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Abstract—Noise and radiation-induced soft errors (transient faults) in computer systems have increased significantly over the last few 
years and are expected to increase even more as we move toward smaller transistor sizes and lower supply voltages. Fault detection 
and recovery can be achieved through redundancy. The emergence of chip multiprocessors (CMPs) makes it possible to execute 
redundant threads on a chip and provide relatively low-cost reliability. State-of-the-art implementations execute two copies of the same 
program as two threads (redundant multithreading), either on the same or on separate processor cores in a CMP, and periodically 
check results. Although this solution has favorable performance and reliability properties, every redundant instruction flows through a 
high-frequency complex out-of-order pipeline, thereby incurring a high power consumption penalty. This paper proposes mechanisms 
that attempt to provide reliability at a modest power and complexity cost. When executing a redundant thread, the trailing thread 
benefits from the information produced by the leading thread. We take advantage of this property and comprehensively study different 
strategies to reduce the power overhead of the trailing core in a CMP. These strategies include dynamic frequency scaling, in-order 
execution, and parallelization of the trailing thread.

Index Terms— Reliability, power, transient faults, soft errors, redundant multithreading (RMT), heterogeneous chip multiprocessors, 
dynamic frequency scaling.

---------------------  ♦  ---------------------

1 In tr o d u c tio n

A  recent study [24] shows that the soft-error rate [16] per 
chip is projected to increase by nine orders of 

magnitude from 1992 to 2011. This is attributed to growing 

transistor densities and lower supply voltages that increase 

susceptibility to radiation and noise. Such soft errors or 
transient faults do not permanently damage the device but 
can temporarily alter the state, leading to the generation of 

incorrect program outputs.
Fault tolerance can be provided at the circuit or process 

level. For comprehensive fault coverage, every circuit would 

have to be redesigned. This not only increases design 
complexity, but also has the potential to lengthen critical 
paths and reduce clock frequencies. For this reason, many 
recent studies [1], [7], [17], [19], [21], [25], [27] have explored 
architecture-level solutions that can provide fault tolerance 
with modest performance and complexity overheads. In most 
solutions, generally referred to as redundant multithreading 
(RMT), an instruction is executed twice and results are 
compared to detect faults. Most studies on reliability have 
paid little attention to power overheads in spite of the fact that 
future microprocessors will have to balance three major 
metrics: performance, power, and reliability. A recent paper 
by Gomaa and Vijaykumar [8] opportunistically employs 
redundancy, thereby deriving a desirable point on the 
performance-reliability curve. Because redundancy is occa­
sionally turned off, this approach also indirectly reduces
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power overheads. In this paper, we focus on maintaining a 
constant level of error coverage and explore different 
strategies to improve the power efficiency of reliability 
mechanisms (while occasionally compromising marginal 
amounts of performance).

In a processor that employs redundancy, the "checker 
instruction'' can be made to flow through a similar pipeline as 

the "primary instruction.''1 This approach is well suited to a 

chip multiprocessor (CMP) or simultaneous multithreaded 

processors (SMTs), where the processor is already designed 

to accommodate multiple threads. With minor design 

modifications, one of the thread contexts can be made to 

execute the checker thread [7], [17], [21], [27], Furthermore, 

thread contexts can be dynamically employed for either 
checker or primary threads, allowing the operating system or 

application designer to choose between increased reliability 

and increased multithreaded performance. However, this 

approach has significant power overheads as each checker 
instruction now flows through a complex out-of-order (OoO) 

pipeline. In an alternative approach, the checker thread can 

flow through a heavily modified helper pipeline that has low 
complexity [1], [25]. Even though the area overhead is 

modest, the area occupied by this helper pipeline is not 

available for use by primary threads even if reliability is not a 
primary concern for the application. As we shall show in this 

paper, heterogeneous CMPs can allow us to derive the better 

of the two approaches above.
As a starting point, we consider the following RMT 

architecture based on the Chip-level Redundantly Threaded 
multiprocessor with Recovery (CRTR) model proposed by 

Gomaa et al. [7], The primary thread executes on an OoO

1. The main program thread is referred to as the primary or leading thread. 
The redundant thread is referred to as the checker or trailing thread. 
Correspondingly, these threads execute on primary/leading cores or checker/  
trailing cores.
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Fig. 1. An example of the effect of scaling the checker core’s frequency. In this example, by operating at half the peak frequency, the checker’s 

dynamic power is reduced from 80 to 40 W. Leakage power is not affected.

core and the checker thread executes on a different OoO 

core within a CMP. Branch outcomes, load values, and 

register results produced by the primary thread are fed to 

its checker thread in the neighboring core, so it can detect 

and recover from faults (as shown in Fig. 1). In an effort to 

reduce the power overhead of CRTR, we make the 

following observations: The checker thread experiences no 

branch mispredictions or cache misses because of the values 

fed to it by its primary thread. The checker thread is 

therefore capable of a much higher instruction-per-cycle 

(IPC) throughput rate than its primary thread. This allows 

us to operate the checker core in a low-power mode while 

still matching the leading thread's throughput. Fig. 1 shows 

how the checker core's frequency can be scaled down in 

order to reduce dynamic power. We also explore the 

potential of using an in-order pipeline for the checker core 

and show that some form of value prediction is required to 

enable it to match the throughput of the primary thread. We 

also extend our evaluation to multithreaded workloads 

executing on a CMP of SMTs. Finally, we examine the 

potential of dynamic voltage scaling and of parallelization 

of the verification workload. Some of the conclusions of this 

work resonate well with prior research such as the proposal 

of Austin to employ in-order checker pipelines that are fed 

with leader-generated inputs [1]. On the other hand, some 

of our conclusions argue against the voltage scaling 

approach proposed by Rashid et al. [19]. The major 

contributions of this paper are listed as follows:

•  dynamic frequency scaling (DFS) techniques that 

match throughputs of leading and trailing threads 

and that are able to execute the trailing core at an 

effective frequency as low as 0.42 times peak 

frequency,

•  techniques that increase intercore traffic to enable 

the use of simple and power-efficient trailer cores,

•  a combination of the above ideas that helps reduce 

the overhead of redundancy to merely 10 percent of 

the leader core's power consumption,

•  an exhaustive design space exploration, including 

the effects of parallelizing the verification workload 

and employing voltage scaling,

•  quantifying the power performance trade-off when 

scheduling the redundant threads of a multi­

threaded workload, and

•  analytical models that enable rough early estimates 

of different RMT organizations.

