values
are also passed to the trailing core, so it can avoid reading
values from memory that may have been recently updated
by other devices. Thus, the trailing thread never accesses its
level-1 (LI) data cache and there is no need for coherence
operations between the LI data caches of the leading and
trailing cores. This implementation uses asymmetric commit

to hide intercore communication latency: The leading core
is allowed to commit instructions before checking. The
leading core commits stores to a store buffer (StB) instead of
to memory. The trailing core commits instructions only after
checking for errors. This ensures that the trailing core's state
can be used for a recovery operation if an error occurs. The
trailing core communicates its store values to the leading
core's StB and the StB commits stores to memory after
checking.

The communication of data between the cores is facilitated
by the first-in, first-out (FIFO) Register Value Queue (RVQ)
and Load Value Queue (LVQ). As a performance optimiza­
tion, the leading core also communicates its branch outcomes
to the trailing core (through a branch outcome queue (BOQ)),
allowing it to have perfect branch prediction. The power
saved in the trailing core by not accessing the LID cache and
the branch predictor is somewhat offset by the power
consumption of the RVQ and LVQ. If the slack between the
two cores is at least as large as the reorder buffer (ROB) size of
the trailing core, then it is guaranteed that a load instruction in
the trailing core will always find its load value in the LVQ.
When external interrupts or exceptions are raised, the leading
thread must wait for the trailing thread to catch up before
servicing the interrupt.

The assumed fault model is exactly the same as in [7] and
[17], The following conditions are required in order to
detect and recover from a single fault:

• The data cache, LVQ, and buses that carry load

values must be error-correcting code (ECC) pro­

tected as the trailing thread directly uses these load

values.
• When an error is detected, the register file state of

the trailing thread is used to initiate recovery. The
trailing thread's register file must be ECC protected

to ensure that values do not get corrupted once they
have been checked and written into the trailer's

register file.

Other structures in each core (including the RVQ) need not

have ECC or other forms of protection as disagreements
will be detected during the checking process. The BOQ
need not be protected as long as its values are only treated
as branch prediction hints and confirmed by the trailing

pipeline. Similarly to the baseline model in [7] and [17], we
assume that the trailer's register file is not ECC protected.
Hence, a single fault in the trailer's register file can only be
detected.2 All other faults can be detected and recovered
from. The proposed mechanisms in this paper preserve this
basic fault coverage.

In our single-thread model, we assume an implementa­

tion where each core on the CMP can only support a single

thread. Our multithread model is based on the CRTR

architecture [7], where each core is a dual-threaded SMT. In

2. If no ECC is provided within the register file, then Triple Modular
Redundancy will be required to detect and recover from a single fault.

MADAN AND BALASUBRAMONIAN: POWER-EFFICIENT APPROACHES TO REDUNDANT MULTITHREADING 1069

Fig. 2. Power-efficient chip-level RMT design space, (a) CRTR. (b) P-CRTR. (c) P-CRTR-in order.

the CRTR architecture, the trailing thread of one application

shares its core with the leading thread of a different

application (shown in Fig. 2a). We require that the slack for

each application remain between two thresholds: T ill and

TII2. The lower threshold T ill is set to the ROB size

available to the trailing thread so that load results can be

found in the LVQ. The higher threshold TII2 is set to the

size of the RVQ minus the ROB size for the leading thread

so that all completing instructions in the leading thread are

guaranteed to find an empty slot when writing results into

the RVQ. Similarly to the fetch policy in [7], the slack values

determine which threads are allowed to fetch within each

SMT core. If the slack for an application is less than T ill,

then the trailing thread is not allowed to fetch and, if the

slack is greater than TII2, then the leading thread is not

allowed to fetch. In cases where both threads within an SMT

core are allowed to fetch, the 1COUNT heuristic [26] is

employed.

4 M a n a g in g P o w e r O v e r h e a d s

4.1 Power Reduction Strategies for the
Trailing Core

For a single-thread workload, we propose that the leading

and trailing thread execute on neighboring cores. If each

core has SMT capability, then it is possible to execute the

leading and trailing threads on a single core and this avoids

the overhead of intercore communication. However, as we

will show later, the power savings possible by executing the

trailer on a neighboring core are likely to offset the power

overheads of intercore communication.

For a multithreaded workload, the CRTR implementa­

tion executes unrelated leading and trailing threads on a

single SMT core (Fig. 2a). Since the trailing thread never

executes wrong-path instructions and never accesses the

data cache, the leading thread that executes in tandem is

likely to experience little contention, thereby yielding high

throughputs. Applying a power-saving strategy to a trailing

thread in this setting will slow the leading thread that

executes on that same core. Hence, to enable power

optimizations, we propose executing two leading threads

on the same SMT core and the corresponding trailing

threads on neighboring cores, referred to as P-CRTR

(Fig. 2b). By changing the assignment of threads to cores,

we are not increasing intercore bandwidth requirements:

The same amount of data as in CRTR is being commu­

nicated between cores. Since the leading threads compete

for resources within a single core in P-CRTR, a performance

penalty is incurred.

An RMT system attempts to maintain a roughly constant

slack between leading and trailing threads. Since the

trailing thread benefits from perfect caching and branch

prediction, it tends to catch up with the leading thread. This

provides the opportunity to throttle the execution of the

trailer in a manner that lowers its power consumption and

maintains the roughly constant slack.

4.1.1 Dynamic Frequency Scaling (DFS)

The first approach that we consider to throttle trailing

thread execution is DFS, a well-established technique that

allows dynamic power to scale down linearly with clock

frequency [15]. It is a low-overhead technique: In Intel's

Montecito, a frequency change can be effected in a single

cycle [15]. In most systems, DFS does not result in a

dynamic energy reduction as execution time is also linearly

increased. As we show in our results, the application of DFS

to the trailing core of an RMT system has a minimal impact

on execution time. Hence, in this particular case, DFS

results in a reduction in dynamic power and dynamic

energy. DFS does not impact leakage power (and leakage

energy) dissipated by the trailer.

A competitive alternative to DFS is run and stall, where

the trailing thread operates at peak frequency for a while

and then shuts off its clock for a while. We expect that the

fraction of stall time in run and stall will equal the average

frequency reduction in a DFS-based mechanism. Run and

stall will also not impact leakage unless voltage is turned off

during the stall (voltage changes are known to have much

higher delay overheads). Given the similarity with DFS, we

do not further evaluate run and stall in this paper.

4.1.2 In-Order Execution

When throttling the trailing core, we may see greater power

savings by executing the trailing thread on an in-order core.