The paper hasbeen organized as follows: Section 2 outlines 

th e rela ti onshi p of this work wi th pri or a rt. Section 3 d escribes 

the RMT implementations that serve as baseline processor

models in this study. Section 4 describes various power 

reduction strategies for the trailing thread. The proposed 

ideas are evaluated in Section 5 and we summarize the 

conclusions of this study in Section 6.

2 R e la te d  W o rk

Many fault-tolerant architectures [1], [7], [17], [20], [21], [22], 

[27], [28] have been proposed over the last few years and 

our baseline models are based on previously proposed RMT 

designs. Most of this prior work has leveraged information 

produced by the leading thread, but the focus has been on 

the performance-reliability trade-off, with few explicit 

proposals for power-efficiency. Active-Stream/redundant 

Stream SMT (AR-SMT) [22] was the first design to use 

multithreading for fault detection. AR-SMT proposed 

sending all register values to the trailing thread to boost 

its performance. In our work, we exploit register values to 

enable in-order execution of the trailing thread for power 

efficiency. Mukherjee et al. later proposed fault detection by 

using simultaneous multithreading and chip-level RMTs 

[17], [21], Vijaykumar et al. augmented the above techni­

ques with recovery mechanisms [7], [27], Most of these 

research efforts have been targeted at improving thread- 

level throughput and have not been optimized for power 

efficiency. Gomaa etal. [7] discuss techniques such as Death 

and Dependence-Based Checking Elision (DDBCE) to 

reduce the bandwidth requirements (and, hence, power 

overheads) of the intercore interconnect. Our proposals, on 

the other hand, advocate transferring more data between 

threads to enable power optimizations at the trailer. 

Mukherjee et al. [18] characterize the architectural vulner­

ability factors (AVFs) of various processor structures. Power 

overheads of redundancy can be controlled by only 

targeting those processor structures that have a high AVF.

Some designs, such as DIVA [1] and SHared REsource 

Checker (SHREC) [25], are inherently power-efficient 

because the helper pipelines that they employ to execute 

redundant instructions are in-order-like. DIVA has two in­

order pipelines: Checkcomm, which checks all memory 

values, and Checkcomp, which checks all computations. 

These helper pipelines are fed with input values generated 

by the primary pipeline. However, these designs require 

(potentially intrusive) modifications to the pipeline of the 

conventional primary microarchitecture and the helper 

pipelines cannot be used to execute primary threads. We 

extend this concept by executing the redundant thread on a 

general-purpose in-order core augmented with register 

value prediction (RVP) and by limiting the data that has 

to be extracted from the primary pipeline. Even though
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DIVA was among the first RMT proposals, recent research 

in this area has moved away from that concept and focused 

more on the exploitation of heavily threaded hardware. Our 

conclusions show that the DIVA concepts are worth 
revisiting and are complexity effective in a processor with 

heterogeneous in-order and OoO cores.
A recent paper by Rashid et al. [19] represents one of the 

first efforts at explicitly reducing the power overhead of 
redundancy. In their proposal, the leading thread is 
analyzed and decomposed into two parallel verification 
threads that execute on two other OoO cores. Parallelization 
and the prefetch effect of the leading thread allow the 
redundant cores to operate at half the peak frequency and 
lower supply voltage and still match the leading thread's 
throughput. Our approach differs from that work in several 
ways: 1) In [19], redundant loads retrieve data from caches, 
leading to complex operations to maintain data coherence 
between multiple threads. In our implementation, redun­
dant instructions receive load results and even input 
operands from the leading thread. We claim that, by 
investing in intercore bandwidth, trailer core overheads 
can be reduced. 2) Rashid et al. [19] rely on voltage scaling 
and body biasing to benefit from parallelization. We have 
explicitly steered away from such techniques because of the 
associated overheads. Unlike their work, we leverage DFS 
and in-order execution. 3) Our analytical results show that 
parallelization of the verification workload yields little 
benefit if we are already employing in-order cores 
augmented with RVP.

Some papers have looked at reducing resource and 
instruction redundancy for reducing performance and 
power overheads in RMT techniques without reducing the 
fault coverage. Kumar and Aggarwal [12] apply register 
reuse and narrow-width operand register sharing techni­
ques to reduce the performance and power overheads in the 
register file. In another recent paper by the same authors 
[13], many instructions are classified as self-checking, such as 
those that have a zero operand. The results produced by 
these instructions will often be equal to their nonzero 
operands and these instructions need not be redundantly 
executed by the trailing thread. These techniques indirectly 
reduce the power overheads by executing fewer instruc­
tions for verification. Other approaches that reduce the 
power overheads indirectly are RMT techniques that reduce 
the fault coverage such as opportunistic RMT [8], In that 
work, in addition to exploiting instruction reuse, redundant 
threads execute only when the primary thread is stalled on 
level-2 (L2) cache misses. This paper explores techniques 
that can reduce power and area overheads while maintain­
ing a constant level of error coverage. These techniques are 
often orthogonal to other techniques that, for example, trade 
off reliability for better performance or power.

3 Ba s e l in e  R e l ia b le  P r o c e s s o r  M o d e l

We have based our reliable chip-multiprocessor architec­
ture on the model proposed by Gomaa et al. [7] and 
Mukherjee et al. [17], The architecture consists of two 
communicating cores that execute copies of the same 
application for fault detection. One of the cores (the leading 
core) executes ahead of the second core (the trailing core) by 
a certain amount of slack. The leading core communicates 
its committed register results to the trailing core for

comparison of values to detect faults (Fig. 1). Load values 
are also passed to the trailing core, so it can avoid reading 
values from memory that may have been recently updated 
by other devices. Thus, the trailing thread never accesses its 
level-1 (LI) data cache and there is no need for coherence 
operations between the LI data caches of the leading and 
trailing cores. This implementation uses asymmetric commit 

to hide intercore communication latency: The leading core 
is allowed to commit instructions before checking. The 
leading core commits stores to a store buffer (StB) instead of 
to memory. The trailing core commits instructions only after 
checking for errors. This ensures that the trailing core's state 
can be used for a recovery operation if an error occurs. The 
trailing core communicates its store values to the leading 
core's StB and the StB commits stores to memory after 
checking.