A short and simple pipeline can have a significant impact

on both dynamic and leakage power. Unfortunately, for

many program phases, an in-order core, even with a perfect

D-cache and branch predictor, cannot match the throughput

of the leading OoO core. Hence, some enhancements need

to be made to the in-order core. We considered the effect of

increasing fetch bandwidth and functional units in a simple

in-order core, but that did not help match the leading core's

throughput. In fact, for our simulation parameters, even

with a perfect cache and branch predictor, doubling the

fetch bandwidth and the arithmetic logic units (ALUs) of

1070 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL 18, NO. 8, AUGUST 2007

the in-order core resulted in only about a 1 percent

performance improvement. This is not surprising because

data dependency is the biggest bottleneck that limits

instruction level parallelism (ILP) in an in-order core. As

soon as a pair of dependent instructions is encountered, the

dependent instruction (and every instruction after it) is

forced to stall at least until the next cycle, regardless of the

fetch and ALU bandwidth.
We therefore propose the use of RVP. Along with the result

of an instruction, the leading thread can also pass the input
operands for that instruction to the trailing thread. Instruc­
tions in the trailing core can now read their input operands
from the RVQ instead of from the register file. Such a register
value predictor has a 100 percent accuracy in the absence of
soft errors. With perfect RVP, instructions in the trailer are
never stalled for data dependences and ILP is constrained
only by a lack of functional units or instruction fetch
bandwidth. The value predictions must be confirmed by the
trailing core or else an error in the leading core may go
undetected. When an instruction in the trailing core is
committed, the trailing register file is read to confirm that
the input operands match those in the RVQ. The error
coverage is exactly as before: A single soft error in the trailer's
register file can be detected, whereas a single soft error
elsewhere can be detected and recovered from. Although
RVP entails some changes to the commit pipeline in the
trailer, it allows us to leverage the benefits of an in-order core.

It may be possible to even apply DFS to the in-order core
to further reduce dynamic power. Contrary to previous
studies [7] that attempt to reduce intercore traffic, we
believe that it may be worthwhile to send additional
information between cores because of the power optimiza­
tions that it enables at the trailer.

The use of an in-order core has another major advantage
(not quantified in this paper). Since an in-order core has less
speculative state, it requires fewer rename registers. It may
be possible to include ECC within the in-order core's small
register file and still meet cycle time constraints. As
discussed in Section 3, a trailing core with an ECC-protected
register file has higher error recovery coverage.

4.1.3 Workload Parallelization

Assuming that power is a quadratic function of perfor­
mance [9] and that a workload can be perfectly parallelized,
it is more power efficient to execute the workload in parallel
across N low-performance cores than on a single high-
performance core. The trailing thread is an example of such
a highly parallel workload [19]. At regular intervals, the
leading thread spawns a new trailing thread that verifies
the results for a recently executed contiguous chunk of the
program. At the start of the interval, the initial register state
must be copied into the trailing core. In the next section, we
show that such an approach yields little benefit.

4.2 Dynamic Frequency Scaling Algorithm for a
Single Thread

The power-efficient trailing cores rely on a DFS mechanism to
match their throughputs to that of the leading core. For a
single-thread workload, the goal of the DFS mechanism is to
select a frequency for the trailing thread so that a constant
slack is maintained between the leading and trailing threads.
In essence, if the IPC of the leading thread is denoted by JPC i
and the IPC of the trailing thread is I P C t , then we can

maintain equal throughputs and constant slack by setting the
trailing core's frequency fa to f i x I PC [J IPC t, where fa is
the leading core's frequency. The same effect can be achieved
with a simple heuristic that examines the size of the buffer
that feeds results from the leading to the trailing thread (for
example, the RVQ).

Initially, the trailing core is stalled until the leading core
commits N instructions. At this point, an RVQ (that does
not filter out register values) will have N entries. The
trailing core then starts executing. The RVQ is checked after
a period of every T cycles to determine the throughput
difference between the two cores. If the RVQ has N —
thresh entries, then it means that the trailing thread is
starting to catch up with the leading thread. At this point,
the frequency of the trailing thread is lowered one step at a
time. If the RVQ has N + thresh entries, then it means that
the leading thread is starting to pull away and the
frequency of the trailing thread must be increased. We
observed that increasing the frequency in steps causes the
slack to increase drastically as the leading thread continues
to extend its lead over subsequent intervals. Note that the
leading thread has just entered a high IPC phase of the
program, whereas the trailing thread will have to commit
N more instructions before it enters that phase itself. Once
all of the queues are full, the leading thread is forced to stall.
To minimize this occurrence, the frequency of the trailing
thread is immediately increased to the leading thread's
peak frequency if the RVQ has N + thresh entries.

The smaller the value of T is, the faster the mechanism
reacts to throughput variations. For our simulations, we
conservatively assume a 10-cycle overhead for every
dynamic frequency change. The time interval T is selected
to be 1,000 cycles so that the overhead of frequency scaling
is marginal. To absorb throughput variations in the middle
of an interval, a slack of 1,000 is required. To ensure that the
RVQ is half full on the average, we set N — thresh to be 400
and N + thresh to be 700. Frequency is reduced in steps that
equal f i x 0.1.

4.3 Dynamic Frequency Scaling Algorithm for
Multithreaded Workloads

If each trailer executes on a separate core (as in Fig. 2c), then

the single-thread DFS algorithm in Section 4.2 can be

applied to tune the frequency of each trailing core. If two
trailing threads execute on a single SMT core (as in Fig. 2b),
then the DFS algorithm will have to consider the slack for

both threads in determining the core frequency. We employ

fetch throttling strategies to accommodate the potentially
conflicting needs of coscheduled threads. Rather than

always using ICOUNT as the fetch policy for the trailing

core, it helps to periodically throttle fetch for the thread that

has a lower I PC [J IPC t ratio and give a higher priority to
the other trailing thread. This further boosts the IPC value

for the other trailing thread, allowing additional frequency

reductions.
The detailed algorithm for invoking fetch throttling and

frequency scaling is formalized in Table 1. To allow a fine­

grained control of each thread, we employ three slack

thresholds. The action for each case is based on the
following guidelines:

1. If the slack for a trailer is less than THO, then there is

no point fetching instructions for that trailer.

MADAN AND BALASUBRAMONIAN: POWER-EFFICIENT APPROACHES TO REDUNDANT MULTITHREADING 1071

TABLE 1
Fetch and Frequency Policies Adopted for Leading and Trailing Cores in P-CRTR

l\ = leading thread for application 1; l2 = leading thread for application 2

11 = trailing thread for application 1; <2 = trailing thread for application 2

si = slack for application 1; s2 = slack for application 2

Zj and l2 execute on core 1; t\ and *2 execute on core 2

The fetch and frequency policy attempt to maintain a slack between TH0 and TH 1

In our simulations, TH0 is set to 80, TH 1 is set to 700, TH2 is set to 1000.