The communication of data between the cores is facilitated 
by the first-in, first-out (FIFO) Register Value Queue (RVQ) 
and Load Value Queue (LVQ). As a performance optimiza­
tion, the leading core also communicates its branch outcomes 
to the trailing core (through a branch outcome queue (BOQ)), 
allowing it to have perfect branch prediction. The power 
saved in the trailing core by not accessing the LID cache and 
the branch predictor is somewhat offset by the power 
consumption of the RVQ and LVQ. If the slack between the 
two cores is at least as large as the reorder buffer (ROB) size of 
the trailing core, then it is guaranteed that a load instruction in 
the trailing core will always find its load value in the LVQ. 
When external interrupts or exceptions are raised, the leading 
thread must wait for the trailing thread to catch up before 
servicing the interrupt.

The assumed fault model is exactly the same as in [7] and 
[17], The following conditions are required in order to 
detect and recover from a single fault:

• The data cache, LVQ, and buses that carry load 

values must be error-correcting code (ECC) pro­

tected as the trailing thread directly uses these load 

values.
• When an error is detected, the register file state of 

the trailing thread is used to initiate recovery. The 
trailing thread's register file must be ECC protected 

to ensure that values do not get corrupted once they 
have been checked and written into the trailer's 

register file.

Other structures in each core (including the RVQ) need not 

have ECC or other forms of protection as disagreements 
will be detected during the checking process. The BOQ 
need not be protected as long as its values are only treated 
as branch prediction hints and confirmed by the trailing 

pipeline. Similarly to the baseline model in [7] and [17], we 
assume that the trailer's register file is not ECC protected. 
Hence, a single fault in the trailer's register file can only be 
detected.2 All other faults can be detected and recovered 
from. The proposed mechanisms in this paper preserve this 
basic fault coverage.

In our single-thread model, we assume an implementa­

tion where each core on the CMP can only support a single 

thread. Our multithread model is based on the CRTR 

architecture [7], where each core is a dual-threaded SMT. In

2. If no ECC is provided within the register file, then Triple Modular 
Redundancy will be required to detect and recover from a single fault.
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Fig. 2. Power-efficient chip-level RMT design space, (a) CRTR. (b) P-CRTR. (c) P-CRTR-in order.

the CRTR architecture, the trailing thread of one application 

shares its core with the leading thread of a different 

application (shown in Fig. 2a). We require that the slack for 

each application remain between two thresholds: T ill and 

TII2. The lower threshold T ill is set to the ROB size 

available to the trailing thread so that load results can be 

found in the LVQ. The higher threshold TII2 is set to the 

size of the RVQ minus the ROB size for the leading thread 

so that all completing instructions in the leading thread are 

guaranteed to find an empty slot when writing results into 

the RVQ. Similarly to the fetch policy in [7], the slack values 

determine which threads are allowed to fetch within each 

SMT core. If the slack for an application is less than T ill, 

then the trailing thread is not allowed to fetch and, if the 

slack is greater than TII2, then the leading thread is not 

allowed to fetch. In cases where both threads within an SMT 

core are allowed to fetch, the 1COUNT heuristic [26] is 

employed.

4 M a n a g in g  P o w e r  O v e r h e a d s

4.1 Power Reduction Strategies for the 
Trailing Core

For a single-thread workload, we propose that the leading 

and trailing thread execute on neighboring cores. If each 

core has SMT capability, then it is possible to execute the 

leading and trailing threads on a single core and this avoids 

the overhead of intercore communication. However, as we 

will show later, the power savings possible by executing the 

trailer on a neighboring core are likely to offset the power 

overheads of intercore communication.

For a multithreaded workload, the CRTR implementa­

tion executes unrelated leading and trailing threads on a 

single SMT core (Fig. 2a). Since the trailing thread never 

executes wrong-path instructions and never accesses the 

data cache, the leading thread that executes in tandem is 

likely to experience little contention, thereby yielding high 

throughputs. Applying a power-saving strategy to a trailing 

thread in this setting will slow the leading thread that 

executes on that same core. Hence, to enable power 

optimizations, we propose executing two leading threads 

on the same SMT core and the corresponding trailing 

threads on neighboring cores, referred to as P-CRTR 

(Fig. 2b). By changing the assignment of threads to cores, 

we are not increasing intercore bandwidth requirements: 

The same amount of data as in CRTR is being commu­

nicated between cores. Since the leading threads compete

for resources within a single core in P-CRTR, a performance 

penalty is incurred.

An RMT system attempts to maintain a roughly constant 

slack between leading and trailing threads. Since the 

trailing thread benefits from perfect caching and branch 

prediction, it tends to catch up with the leading thread. This 

provides the opportunity to throttle the execution of the 

trailer in a manner that lowers its power consumption and 

maintains the roughly constant slack.

4.1.1 Dynamic Frequency Scaling (DFS)

The first approach that we consider to throttle trailing 

thread execution is DFS, a well-established technique that 

allows dynamic power to scale down linearly with clock 

frequency [15]. It is a low-overhead technique: In Intel's 

Montecito, a frequency change can be effected in a single 

cycle [15]. In most systems, DFS does not result in a 

dynamic energy reduction as execution time is also linearly 

increased. As we show in our results, the application of DFS 

to the trailing core of an RMT system has a minimal impact 

on execution time. Hence, in this particular case, DFS 

results in a reduction in dynamic power and dynamic 

energy. DFS does not impact leakage power (and leakage 

energy) dissipated by the trailer.

A  competitive alternative to DFS is run and stall, where 

the trailing thread operates at peak frequency for a while 

and then shuts off its clock for a while. We expect that the 

fraction of stall time in run and stall will equal the average 

frequency reduction in a DFS-based mechanism. Run and 

stall will also not impact leakage unless voltage is turned off 

during the stall (voltage changes are known to have much 

higher delay overheads). Given the similarity with DFS, we 

do not further evaluate run and stall in this paper.

4.1.2 In-Order Execution

When throttling the trailing core, we may see greater power 

savings by executing the trailing thread on an in-order core. 