Slack conditions s2 < THO THO < .s*2 < 77/1 TH 1 < s2 < TH2 TH2 < s2

si < THO ICOUNT : stall

ft - = 0.1 fpcak
ICOUNT : t2

ft - ~ 0A fpeak

ICOUNT : t2

ft += 0-1 fpcak

h ■ <2
ft ~ fpcak

THO < si < TH\ ICOUNT : 11

ft ~= 0.1 fpeak

ICOUNT : ICOUNT

ft -= 0.1 fDeak

ICOUNT : ICOUNT

ft fpeak

h ■ h

ft — fpeak
TH 1 < s, < TH2 ICOUNT : ti

ft += 0.1 }pcak

ICOUNT : ICOUNT

ft fpeak

ICOUNT : ICOUNT

ft ~ fpeak

11 : <2
ft — fpeak

TH2 < s. <2 : <1
ft — fpcak

h ■ h

ft — fpeak

h ■ tl

ft fpeak

stall : ICOUNT

ft — fpeak

For each entry in the grid, the first two terms indicate which thread is fetched for core 1 and core 2, and the last term indicates the frequency selected
for the trailing core. Fetch policies are adjusted every cycle and frequencies can be adjusted at intervals of 1,000 cycles.

2. If the slack for a trailer is between THO and THI (the

desirable range), then the decision depends on the

state of the other thread.

3. If the slack is between TH 1 and TH2, then we may

need to quickly ramp up the frequency to its peak

value in an effort to keep slack under control.

4. If the slack is greater than TH2, then we can stop

fetching instructions for the leader.

Table 1 describes the action taken for every combination of

slack values for both threads. As before, THO is a function

of the trailing thread's ROB size, TH2 is a function of the

sizes of the RVQ and the leader's ROB size, and TH 1 is

picked so that the RVQ will be half full on the average. The

leading core always employs the ICOUNT fetch heuristic to

select between the two leading threads unless one of the

slacks is greater than TH2. Fetch throttling is a low-

overhead process and can be invoked on a per-cycle basis.

Slack values are evaluated every cycle and any changes to

the fetch policy are instantly implemented. Changes in

frequency are attempted only every 1,000 cycles to limit

overheads. The above algorithm has been designed to react

quickly to changes so as to minimize stalls for leading

threads. This leads to frequency changes in almost every

interval unless the peak or lowest frequency is being

employed. Incorporating some hysteresis in the algorithm

reduces the frequency change overhead, but introduces

additional stalls for leading threads.

4.4 Analytical Model
To better articulate the factors that play a role in the overall

power consumption, we derive simple analytical power

models for the proposed RMT systems. These models also

allow an interested reader to tweak parameters (contribu­

tion of leakage, ratio of in-order to OoO power, and so

forth) and generate rough estimates of power overheads

without detailed simulations. The analytical equations were

derived after studying the detailed simulation results

described in the next section. We found that, when various

parameters were changed, our detailed simulation results

were within 4 percent of the analytical estimates.

For starters, consider leading and trailing threads execut­

ing on neighboring OoO cores in a CMP. Assuming that the

leader has wrongpath-factor times the activity in the trailer

(because of executing instructions along the wrong path), the

total power in the baseline RMT system is given by

Baseline-power = leakageuoJimj + dynamic.̂ uj ,„,y+

leakageuuji,„j + dynumicu udimj/wron-ffpath.factor.

When DFS is applied to the trailing core, and eff-freq is its

average operating frequency (normalized to the peak

frequency), assuming marginal stalls for the leading thread,

the total power in the system is given by

DF S-ooojpowcr = leakagc[/udll!!J + dynamic, u uj,„,j+

leakagey,j + dynam icy ,t x eff-freqjwrongpath-factor.

If scaling the frequency by a factor eff-freq allows us to

scale the voltage by a factor eff-freq x v-f actor (in practice,

v-f actor is greater than 1), then the trailing core's power is

DV FSjooojpower = leakageuwiimj + dynamici, ajin,j+

leakage uaj,ny x eff-freq x v.f actor+

dynamici, ujin,j x eff-f req3 x v-f actor2/wrongpath-f actor.

If an in-order core with RVP is employed for the trailing

thread, then the following equation is applicable, assuming

that the in-order core consumes Ikgjratio times less leakage

and dyn-ratio times less dynamic power than the OoO

leading core:

DFS-inorder -power = leakageuwimu + dynamici,

1 eakagey uj,l:u / / kgjratio+

dynamicuadinu x eff-freq/ (wrongpath-factor x dyn-ratio)

+ RVP-overhead.

We now consider the effect of parallelizing the verifica­

tion workload across N in-order trailing cores. Assuming

1072 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL 18, NO. 8, AUGUST 2007

that we only employ DFS for each in-order core, trailing

thread power is given by

DFSjinorder -W P .power = leakageit:miiU(J + dynamicim4ing

+ N x leakageit:ading/ lkgjratio+

N x dynamicieal)i,uj x eff-freq/(wrongpath-factor x

dyruratio)

+ RVP-Overhead.

Note that the dynamic power remains the same as in (1).

eff-freq goes down by a factor N, but that amount is now

expended at N different cores. In other words, the same

amount of work is being done in either case. The leakage

power increases because leakage is a function of the number

of transistors being employed. Parallelization has a benefit

only if we are also scaling voltage. Power is then expressed

as follows:

DVFS-inorder-WP-power =

V-factor x leakageim4 i,ig/lkgjratio+

N x V-factor1 x dynamicit,aciing x eff-freq/

(wrongpath-f actor x dyruratio x N2)

+ RVP-overhead.

Finally, similar models can be constructed for CRTR and

P-CRTR multithreaded models. P-CRTR-ooo represents a

model where both trailing threads execute on an SMT OoO

core, P-CRTRJnorder represents a model where each

trailing thread executes on its individual in-order core,

and slowdown represents the throughput slowdown when

executing leading threads together instead of with trailing

threads. RVP-overhead includes additional power con­

sumed within the RVQ to enable RVP:

Energyciwii = 2 x (leakage,,,,,, + dynamic,,,,,,'*

(1 + wrongpath-f actor)),

Energyp_crtR-ooo = slowdown x (2 x leakage,,,„+

dynamic000 x (wrongpath-f actor + wrongpath-f actor)

+ dynamic000 x eff-freq x (1 + 1)),

Energyp_ciwii-inorda- = slowdown x (leakagea,„x

(1 + 2/Ikgjratio) + dynamic,,,,,, x (wrongpath-factor+

wrongpath-f actor) + 2 x RV P-Overhead+

dynamic,,,,,, x effective-frequency x (1 + 1) / dynjratio).

Parameters such as slowdown, eff-freq, and

wrongpath-f actor have to be calculated through detailed

simulations. For example, for our simulation parameters,

wrongpath-f actor was 1.17, slowdown for P-CRTR-ooo

was 9.4 percent, and eff-freq for the single-thread model

was 0.44.

4.5 Implementation Complexities
This section provides an analysis of the complexity

introduced by the mechanisms in this paper. First, to enable

DFS, each core must have a clock divider to independently

control its operating frequency. The clocks may or may not

be derived from a single source. The buffers between the

two cores must be designed to allow variable frequencies

for input and output. Multiple clock domain processors

employ such buffers between different clock domains [23].