A  short and simple pipeline can have a significant impact 

on both dynamic and leakage power. Unfortunately, for 

many program phases, an in-order core, even with a perfect 

D-cache and branch predictor, cannot match the throughput 

of the leading OoO core. Hence, some enhancements need 

to be made to the in-order core. We considered the effect of 

increasing fetch bandwidth and functional units in a simple 

in-order core, but that did not help match the leading core's 

throughput. In fact, for our simulation parameters, even 

with a perfect cache and branch predictor, doubling the 

fetch bandwidth and the arithmetic logic units (ALUs) of
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the in-order core resulted in only about a 1 percent 

performance improvement. This is not surprising because 

data dependency is the biggest bottleneck that limits 

instruction level parallelism (ILP) in an in-order core. As 

soon as a pair of dependent instructions is encountered, the 

dependent instruction (and every instruction after it) is 

forced to stall at least until the next cycle, regardless of the 

fetch and ALU bandwidth.
We therefore propose the use of RVP. Along with the result 

of an instruction, the leading thread can also pass the input 
operands for that instruction to the trailing thread. Instruc­
tions in the trailing core can now read their input operands 
from the RVQ instead of from the register file. Such a register 
value predictor has a 100 percent accuracy in the absence of 
soft errors. With perfect RVP, instructions in the trailer are 
never stalled for data dependences and ILP is constrained 
only by a lack of functional units or instruction fetch 
bandwidth. The value predictions must be confirmed by the 
trailing core or else an error in the leading core may go 
undetected. When an instruction in the trailing core is 
committed, the trailing register file is read to confirm that 
the input operands match those in the RVQ. The error 
coverage is exactly as before: A single soft error in the trailer's 
register file can be detected, whereas a single soft error 
elsewhere can be detected and recovered from. Although 
RVP entails some changes to the commit pipeline in the 
trailer, it allows us to leverage the benefits of an in-order core.

It may be possible to even apply DFS to the in-order core 
to further reduce dynamic power. Contrary to previous 
studies [7] that attempt to reduce intercore traffic, we 
believe that it may be worthwhile to send additional 
information between cores because of the power optimiza­
tions that it enables at the trailer.

The use of an in-order core has another major advantage 
(not quantified in this paper). Since an in-order core has less 
speculative state, it requires fewer rename registers. It may 
be possible to include ECC within the in-order core's small 
register file and still meet cycle time constraints. As 
discussed in Section 3, a trailing core with an ECC-protected 
register file has higher error recovery coverage.

4.1.3 Workload Parallelization

Assuming that power is a quadratic function of perfor­
mance [9] and that a workload can be perfectly parallelized, 
it is more power efficient to execute the workload in parallel 
across N low-performance cores than on a single high- 
performance core. The trailing thread is an example of such 
a highly parallel workload [19]. At regular intervals, the 
leading thread spawns a new trailing thread that verifies 
the results for a recently executed contiguous chunk of the 
program. At the start of the interval, the initial register state 
must be copied into the trailing core. In the next section, we 
show that such an approach yields little benefit.

4.2 Dynamic Frequency Scaling Algorithm for a 
Single Thread

The power-efficient trailing cores rely on a DFS mechanism to 
match their throughputs to that of the leading core. For a 
single-thread workload, the goal of the DFS mechanism is to 
select a frequency for the trailing thread so that a constant 
slack is maintained between the leading and trailing threads. 
In essence, if the IPC of the leading thread is denoted by JPC i 
and the IPC of the trailing thread is I P C t , then we can

maintain equal throughputs and constant slack by setting the 
trailing core's frequency fa to f i  x I  PC [J IPC t, where fa is 
the leading core's frequency. The same effect can be achieved 
with a simple heuristic that examines the size of the buffer 
that feeds results from the leading to the trailing thread (for 
example, the RVQ).

Initially, the trailing core is stalled until the leading core 
commits N instructions. At this point, an RVQ (that does 
not filter out register values) will have N entries. The 
trailing core then starts executing. The RVQ is checked after 
a period of every T cycles to determine the throughput 
difference between the two cores. If the RVQ has N — 
thresh entries, then it means that the trailing thread is 
starting to catch up with the leading thread. At this point, 
the frequency of the trailing thread is lowered one step at a 
time. If the RVQ has N + thresh entries, then it means that 
the leading thread is starting to pull away and the 
frequency of the trailing thread must be increased. We 
observed that increasing the frequency in steps causes the 
slack to increase drastically as the leading thread continues 
to extend its lead over subsequent intervals. Note that the 
leading thread has just entered a high IPC phase of the 
program, whereas the trailing thread will have to commit 
N more instructions before it enters that phase itself. Once 
all of the queues are full, the leading thread is forced to stall. 
To minimize this occurrence, the frequency of the trailing 
thread is immediately increased to the leading thread's 
peak frequency if the RVQ has N + thresh entries.

The smaller the value of T is, the faster the mechanism 
reacts to throughput variations. For our simulations, we 
conservatively assume a 10-cycle overhead for every 
dynamic frequency change. The time interval T is selected 
to be 1,000 cycles so that the overhead of frequency scaling 
is marginal. To absorb throughput variations in the middle 
of an interval, a slack of 1,000 is required. To ensure that the 
RVQ is half full on the average, we set N — thresh to be 400 
and N + thresh to be 700. Frequency is reduced in steps that 
equal f i  x 0.1.

4.3 Dynamic Frequency Scaling Algorithm for 
Multithreaded Workloads

If each trailer executes on a separate core (as in Fig. 2c), then 

the single-thread DFS algorithm in Section 4.2 can be 

applied to tune the frequency of each trailing core. If two 
trailing threads execute on a single SMT core (as in Fig. 2b), 
then the DFS algorithm will have to consider the slack for 

both threads in determining the core frequency. We employ 

fetch throttling strategies to accommodate the potentially 
conflicting needs of coscheduled threads. Rather than 

always using ICOUNT as the fetch policy for the trailing 

core, it helps to periodically throttle fetch for the thread that 

has a lower I  PC [J IPC t ratio and give a higher priority to 
the other trailing thread. This further boosts the IPC value 

for the other trailing thread, allowing additional frequency 

reductions.
The detailed algorithm for invoking fetch throttling and 

frequency scaling is formalized in Table 1. To allow a fine­

grained control of each thread, we employ three slack 

thresholds. The action for each case is based on the 
following guidelines:

1. If the slack for a trailer is less than THO, then there is 

no point fetching instructions for that trailer.
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TABLE 1
Fetch and Frequency Policies Adopted for Leading and Trailing Cores in P-CRTR

l\ = leading thread for application 1; l2 = leading thread for application 2

11 = trailing thread for application 1; <2 = trailing thread for application 2 

si = slack for application 1; s2 = slack for application 2 

Zj and l2 execute on core 1; t\ and *2 execute on core 2 

The fetch and frequency policy attempt to maintain a slack between TH0 and TH 1

In our simulations, TH0 is set to 80, TH 1 is set to 700, TH2 is set to 1000.

Slack conditions s2 < THO THO < .s*2 < 77/1 TH 1 < s2 < TH2 TH2 < s2

si < THO ICOUNT : stall 

ft - = 0.1 fpcak
ICOUNT : t2

ft - ~ 0A fpeak

ICOUNT : t2

ft += 0-1 fpcak

h ■ <2
ft ~ fpcak

THO < si < TH\ ICOUNT : 11 

ft ~= 0.1 fpeak

ICOUNT : ICOUNT

ft -= 0.1 fDeak

ICOUNT : ICOUNT

ft fpeak

h ■ h  

ft — fpeak
TH 1 < s, < TH2 ICOUNT : ti 

ft += 0.1 }pcak

ICOUNT : ICOUNT

ft fpeak

ICOUNT : ICOUNT

ft ~ fpeak

11 : <2 
ft — fpeak

TH2 < s. <2 : <1
ft — fpcak

h  ■ h 

ft — fpeak

h  ■ tl 

ft fpeak

stall : ICOUNT

ft — fpeak

For each entry in the grid, the first two terms indicate which thread is fetched for core 1 and core 2, and the last term indicates the frequency selected 
for the trailing core. Fetch policies are adjusted every cycle and frequencies can be adjusted at intervals of 1,000 cycles.

2. If the slack for a trailer is between THO and THI (the 

desirable range), then the decision depends on the 

state of the other thread.

3. If the slack is between TH 1 and TH2, then we may 

need to quickly ramp up the frequency to its peak 

value in an effort to keep slack under control.

4. If the slack is greater than TH2, then we can stop 

fetching instructions for the leader.

Table 1 describes the action taken for every combination of 

slack values for both threads. As before, THO is a function 

of the trailing thread's ROB size, TH2 is a function of the 

sizes of the RVQ and the leader's ROB size, and TH 1 is 

picked so that the RVQ will be half full on the average. The 

leading core always employs the ICOUNT fetch heuristic to 

select between the two leading threads unless one of the 

slacks is greater than TH2. Fetch throttling is a low- 

overhead process and can be invoked on a per-cycle basis. 

Slack values are evaluated every cycle and any changes to 

the fetch policy are instantly implemented. Changes in 

frequency are attempted only every 1,000 cycles to limit 

overheads. The above algorithm has been designed to react 

quickly to changes so as to minimize stalls for leading 

threads. This leads to frequency changes in almost every 

interval unless the peak or lowest frequency is being 

employed. Incorporating some hysteresis in the algorithm 

reduces the frequency change overhead, but introduces 

additional stalls for leading threads.

4.4 Analytical Model
To better articulate the factors that play a role in the overall 

power consumption, we derive simple analytical power 

models for the proposed RMT systems. These models also 

allow an interested reader to tweak parameters (contribu­

tion of leakage, ratio of in-order to OoO power, and so 

forth) and generate rough estimates of power overheads 

without detailed simulations. The analytical equations were 

derived after studying the detailed simulation results 

described in the next section. We found that, when various 

parameters were changed, our detailed simulation results 

were within 4 percent of the analytical estimates.

For starters, consider leading and trailing threads execut­

ing on neighboring OoO cores in a CMP. Assuming that the 

leader has wrongpath-factor times the activity in the trailer 

(because of executing instructions along the wrong path), the 

total power in the baseline RMT system is given by

Baseline-power =  leakageuoJimj + dynamic.̂  uj ,„,y+ 

leakageuuji,„j + dynumicu udimj/wron-ffpath.factor.

When DFS is applied to the trailing core, and eff-freq is its 

average operating frequency (normalized to the peak 

frequency), assuming marginal stalls for the leading thread, 

the total power in the system is given by

DF S-ooojpowcr =  leakagc[/udll!!J + dynamic, u uj,„,j+ 

leakagey,j + dynam icy ,t x eff-freqjwrongpath-factor.

If scaling the frequency by a factor eff-freq allows us to 

scale the voltage by a factor eff-freq x v-f actor (in practice, 

v-f actor is greater than 1), then the trailing core's power is

DV FSjooojpower =  leakageuwiimj + dynamici, ajin,j+

leakage uaj,ny x eff-freq x v.f actor+

dynamici, ujin,j x eff-f req3 x v-f actor2/wrongpath-f actor.

If an in-order core with RVP is employed for the trailing 

thread, then the following equation is applicable, assuming 

that the in-order core consumes Ikgjratio times less leakage 

and dyn-ratio times less dynamic power than the OoO 

leading core:

DFS-inorder -power =  leakageuwimu + dynamici,

1 eakagey uj,l:u / / kgjratio+

dynamicuadinu x eff-freq/ (wrongpath-factor x dyn-ratio) 

+ RVP-overhead.

We now consider the effect of parallelizing the verifica­

tion workload across N  in-order trailing cores. Assuming
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that we only employ DFS for each in-order core, trailing 

thread power is given by

DFSjinorder -W P .power =  leakageit:miiU(J + dynamicim4ing 

+ N  x leakageit:ading/ lkgjratio+

N x dynamicieal)i,uj x eff-freq/(wrongpath-factor x

dyruratio)

+ RVP-Overhead.

Note that the dynamic power remains the same as in (1). 

eff-freq goes down by a factor N, but that amount is now 

expended at N different cores. In other words, the same 

amount of work is being done in either case. The leakage 

power increases because leakage is a function of the number 

of transistors being employed. Parallelization has a benefit 

only if we are also scaling voltage. Power is then expressed 

as follows:

DVFS-inorder-WP-power =

V-factor x leakageim4 i,ig/lkgjratio+

N x V-factor1 x dynamicit,aciing x eff-freq/ 

(wrongpath-f actor x dyruratio x N2)

+ RVP-overhead.

Finally, similar models can be constructed for CRTR and 

P-CRTR multithreaded models. P-CRTR-ooo represents a 

model where both trailing threads execute on an SMT OoO 

core, P-CRTRJnorder represents a model where each 

trailing thread executes on its individual in-order core, 

and slowdown represents the throughput slowdown when 

executing leading threads together instead of with trailing 

threads. RVP-overhead includes additional power con­

sumed within the RVQ to enable RVP:

Energyciwii =  2 x (leakage,,,,,, + dynamic,,,,,,'*

(1 + wrongpath-f actor)),

Energyp_crtR-ooo =  slowdown x (2 x leakage,,,„+ 

dynamic000 x (wrongpath-f actor + wrongpath-f actor)

+ dynamic000 x eff-freq x (1 + 1)),

Energyp_ciwii-inorda- =  slowdown x (leakagea,„x 

(1 + 2/Ikgjratio) + dynamic,,,,,, x (wrongpath-factor+ 

wrongpath-f actor) + 2 x RV P-Overhead+ 

dynamic,,,,,, x effective-frequency x (1 + 1) / dynjratio).