While changing the frequency of the trailing core, we will

make the conservative assumption that the leading and

trailing cores are both stalled until the change has

stabilized. The dynamic frequency selection mechanism

can be easily implemented with a comparator and a few
counters that track the size of the RVQ, the current

frequency, the interval, and the threshold values.

A large slack is required to absorb throughput variations

within an interval, also requiring that we implement a large

RVQ, LVQ, BOQ, and StB. To accommodate a slack of

1.000 instructions, we implement a 600-entry RVQ, a 200-

entry BOQ, a 400-entry LVQ, and a 200-entry StB per trailing

thread. All queues and buffers are modeled as FIFO queues.

Their access is off the critical path, but can incur nontrivial

power overheads. Values are written to and read from these

queues in sequential order, allowing them to be implemented

with single-read and write ports (each row has as many entries

as the fetch/commit width). The peak power of the largest

structure, the RVQ, was computed to be 0.89 W (with Wattch's

power model [3]). It must be noted that low-overhead DFS

(such as the single-cycle overhead in Montecito) enables a
smaller interval and, therefore, a smaller slack, RVQ, LVQ,

BOQ, and StB. Hence, our assumptions for intercore power

overheads are pessimistic.
Although an in-order core can yield significant power

savings, additional power is expended in implementing

RVP. In one possible implementation, each entry of the

RVQ now contains the instruction's source operands in

addition to the result. This increases the RVQ's peak power

consumption from 0.89 W to 2.59 W. As an instruction flows

through the in-order pipeline, it reads the corresponding

input operands from the RVQ and control signals are set so

that the multiplexer before the ALU selects these values as

inputs. The pipeline is modified so that the register file is

read at the time of commit and not before the execute stage.

Our simulations estimate that RVP incurs an additional

average power cost of 2.54 W for intercore transfers. This

estimate is admittedly simplistic, as it does not take the cost

of pipeline modifications into account.

5 R esu lts

5.1 Methodology
We use a multithreaded version of Simplescalar 3.0 [4] for

the Alpha AXP ISA for our simulations. The simulator has

been extended to implement a CMP architecture, where

each core is a two-way SMT processor. Table 2 shows

relevant simulation parameters. The Wattch [3] power

model has been extended to model power consumption

for the CMP architecture at a 90 nm technology at 5 GHz

and 1.1 V supply voltage. The aggressive clock gating

model (cc3) has been assumed throughout. Wattch's RAM

array and wire models were used to compute the power

dissipated by the intercore buffers (RVQ, LVQ, and so

forth). The RVQ was modeled as a single-read and single­

write ported structure with 150 total rows, each row

accommodating results for four instructions (32 bytes of

data), resulting in a peak power dissipation of 0.89 W. With

MADAN AND BALASUBRAMONIAN: POWER-EFFICIENT APPROACHES TO REDUNDANT MULTITHREADING 1073

TABLE 2
Simplescalar Simulation Parameters

Branch Predictor Comb, bimodal/2-level (per core) Bimodal Predictor Size 16384

Level 1 Predictor 16384 entries, history 12 Level 2 Predictor 16384 entries

BTB 16384 sets, 2-way Branch Mpred Latency 12 cycles

Instruction Fetch Queue 32 (per Core) Fetch width/speed 4/2 (per Core)

Dispatch/Commit Width 4 (per Core) IssueQ size 40 (Int) 30 (FP) (per Core)

Reorder Buffer Size 80 (per Thread) LSQ size 100 (per Core)

Integer ALUs/mult 4/2 (per Core) FP ALUs/mult 1/1 (per Core)

(Single thread) LI I-cache 32KB 2-way (per Core) LI D-cache 32KB 2-way, 2-cyc (per Core)

(Multi-thread) LI I-cache 128KB 2-way (per Core) LI D-cache 128KB 2-way. 2-cyc (per Core)

L2 unified cache 2MB 8-way. 20 cycles (per Core) Frequency 5 GHz

I and D TLB 256 entries, 8KB page size Memory Latency 300 cycles for the first chunk

RVP included, the size of a row expands to 96 bytes and the

peak power dissipation to 2.59 W. To model the intercore

bus, power-optimized wires [2] were employed. The

distance between two cores was assumed to be equivalent

to the width of a single core (4.4 mm, which is obtained

from [11] and scaled to a 90-nm process). Assuming a bus

width of 35 bytes (without RVP), we computed a peak

power consumption of 0.67 W for the intercore bus per

trailing thread. With RVP, the interconnect power con­

sumption is 2 W per thread.

Although Wattch provides reliable relative power values

for different OoO processor configurations, we felt that it

did not accurately capture the relative power values for

OoO and in-order cores. An in-order core's power efficiency

is derived from its simpler control paths and Wattch

primarily models the data paths within the processor.

Hence, the in-order power values obtained from Wattch

were multiplied by a scaling factor to bring these numbers

more in tune with empirical industrial data. The scaling

factor was chosen so that the average power for in-order

and OoO cores was in the ratio 1:7 or 1:2. This ratio is based

on relative power consumptions for commercial implemen­

tations of Alpha processors (after scaling for technology)

[10]. Our in-order core is loosely modeled after the quad-

issue Alpha EV5 that consumes half the power of the single­

thread OoO Alpha EV6 and 1 /7th the power of the

multithread OoO Alpha EV8. The EV8 is perhaps more

aggressive than OoO cores of the future (such as Intel's

Core) and, similarly, the EV5 may be more aggressive than

the typical future in-order core (such as Sun's Niagara).

Hence, the above ratios are only intended to serve as

illustrative design points from a single family of processors.

The analytical model can be used to estimate power

overheads for other power ratios. The baseline peak

frequency for all cores is assumed to be 5 GHz.

As an evaluation workload, we use the eight integer and

eight floating-point benchmark programs from the SPEC2k

suite that are compatible with our simulator. The execu­

tables were generated with peak optimization flags. The

programs were fast-forwarded for 2,000,000,000 instruc­

tions, executed for 1,000,000 instructions to warm up

various structures, and measurements were taken for the

next 100,000,000 instructions. To evaluate multithreaded

models, we formed a multiprogrammed benchmark set

consisting of 10 different pairs of programs. Programs were

paired to generate a good mix of high-IPC, low-lPC, FP, and

Integer workloads. Table 3 shows our benchmark pairs.

Multithreaded workloads are executed until the first thread

commits 100,000,000 instructions.

5.2 Single-Thread Results
We begin by examining the behavior of a single-threaded

workload. Fig. 3 shows the IPCs of various configurations,

normalized with respect to the IPC of the leading thread

executing on an OoO core. Such an IPC analysis gives us an

estimate of the clock speed at which the trailing core can

execute. Since the trailing thread receives load values and

branch outcomes from the leading thread, it never

experiences cache misses or branch mispredictions. The

first bar for each benchmark in Fig. 3 shows the normalized

IPC for such a trailing thread that executes on an OoO core

with a perfect cache and a branch predictor. If the trailing

thread is further augmented with RVP (the second bar),

then the IPC improvement is only minor (for most bench­

marks). The third bar shows normalized IPCs for an in­

order core with a perfect cache and a branch predictor. It

can be seen that, for many programs, the normalized IPC is

TABLE 3
Benchmark Pairs for the Multithreaded Workload

Benchmark Set Set # IPC Pairing Benchmark Set Set # IPC Pairing

bzip-vortex 1 Int/Int/Low/Low vpr-gzip 2 Int/Int/High/Low

eon-vpr 3 Int/Int/High/High swim-lucas 4 FP/FP/Low/Low

art-applu 5 FP/FP/Low/High niesa-equake 6 FP/FP/High/High

gzip-mgrid 1 Int/FP/Low/Low bzip-fma3d 8 Int/FP/Low/High

eon-art 9 Int/FP/High/Low twolf-equake 10 Int/FP/High/High

1074 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL 18, NO. 8, AUGUST 2007

Fig. 3. IPCs for different models, relative to the baseline OoO core. The absolute IPC for the baseline OoO core for each program is listed above

each set of bars.

less than 1. This means that an in-order trailing core cannot

match the leading thread's throughput unless it operates at

a clock speed much higher than that of the OoO core. The

last bar augments the in-order core's perfect cache and

branch predictor with RVP. The increase in IPC is

significant indicating that RVP will be an important feature

within an in-order core to allow it to execute at low

frequencies. The IPC of a core with a perfect cache, a branch

predictor, and a perfect RVP is limited only by functional

unit availability and fetch bandwidth. The average normal­

ized IPC is around 3, meaning that, on the average, the

frequency of a trailing thread can be scaled down by a

factor of 3.

We then evaluate the DFS heuristic on the single-thread

programs with different forms of trailing cores. The

heuristic is tuned to conservatively select high frequencies

so that the leading thread is rarely stalled because of a full

RVQ. The performance loss, relative to a baseline core with

no redundancy, is therefore negligible. The second bar in

Fig. 4 shows power consumed by a trailing OoO core (with

a perfect cache and a branch predictor) that has been

dynamically frequency scaled. Such a trailing redundant

core imposes a power overhead that equals 53 percent of the

power consumed by the leading core. Without the DFS

heuristic, the trailing core would have imposed a power

overhead of 90 percent (first bar in Fig. 4). On the average,

the trailing core operates at a frequency that is 0.44 times

the frequency of the leading thread. Note that DFS does not

impact leakage power dissipation. The net outcome of the

above analysis is that low trailer frequencies selected by the

DFS heuristic can reduce the trailer core's power by

42 percent and the overall processor power (leading and

trailing cores combined) by 22 percent.

Fig. 4 also shows the power effect of employing an in­

order trailing core. Future CMPs will likely be hetero­

geneous, providing a good mix of OoO and in-order cores

[10]. As seen previously, a perfect cache and branch

predictor is not enough to allow the in-order core's IPC to

match the leading core's IPC. Hence, the system has been

augmented with RVP. We have pessimistically assumed

that the buffers between the two cores now carry two

additional 64-bit values per instruction, leading to an

additional average power dissipation of 2.54 W. With the

in-order to OoO power ratio of 1:2, we observe that the

redundancy mechanism now consumes less than 26 percent

of the power consumed by the leading thread. The

frequency selected by the DFS heuristic for the in-order

core is on the average 0.42 times that of the leading core's

frequency. For the in-order core to OoO power ratio of 1:7,

the power consumed by the trailing thread is 8.5 percent of

the leading thread.

For all the above simulations, we assume an interval

length of 1,000 cycles when making frequency decisions.

Frequency changes were made for 70 percent of all

intervals. If we assume that a frequency change stalls the

processor for 10 (peak frequency) cycles, then the total

overhead is only 0.7 percent. Our frequency change over­

head is very conservative when compared to the recent

implementation of DFS in Intel's Montecito core, where a

frequency change is effected in a single cycle. The frequency

change overhead can also be reduced by incorporating

hysteresis within the algorithm, but this occasionally leads

to increased slack and stalls for the leading thread. Given

the low 0.7 percent performance overhead, we chose to not

include hysteresis and instead react quickly to variations in

the slack.

Based on the above results, we make the following

general conclusions: Executing the trailing thread on an

OoO core has significant power overheads, even if the

trailing core's frequency is scaled (partially because DFS

does not impact leakage). An in-order core has much lower

power overheads but poor IPC characteristics, requiring

that it operate at a clock speed higher than the leading core.

MADAN AND BALASUBRAMONIAN: POWER-EFFICIENT APPROACHES TO REDUNDANT MULTITHREADING 1075

Fig. 4. Power consumed by the trailing core as a function of the power consumed by the leading core. The number above each set of bars represents

the absolute value of power dissipated by the leading core for each benchmark.

The IPC of the in-order core can be boosted by employing

RVP. This requires us to invest about 2.54 W more power in

transmitting additional data between cores (a pessimistic

estimate), but this allows us to operate the in-order core at a

frequency that is less than half the leading core's peak

frequency. Hence, this is a worthwhile trade-off, assuming

that the dynamic power consumed by the in-order core is at

least 5 W.

5.3 Multithread Workloads
Next, we examine the most efficient way to execute a

multithreaded workload. Asa baseline, we employ the CRTR

model proposed by Gomaa et al. [7], where each OoO core

executes a leading thread and an unrelated trailing thread in

SMT fashion. Within the power-efficient P-CRTR-OoO, both

leading threads execute on a single SMT OoO core, and both

trailing threads execute on a neighboring SMT OoO core that

can be frequency scaled. The last bar in Fig. 5 shows the total

leading thread throughput for CRTR for each set of program

pairs defined in Table 3. The first bar shows the total leading

thread throughput in a baseline system where both leading

threads execute on a single SMT OoO core (no redundant

threads are executed). It can be seen that the throughput of

CRTR is about 9.7 percent better than a system where two

leading threads execute on the same OoO core. This is because

each leading thread in CRTR is coscheduled with a trailing

thread that does not execute wrong-path instructions and

poses fewer conflicts for resources (ALUs, branch predictor,

data cache, and so forth). The second bar in Fig. 5 shows IPCs

for P-CRTR-OoO. The DFS heuristic selects frequencies such

that the leading core is rarely stalled and throughputs are very

similar to that of the baseline system, about 9.4 percent lower

than CRTR on the average. The results of the earlier section

indicate that an in-order core augmented with RVP is likely to

entail a lower power overhead. Hence, we also evaluate a

system (P-CRTR-in order) where two leading threads execute

on an SMT OoO core and the two trailing threads execute (by

themselves) on two in-order cores with RVP and DFS. Again,

the throughput of P-CRTR-in order is similar to that of the

baseline system, about 12 percent lower than CRTR on the

average. Note, however, that P-CRTR-in-order is likely to

have a lower area overhead than the other organizations in

Fig. 5 because the area occupied by two single-threaded in­

order cores is less than the area occupied by one SMT OoO core

[10]. The performance penalty for P-CRTR can be primarily

attributed to higher ALU, cache, and branch predictor

contention. For example, the average LI cache miss rate for

the leading threads in P-CRTR was 6.5 percent higher than

that in CRTR.