Parameters such as slowdown, eff-freq, and 

wrongpath-f actor have to be calculated through detailed 

simulations. For example, for our simulation parameters, 

wrongpath-f actor was 1.17, slowdown for P-CRTR-ooo 

was 9.4 percent, and eff-freq for the single-thread model 

was 0.44.

4.5 Implementation Complexities
This section provides an analysis of the complexity 

introduced by the mechanisms in this paper. First, to enable 

DFS, each core must have a clock divider to independently 

control its operating frequency. The clocks may or may not 

be derived from a single source. The buffers between the 

two cores must be designed to allow variable frequencies

for input and output. Multiple clock domain processors 

employ such buffers between different clock domains [23]. 

While changing the frequency of the trailing core, we will 

make the conservative assumption that the leading and 

trailing cores are both stalled until the change has 

stabilized. The dynamic frequency selection mechanism 

can be easily implemented with a comparator and a few 
counters that track the size of the RVQ, the current 

frequency, the interval, and the threshold values.

A large slack is required to absorb throughput variations 

within an interval, also requiring that we implement a large 

RVQ, LVQ, BOQ, and StB. To accommodate a slack of

1.000 instructions, we implement a 600-entry RVQ, a 200- 

entry BOQ, a 400-entry LVQ, and a 200-entry StB per trailing 

thread. All queues and buffers are modeled as FIFO queues. 

Their access is off the critical path, but can incur nontrivial 

power overheads. Values are written to and read from these 

queues in sequential order, allowing them to be implemented 

with single-read and write ports (each row has as many entries 

as the fetch/commit width). The peak power of the largest 

structure, the RVQ, was computed to be 0.89 W (with Wattch's 

power model [3]). It must be noted that low-overhead DFS 

(such as the single-cycle overhead in Montecito) enables a 
smaller interval and, therefore, a smaller slack, RVQ, LVQ, 

BOQ, and StB. Hence, our assumptions for intercore power 

overheads are pessimistic.
Although an in-order core can yield significant power 

savings, additional power is expended in implementing 

RVP. In one possible implementation, each entry of the 

RVQ now contains the instruction's source operands in 

addition to the result. This increases the RVQ's peak power 

consumption from 0.89 W to 2.59 W. As an instruction flows 

through the in-order pipeline, it reads the corresponding 

input operands from the RVQ and control signals are set so 

that the multiplexer before the ALU selects these values as 

inputs. The pipeline is modified so that the register file is 

read at the time of commit and not before the execute stage. 

Our simulations estimate that RVP incurs an additional 

average power cost of 2.54 W for intercore transfers. This 

estimate is admittedly simplistic, as it does not take the cost 

of pipeline modifications into account.

5 R esu lts

5.1 Methodology
We use a multithreaded version of Simplescalar 3.0 [4] for 

the Alpha AXP ISA for our simulations. The simulator has 

been extended to implement a CMP architecture, where 

each core is a two-way SMT processor. Table 2 shows 

relevant simulation parameters. The Wattch [3] power 

model has been extended to model power consumption 

for the CMP architecture at a 90 nm technology at 5 GHz 

and 1.1 V supply voltage. The aggressive clock gating 

model (cc3) has been assumed throughout. Wattch's RAM 

array and wire models were used to compute the power 

dissipated by the intercore buffers (RVQ, LVQ, and so 

forth). The RVQ was modeled as a single-read and single­

write ported structure with 150 total rows, each row 

accommodating results for four instructions (32 bytes of 

data), resulting in a peak power dissipation of 0.89 W. With
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TABLE 2
Simplescalar Simulation Parameters

Branch Predictor Comb, bimodal/2-level (per core) Bimodal Predictor Size 16384

Level 1 Predictor 16384 entries, history 12 Level 2 Predictor 16384 entries

BTB 16384 sets, 2-way Branch Mpred Latency 12 cycles

Instruction Fetch Queue 32 (per Core) Fetch width/speed 4/2 (per Core)

Dispatch/Commit Width 4 (per Core) IssueQ size 40 (Int) 30 (FP) (per Core)

Reorder Buffer Size 80 (per Thread) LSQ size 100 (per Core)

Integer ALUs/mult 4/2 (per Core) FP ALUs/mult 1/1 (per Core)

(Single thread) LI I-cache 32KB 2-way (per Core) LI D-cache 32KB 2-way, 2-cyc (per Core)

(Multi-thread) LI I-cache 128KB 2-way (per Core) LI D-cache 128KB 2-way. 2-cyc (per Core)

L2 unified cache 2MB 8-way. 20 cycles (per Core) Frequency 5 GHz

I and D TLB 256 entries, 8KB page size Memory Latency 300 cycles for the first chunk

RVP included, the size of a row expands to 96 bytes and the 

peak power dissipation to 2.59 W. To model the intercore 

bus, power-optimized wires [2] were employed. The 

distance between two cores was assumed to be equivalent 

to the width of a single core (4.4 mm, which is obtained 

from [11] and scaled to a 90-nm process). Assuming a bus 

width of 35 bytes (without RVP), we computed a peak 

power consumption of 0.67 W  for the intercore bus per 

trailing thread. With RVP, the interconnect power con­

sumption is 2 W  per thread.

Although Wattch provides reliable relative power values 

for different OoO processor configurations, we felt that it 

did not accurately capture the relative power values for 

OoO and in-order cores. An in-order core's power efficiency 

is derived from its simpler control paths and Wattch 

primarily models the data paths within the processor. 

Hence, the in-order power values obtained from Wattch 

were multiplied by a scaling factor to bring these numbers 

more in tune with empirical industrial data. The scaling 

factor was chosen so that the average power for in-order 

and OoO cores was in the ratio 1:7 or 1:2. This ratio is based 

on relative power consumptions for commercial implemen­

tations of Alpha processors (after scaling for technology) 

[10]. Our in-order core is loosely modeled after the quad- 

issue Alpha EV5 that consumes half the power of the single­

thread OoO Alpha EV6 and 1 /7th the power of the 

multithread OoO Alpha EV8. The EV8 is perhaps more 

aggressive than OoO cores of the future (such as Intel's 

Core) and, similarly, the EV5 may be more aggressive than 

the typical future in-order core (such as Sun's Niagara). 

Hence, the above ratios are only intended to serve as 

illustrative design points from a single family of processors. 

The analytical model can be used to estimate power

overheads for other power ratios. The baseline peak 

frequency for all cores is assumed to be 5 GHz.