Fig. 6 shows the Energy x Delay2 (ED2) metric for

different forms of P-CRTR, normalized to that for CRTR.

Figs. 5 and 6 provide the data necessary to allow readers to

compute other metrics in the E - D space. The first bar shows

ED2 for P-CRTR-OoO, where both trailers execute on an SMT

Fig. 5. Total IPC throughput for multithreaded workloads.

1076 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL 18, NO. 8, AUGUST 2007

Fig. 6. E D 2 fo r the entire system for various forms of trailers, normalized

to the E D 2 of CRTR.

OoO core. The DFS heuristic scales frequencies for the trailing

core, allowing it to consume less total power than CRTR.

However, CRTR has a throughput advantage that allows it to

have a better (lower) ED2 than P-CRTR for many programs.

On the average, the ED2 of P-CRTR is 17 percent more than

CRTR. Although CRTR imposes an average power overhead

of 97 percent for redundancy, P-CRTR imposes an overhead

of 75 percent. The effective frequency for the trailing core is
much higher (0.77 times peak frequency) than that seen for

the single-thread workloads because the selected frequency

has to be high enough to allow both threads to match leading

thread throughputs. Some workloads (sets 4 and 7) are able to

lower their trailer frequencies enough to yield lower ED'2
than CRTR. This was also observed for other workloads that

had a similar combination of Int/FP/IPC. In general, work­

loads composed of 1 ow IPC progra ms (th ose wi th h i gh bra nch

mispredict rates and cache miss rates) are likely to see a

higher benefit from a perfect cache and a branch predictor,

leading to low trailer frequencies and better overall ED2 with

P-CRTR. When scheduling redundant threads on a CMP of

SMT OoO cores, the operating system can optimize ED2 by

taking program behavior into account and accordingly

adopting a schedule similar to CRTR or P-CRTR.

The second bar in Fig. 6 represents the P-CRTR-in-order

model. We assume that the in-order to OoO power
consumption ratio is 1:7 for this graph. By executing the

trailing thread on a frequency-scaled in-order core with

perfect cache, branch predictor, and RVP, significant power

reductions are observed (enough to offset the additional

power overhead of data transfers between cores). On the

average, P-CRTR-in-order improves ED2 by 15 percent,

relative to CRTR. The average power overhead of redun­

dancy is 20 percent. Benchmark set 5 has 12 percent higher

ED2 when compared to CRTR due to a 25 percent

performance loss. We observed that, by coscheduling the

leading threads on the same core, branch predictor conflicts

increased significantly for this benchmark pair. The total

power overhead associated with RVP for the multithreaded

workloads is 5.64 W.
The net conclusion is similar to that in the previous

section. Leading threads executing on an OoO core (in

single or multithreaded mode) can be verified efficiently on

in-order cores. Although more data has to be transmitted

between cores, the power efficiency of an in-order core

compensates for the data transfer overhead.

Fig. 7. Histogram showing the percentage of intervals at each normal­

ized frequency.

5.4 Potential for Voltage Scaling
Frequency scaling is a low-overhead technique that trades off

performance and power and allows us to reduce the dynamic

power consumed by the trailing thread. One of the most

effective techniques to reduce power fora mi nor performance

penalty is dynamic voltage and frequency scaling (DVFS). If

our heuristic determines that the trailer can operate at a

frequency that is half thepeak frequency (for example), then it

may be possible to reduce the voltage by (say) 25 percent and

observe dynamic power reduction within the trailer of

72 percent instead of the 50 percent possible with just DFS.

Although DFS does not impact leakage power, DVFS can also

reduce leakage (to a first-order) as leakage is linearly

proportional to supply voltage [5]. DVFS can be combined

with body biasing to further reduce leakage power [14],

However, these techniques require voltage changes that can

consume a large number of cycles of the order of 50/is [6].

Even if voltage is modified only in small steps, each voltage

change will require tens of thousands of cycles. If an increase

in frequency is warranted, then the frequency increase cannot

happen until the voltage is increased, thereby causing stalls

for the leading threads. As observed earlier, a frequency

change is made at the end of the 70 percent of all 1,000-cycle

intervals. It is difficult to design a DFS mechanism that

increases frequency only once every 100,000 cycles on the

average and poses minimal stalls for the leading thread.

Therefore, it is unlikely that the overhead of dynamic voltage

scaling will be tolerable.

We, however, observed that there may be the potential to

effect some degree of conservative voltage scaling. Fig. 7

shows a histogram of the percentage of intervals spent at

each frequency by the in-order trailer with RVP. Peak

frequency is exercised for only 0.56 percent of all intervals.

If we operate at a low voltage that can support a frequency

of 0.9 x peak frequency but not the peak frequency, then we

will be forced to increase the voltage (and stall the leader for

at least 10,000 cycles) for a maximum of 0.56 percent of all

1,000-cycle intervals. This amounts to a performance over­

head of up to 5.6 percent, which may be tolerable. The

corresponding power benefit may be marginal, especially

considering the small amount of power consumed within

each in-order core, as illustrated below.

MADAN AND BALASUBRAMONIAN: POWER-EFFICIENT APPROACHES TO REDUNDANT MULTITHREADING 1077

I 10
£

0 ----- 1----- I----- 1----- 1----- 1----- 1----- 1
0 10 20 30 40 50 60

Percentage contribution of leakage to total leader power

Fig. 8. Trailer power as a function of contribution of leakage to the

baseline processor.

Consider the following example scenario when the

trailer is executed on a frequency-scaled in-order core
augmented with RVP. Ff 100 units of power are consumed
within the leader, an in-order trailer will consume 14 units

of power (ratio similar to the EV5 and EV8), of which about

10 units can be attributed to dynamic power. A DFS

heuristic with an effective frequency of 0.5 will reduce the
in-order core's dynamic power by five units. Thus, out of

the total 109 units consumed by this system, four units can
be attributed to in-order leakage and five units to in-order

dynamic power. Any additional optimizations to this
system must take note of the fact that the margin for

improvement is very small.