As an evaluation workload, we use the eight integer and 

eight floating-point benchmark programs from the SPEC2k 

suite that are compatible with our simulator. The execu­

tables were generated with peak optimization flags. The 

programs were fast-forwarded for 2,000,000,000 instruc­

tions, executed for 1,000,000 instructions to warm up 

various structures, and measurements were taken for the 

next 100,000,000 instructions. To evaluate multithreaded 

models, we formed a multiprogrammed benchmark set 

consisting of 10 different pairs of programs. Programs were 

paired to generate a good mix of high-IPC, low-lPC, FP, and 

Integer workloads. Table 3 shows our benchmark pairs. 

Multithreaded workloads are executed until the first thread 

commits 100,000,000 instructions.

5.2 Single-Thread Results
We begin by examining the behavior of a single-threaded 

workload. Fig. 3 shows the IPCs of various configurations, 

normalized with respect to the IPC of the leading thread 

executing on an OoO core. Such an IPC analysis gives us an 

estimate of the clock speed at which the trailing core can 

execute. Since the trailing thread receives load values and 

branch outcomes from the leading thread, it never 

experiences cache misses or branch mispredictions. The 

first bar for each benchmark in Fig. 3 shows the normalized 

IPC for such a trailing thread that executes on an OoO core 

with a perfect cache and a branch predictor. If the trailing 

thread is further augmented with RVP (the second bar), 

then the IPC improvement is only minor (for most bench­

marks). The third bar shows normalized IPCs for an in­

order core with a perfect cache and a branch predictor. It 

can be seen that, for many programs, the normalized IPC is

TABLE 3
Benchmark Pairs for the Multithreaded Workload

Benchmark Set Set # IPC Pairing Benchmark Set Set # IPC Pairing

bzip-vortex 1 Int/Int/Low/Low vpr-gzip 2 Int/Int/High/Low

eon-vpr 3 Int/Int/High/High swim-lucas 4 FP/FP/Low/Low

art-applu 5 FP/FP/Low/High niesa-equake 6 FP/FP/High/High

gzip-mgrid 1 Int/FP/Low/Low bzip-fma3d 8 Int/FP/Low/High

eon-art 9 Int/FP/High/Low twolf-equake 10 Int/FP/High/High
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Fig. 3. IPCs for different models, relative to the baseline OoO core. The absolute IPC for the baseline OoO core for each program is listed above 

each set of bars.

less than 1. This means that an in-order trailing core cannot 

match the leading thread's throughput unless it operates at 

a clock speed much higher than that of the OoO core. The 

last bar augments the in-order core's perfect cache and 

branch predictor with RVP. The increase in IPC is 

significant indicating that RVP will be an important feature 

within an in-order core to allow it to execute at low 

frequencies. The IPC of a core with a perfect cache, a branch 

predictor, and a perfect RVP is limited only by functional 

unit availability and fetch bandwidth. The average normal­

ized IPC is around 3, meaning that, on the average, the 

frequency of a trailing thread can be scaled down by a 

factor of 3.

We then evaluate the DFS heuristic on the single-thread 

programs with different forms of trailing cores. The 

heuristic is tuned to conservatively select high frequencies 

so that the leading thread is rarely stalled because of a full 

RVQ. The performance loss, relative to a baseline core with 

no redundancy, is therefore negligible. The second bar in 

Fig. 4 shows power consumed by a trailing OoO core (with 

a perfect cache and a branch predictor) that has been 

dynamically frequency scaled. Such a trailing redundant 

core imposes a power overhead that equals 53 percent of the 

power consumed by the leading core. Without the DFS 

heuristic, the trailing core would have imposed a power 

overhead of 90 percent (first bar in Fig. 4). On the average, 

the trailing core operates at a frequency that is 0.44 times 

the frequency of the leading thread. Note that DFS does not 

impact leakage power dissipation. The net outcome of the 

above analysis is that low trailer frequencies selected by the 

DFS heuristic can reduce the trailer core's power by 

42 percent and the overall processor power (leading and 

trailing cores combined) by 22 percent.

Fig. 4 also shows the power effect of employing an in­

order trailing core. Future CMPs will likely be hetero­

geneous, providing a good mix of OoO and in-order cores 

[10]. As seen previously, a perfect cache and branch

predictor is not enough to allow the in-order core's IPC to 

match the leading core's IPC. Hence, the system has been 

augmented with RVP. We have pessimistically assumed 

that the buffers between the two cores now carry two 

additional 64-bit values per instruction, leading to an 

additional average power dissipation of 2.54 W. With the 

in-order to OoO power ratio of 1:2, we observe that the 

redundancy mechanism now consumes less than 26 percent 

of the power consumed by the leading thread. The 

frequency selected by the DFS heuristic for the in-order 

core is on the average 0.42 times that of the leading core's 

frequency. For the in-order core to OoO power ratio of 1:7, 

the power consumed by the trailing thread is 8.5 percent of 

the leading thread.

For all the above simulations, we assume an interval 

length of 1,000 cycles when making frequency decisions. 

Frequency changes were made for 70 percent of all 

intervals. If we assume that a frequency change stalls the 

processor for 10 (peak frequency) cycles, then the total 

overhead is only 0.7 percent. Our frequency change over­

head is very conservative when compared to the recent 

implementation of DFS in Intel's Montecito core, where a 

frequency change is effected in a single cycle. The frequency 

change overhead can also be reduced by incorporating 

hysteresis within the algorithm, but this occasionally leads 

to increased slack and stalls for the leading thread. Given 

the low 0.7 percent performance overhead, we chose to not 

include hysteresis and instead react quickly to variations in 

the slack.

Based on the above results, we make the following 

general conclusions: Executing the trailing thread on an 

OoO core has significant power overheads, even if the 

trailing core's frequency is scaled (partially because DFS 

does not impact leakage). An in-order core has much lower 

power overheads but poor IPC characteristics, requiring 

that it operate at a clock speed higher than the leading core.
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Fig. 4. Power consumed by the trailing core as a function of the power consumed by the leading core. The number above each set of bars represents 

the absolute value of power dissipated by the leading core for each benchmark.

The IPC of the in-order core can be boosted by employing 

RVP. This requires us to invest about 2.54 W more power in 

transmitting additional data between cores (a pessimistic 

estimate), but this allows us to operate the in-order core at a 

frequency that is less than half the leading core's peak 

frequency. Hence, this is a worthwhile trade-off, assuming 

that the dynamic power consumed by the in-order core is at 

least 5 W.