Based on the simple analysis above, we also examine the

potential benefits of parallelizing the verification workload

[19]. With RVP, the trailing thread has a very high degree of

ILP as every instruction is independent. Instead of execut­

ing a single trailing thread on an in-order core, the trailing

thread can be decomposed into (say) two threads and made

to execute in parallel on two in-order cores. When the

workload is parallelized by a factor of 2, the effective

frequency can be lowered by a factor of 2. Hence, the power

consumed by this system will equal 113 units (100 for the

leading core + 8 for leakage on two in-order cores + 2.5 for

dynamic on first in-order core + 2.5 for dynamic on second

in-order core). Thus, parallelization with DFS does not

reduce dynamic power, but increases leakage power and is

therefore not worthwhile. For parallelization to be effective,

DFS has to be combined with a technique such as DVFS or

body biasing. Assume that an effective frequency of 0.5 can

be combined with a voltage reduction of 25 percent (similar
to that in the Xscale). Parallelization on two in-order cores

yields a total power consumption of 108.8 units (100 for

leading core + 6 for leakage, which is a linear function of

supply voltage, + 1.4 for dynamic on first in-order core,

which is a quadratic function of supply voltage, + 1.4 for

dynamic on second in-order core). The reduction in

dynamic power is almost entirely negated by the increase

in leakage power. Clearly, different assumptions on voltage

and frequency scaling factors, leakage, in-order power

consumption, and so forth can yield different quantitative

numbers. Fn the next section, we use our analytical model to

show that, for most reasonable parameters, workload

parallelization yields little power benefit, even when we

aggressively assume that voltage scaling has no overhead.

% Leakage Contribution

Fig. 9. Power overhead of the trailing core, relative to the leading core,
with and without parallelizing the verification workload.

There are other problems associated with voltage scaling:

1) Lower voltages can increase a processor's susceptibility

to faults, 2) as voltage levels and the gap between the

supply and threshold voltages reduce, opportunities for

voltage scaling may cease to exist, and 3) parallelization has

low scalability in voltage terms: Parallelizing the workload

across four cores allows frequency to be scaled down by a

factor of 4, but reductions in voltage become increasingly

marginal.

5.5 Sensitivity Analysis
As an example application of the analytical model, we

present power overheads as a function of the contribution

of leakage to the baseline OoO leading core (Fig. 8). The

three forms of trailers shown are an OoO core with the DFS

heuristic and in-order cores with RVP and DFS, which

consume 0.55 times and 0.14 times the power of the OoO

core, respectively. The overall conclusions of our study hold

for all of these design points.

We discussed workload parallelization in an earlier section

and reconfirm our observations with the help of analytical

models for various design points. Fig. 9 shows the effect of

workload parallelization and leakage contribution on the

trailing core's power, where the trailing thread executes on an

in-order processor enabled with DVFS. Based on detailed

simulation results, we assume wrongpath.f actor = 1.17,

e./’/’_/reg=0.44, v.factor = 1.25, and Ikgjratio and dynjratio
= 1.8. For N = 2, as the contribution of leakage power

increases, the workload parallelization yields marginal

improvement over the base case (N = 1). Note that the base

case has a single DFS-enabled in-order core and does not

employ voltage scaling. Even for low leakage contribution,

the power reduction with the workload parallelization is only

2.5 percent.

The effect of various parameters on FPC is harder to

capture with analytical models and we report on some of

our salient observations:

1. The relative benefits of a perfect cache and a branch

predictor are significant for most processor models.

For example, increasing the window size improves

the ability of the baseline OoO core to tolerate cache

misses and likewise improves the ability of the core

with the perfect cache/branch predictor to mine

greater FLP.

2. We have observed that, for a multithreaded workload,

scheduling leading and trailing threads on the same

SMT core (as in CRTR) yields a 9.4 percent throughput

1078 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL 18, NO. 8, AUGUST 2007

improvement over a model where the leading threads

are scheduled on the same SMT core. As the total

number of functional units is increased, this perfor­

mance gap reduces to 6.3 percent because contention

for resources becomes less of an issue.

3. For an in-order core with RVP, the only limitation to

IPC is the number of functional units available and

the fetch bandwidth. The effective frequency of the

in-order core can be reduced by increasing the

number of functional units and, hence, the IPC.

Likewise, the ability to fetch from multiple basic

blocks in the same cycle has a much greater impact
on the IPC of the in-order core with RVP than on

other cores.

4. The slack between leading and trailing threads is

closely related with interval size. If we examine the
slack every 1,000 cycles to make a decision for trailer

frequency, then the slack must be about 1,000 in

order to absorb a significant IPC change of 1.0 in the

leading thread in the next interval. A smaller slack

can lead to the intercore buffers getting full and

stalling the leading thread. A large slack allows more

opportunities for frequency reduction, but incurs a

nontrivial power overhead for the intercore buffers.

6 C o n c l u s io n s a n d F u tu r e W o r k

In this paper, we have presented novel microarchitectural

techniques for reducing the power overheads of RMT. When

executing leading and trailing redundant threads, we take

advantage of the fact that the leading thread prefetches data

and resolves branches for the trailing thread. The results of

the leading thread also allow the trailing core to implement a

perfect register value predictor. All of the information from

the leading thread makes it possible for the trailing thread to

achieve high IPC rates even with an in-order core, thereby

justifying the cost of high intercore traffic. DFS further helps

reduce the power consumption of the trailing thread. Our

results indicate that workload parallelization and voltage

scaling hold little promise. We quantify the power perfor­

mance trade-off when scheduling the redundant threads of a

multithreaded workload and derive analytical models to

capture the insight from our detailed simulations. None of the

mechanisms proposed in this paper compromises the error

coverage of the baseline system.

As our future work, we w ill study the thermal

characteristics of RMT implementations. As the degree of

redundancy increases, the contribution of redundant

threads to total system power also increases. In such a

setting, it may be worth studying how the power consumed

by in-order cores can be further reduced.

A c k n o w l e d g m e n t s

This work was supported in part by US National Science

Foundation (NSF) grant CCF-0430063 and by an NSF

CAREER award.

R e fe r e n c e s

[1] T. Austin, "DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design/' Proc. 32nd A nn. In t'l Symp. M icro­
architecture (M ICRO-32), Nov. 1999.

[2] R. Balasubramonian, N. Muralimanohar, K. Ramani, and V.
Venkatachalapathy, "Microarchitectural Wire Management for
Performance and Power in Partitioned Architectures/' Proc. 11th
Int'l Symp. High-Performance Computer Architecture (HPCA-11), Feb.
2005. ‘

[3] D. Brooks, V. Tiwari, and M. Martonosi, "Watteh: A Framework for
Architectural-Level Power Analysis and Optimizations," Proc. 27th
Int'l Symp. Computer Architecture (ISCA-27), pp. 83-94, June 2000.

[4] D. Burger and T. Austin, "The Simplesealar Toolset, Version 2.0,"
Technical Report TR-97-1342, Univ. of Wiseonsin-Madison, June
1997.

[5] J.A. Butts and G. Sohi, "A Static Power Model for Architects,"
Proc. 33rd Ann. Int'l Symp. Microarchitecture (MICRO-33), Dec.
2000.

[6] L. Clark, "Circuit Design of XScale Microprocessors," Proc. Symp.
VLSI Circuits (Short Course on Physical Design for Low-Power and
High-Performance Microprocessor Circuits), June 2001.

[7] M. Gomaa, C. Scarbrough, and T. Vijaykumar, "Transient-Fault
Recovery for Chip Multiprocessors," Proc. 30th Int'l Symp.
Computer Architecture (ISCA-30), June 2003.

[8] M. Gomaa and T.N. Vijaykumar, "Opportunistic Transient Fault
Detection," Proc. 32nd Int'l Symp. Computer Architecture (ISCA-32),
June 2005.

[9] E. Grochowski, R. Ronen, J. Shen, and H. Wang, "Best of Both
Latency and Throughput," Proc. 22nd Int'l Conf. Computer Design
(ICCD-22), Oct. 2004.

[10] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen,
"Single ISA Heterogeneous Multi-Core Architectures: The Poten­
tial for Processor Power Reduction," Proc. 36th Ann. Int'l Symp.
Microarchitecture (MICRO-36), Dec. 2003.

[11] R. Kumar, V. Zyuban, and D. Tullsen, "Interconnections in Multi­
Core Architectures: Understanding Mechanisms, Overheads and
Scaling," Proc. 32nd Int'l Symp. Computer Architecture (ISCA-32),
June 2005.

[12] S. Kumar and A. Aggarwal, "Reduced Resource Redundancy for
Concurrent Error Detection Techniques in High Performance
Microprocessors," Proc. 12th Int'l Symp. High-Performance Computer
Architecture (HPCA-12), Feb. 2006.

[13] S. Kumar and A. Aggarwal, "Self-Checking Instructions—Redu­
cing Instruction Redundancy for Concurrent Error Detection,"
Proc. 15th Int'l Conf. Parallel Architecture and Compilation Techniques
(PACT '06), Sept. 2006.

[14] S. Martin, K. Flautner, T. Mudge, and D. Blaauw, "Combined
Dynamic Voltage Scaling and Adaptive Body Biasing for Lower
Power Microprocessors under Dynamic Workloads," Proc. IEEE/
ACM Int'l Conf. Computer-Aided Design (ICCAD '02), 2002.

[15] C. McNairy and R. Bhatia, "Monteeito: A Dual-Core, Dual-Thread
Itanium Processor," IEEE Micro, vol. 25, no. 2, Mar./Apr. 2005.

[16] S. Mukherjee, J. Emer, and S. Reinhardt, "The Soft-Error Problem:
An Architectural Perspective," Proc. 11th Int'l Symp. High
Performance Computer Architecture (HPCA-11), 2005.

[17] S. Mukherjee, M. Kontz, and S. Reinhardt, "Detailed Design and
Implementation of Redundant Multithreading Alternatives," Proc.
29th Int'l Symp. Computer Architecture (ISCA-29), May 2002.

[18] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin, "A
Systematic Methodology to Compute the Architectural Vulner­
ability Factors for a High-Performance Microprocessor," Proc. 36th
Ann. Int'l Symp. Microarchitecture (MICRO-36), Dec. 2003.

[19] M. Rashid, E. Tan, M. Huang, and D. Albonesi, "Exploiting
Coarse-Grain Verification Parallelism for Power-Efficient Fault
Tolerance," Proc. 14th Int'l Conf. Parallel Architecture and Compila­
tion Techniques (PACT '05), 2005.

[20] J. Ray, J. Hoe, and B. Falsafi, "Dual Use of Superscalar Datapath
for Transient-Fault Detection and Recovery," Proc.. 34th Ann. Int'l
Symp. Microarchitecture (MICRO-34), Dec. 2001.

[21] S. Reinhardt and S. Mukherjee, "Transient Fault Detection via
Simultaneous Multithreading," Proc. 27th Int'l Symp. Computer
Architecture (ISCA-27), pp. 25-36, June 2000.

[22] E. Rotenberg, "AR-SMT: A Microarchitectural Approach to Fault
Tolerance in Microprocessors," Proc. 29th Int'l Symp. Fault-Tolerant
Computing (FTCS '99), June 1999.

[23] G. Semeraro, G. Magklis, R. Balasubramonian, D. Albonesi, S.
Dwarkadas, and M. Scott, "Energy Efficient Processor Design
Using Multiple Clock Domains with Dynamic Voltage and
Frequency Scaling," Proc. Eighth Int'l Symp. High-Performance
Computer Architecture (HPCA-8), pp. 29-40, Feb. 2002.

MADAN AND BALASUBRAMONIAN: POWER-EFFICIENT APPROACHES TO REDUNDANT MULTITHREADING 1079

[24] P. Shivakumar, M . Kistler, S. Keckler, D. Burger, and L. Alvisi,

"Modeling the Effect of Technology Trends on the Soft Error Rate

of Combinatorial Logic," Proc. Int'l Conf. Dependable Systems and
Networks (DSN '02), June 2002.

[25] J. Smolens, J. Kim, J. Hoe, and B. Falsafi, "Efficient Resource
Sharing in Concurrent Error Detecting Superscalar Microarchi­

tectures," Proc. 37th Ann. Int'l Symp. Microarchitecture (MICRO-37).
Dec. 2004.

[26] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm,

"Exploiting Choice: Instruction Fetch and Issue on an Implemen-

table Simultaneous Multithreading Processor," Proc. 23rd Int'l
Symp. Computer Architecture (ISCA-23), May 1996.

[27] T. Vijaykumar, I. Pomeranz, and K. Cheng, "Transient-Fault

Recovery via Simultaneous Multithreading," Proc. 29th Int'l Symp.
Computer Architecture (ISCA-29), May 2002.

[28] N. Wang, J. Quek, T. Rafacz, and S. Patel, "Characterizing the

Effects of Transient Faults on a High-Performance Processor

Pipeline," Proc. Int'l Conf. Dependable Systems and Networks (DSN
'04), June 2004.

N iti Madan received the BE degree in electrical
engineering from the University of Delhi in 2001
and the MS degree in computer science from the
University of Utah in 2004. She is pursuing the
PhD in computer science at the University of
Utah. Her research focuses on reliability-aware
and power-efficient architectures and multicore
and multithreaded architectures. She is a stu­
dent member of the IEEE and the ACM.

Rajeev B a lasubram onian received the BTech
degree in computer science and engineering at
the Indian Institute of Technology, Bombay, in
1994 and the MS and PhD degrees in computer
science from the University of Rochester in 2000
and 2003, respectively. He is an assistant
professor in the School of Computing at the
University of Utah. His research focuses on the
design of high-performance m icroprocessors
that can efficiently tolerate long on-chip wire

delays, high-power densities, and frequent soft errors. He received a US
National Science Foundation Faculty Early Career Development
(CAREER) award in 2006 and holds three patents. He is a member of
the IEEE and the IEEE Computer Society.

> For m ore in fo rm a tion on th is o r any o ther com pu ting to p ic ,
p lease v is it o u r D ig ita l L ib ra ry at www.computer.org/publications/dlib.

http://www.computer.org/publications/dlib