5.3 Multithread Workloads
Next, we examine the most efficient way to execute a 

multithreaded workload. Asa baseline, we employ the CRTR 

model proposed by Gomaa et al. [7], where each OoO core 

executes a leading thread and an unrelated trailing thread in 

SMT fashion. Within the power-efficient P-CRTR-OoO, both 

leading threads execute on a single SMT OoO core, and both 

trailing threads execute on a neighboring SMT OoO core that 

can be frequency scaled. The last bar in Fig. 5 shows the total 

leading thread throughput for CRTR for each set of program 

pairs defined in Table 3. The first bar shows the total leading 

thread throughput in a baseline system where both leading 

threads execute on a single SMT OoO core (no redundant 

threads are executed). It can be seen that the throughput of 

CRTR is about 9.7 percent better than a system where two 

leading threads execute on the same OoO core. This is because 

each leading thread in CRTR is coscheduled with a trailing 

thread that does not execute wrong-path instructions and 

poses fewer conflicts for resources (ALUs, branch predictor, 

data cache, and so forth). The second bar in Fig. 5 shows IPCs 

for P-CRTR-OoO. The DFS heuristic selects frequencies such 

that the leading core is rarely stalled and throughputs are very 

similar to that of the baseline system, about 9.4 percent lower 

than CRTR on the average. The results of the earlier section 

indicate that an in-order core augmented with RVP is likely to 

entail a lower power overhead. Hence, we also evaluate a 

system (P-CRTR-in order) where two leading threads execute

on an SMT OoO core and the two trailing threads execute (by 

themselves) on two in-order cores with RVP and DFS. Again, 

the throughput of P-CRTR-in order is similar to that of the 

baseline system, about 12 percent lower than CRTR on the 

average. Note, however, that P-CRTR-in-order is likely to 

have a lower area overhead than the other organizations in 

Fig. 5 because the area occupied by two single-threaded in­

order cores is less than the area occupied by one SMT OoO core 

[10]. The performance penalty for P-CRTR can be primarily 

attributed to higher ALU, cache, and branch predictor 

contention. For example, the average LI cache miss rate for 

the leading threads in P-CRTR was 6.5 percent higher than 

that in CRTR.

Fig. 6 shows the Energy x Delay2 (ED2) metric for 

different forms of P-CRTR, normalized to that for CRTR. 

Figs. 5 and 6 provide the data necessary to allow readers to 

compute other metrics in the E - D space. The first bar shows 

ED2 for P-CRTR-OoO, where both trailers execute on an SMT

Fig. 5. Total IPC throughput for multithreaded workloads.
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Fig. 6. E D 2 fo r the entire system for various forms of trailers, normalized 

to the E D 2 of CRTR.

OoO core. The DFS heuristic scales frequencies for the trailing 

core, allowing it to consume less total power than CRTR. 

However, CRTR has a throughput advantage that allows it to 

have a better (lower) ED2 than P-CRTR for many programs. 

On the average, the ED2 of P-CRTR is 17 percent more than 

CRTR. Although CRTR imposes an average power overhead 

of 97 percent for redundancy, P-CRTR imposes an overhead 

of 75 percent. The effective frequency for the trailing core is 
much higher (0.77 times peak frequency) than that seen for 

the single-thread workloads because the selected frequency 

has to be high enough to allow both threads to match leading 

thread throughputs. Some workloads (sets 4 and 7) are able to 

lower their trailer frequencies enough to yield lower ED'2 
than CRTR. This was also observed for other workloads that 

had a similar combination of Int/FP/IPC. In general, work­

loads composed of 1 ow IPC progra ms (th ose wi th h i gh bra nch 

mispredict rates and cache miss rates) are likely to see a 

higher benefit from a perfect cache and a branch predictor, 

leading to low trailer frequencies and better overall ED2 with 

P-CRTR. When scheduling redundant threads on a CMP of 

SMT OoO cores, the operating system can optimize ED2 by 

taking program behavior into account and accordingly 

adopting a schedule similar to CRTR or P-CRTR.

The second bar in Fig. 6 represents the P-CRTR-in-order 

model. We assume that the in-order to OoO power 
consumption ratio is 1:7 for this graph. By executing the 

trailing thread on a frequency-scaled in-order core with 

perfect cache, branch predictor, and RVP, significant power 

reductions are observed (enough to offset the additional 

power overhead of data transfers between cores). On the 

average, P-CRTR-in-order improves ED2 by 15 percent, 

relative to CRTR. The average power overhead of redun­

dancy is 20 percent. Benchmark set 5 has 12 percent higher 

ED2 when compared to CRTR due to a 25 percent 

performance loss. We observed that, by coscheduling the 

leading threads on the same core, branch predictor conflicts 

increased significantly for this benchmark pair. The total 

power overhead associated with RVP for the multithreaded 

workloads is 5.64 W.
The net conclusion is similar to that in the previous 

section. Leading threads executing on an OoO core (in 

single or multithreaded mode) can be verified efficiently on 

in-order cores. Although more data has to be transmitted 

between cores, the power efficiency of an in-order core 

compensates for the data transfer overhead.

Fig. 7. Histogram showing the percentage of intervals at each normal­

ized frequency.

5.4 Potential for Voltage Scaling
Frequency scaling is a low-overhead technique that trades off 

performance and power and allows us to reduce the dynamic 

power consumed by the trailing thread. One of the most 

effective techniques to reduce power fora mi nor performance 

penalty is dynamic voltage and frequency scaling (DVFS). If 

our heuristic determines that the trailer can operate at a 

frequency that is half thepeak frequency (for example), then it 

may be possible to reduce the voltage by (say) 25 percent and 

observe dynamic power reduction within the trailer of 

72 percent instead of the 50 percent possible with just DFS. 

Although DFS does not impact leakage power, DVFS can also 

reduce leakage (to a first-order) as leakage is linearly 

proportional to supply voltage [5]. DVFS can be combined 

with body biasing to further reduce leakage power [14], 

However, these techniques require voltage changes that can 

consume a large number of cycles of the order of 50/is [6]. 

Even if voltage is modified only in small steps, each voltage 

change will require tens of thousands of cycles. If an increase 

in frequency is warranted, then the frequency increase cannot 

happen until the voltage is increased, thereby causing stalls 

for the leading threads. As observed earlier, a frequency 

change is made at the end of the 70 percent of all 1,000-cycle 

intervals. It is difficult to design a DFS mechanism that 

increases frequency only once every 100,000 cycles on the 

average and poses minimal stalls for the leading thread. 

Therefore, it is unlikely that the overhead of dynamic voltage 

scaling will be tolerable.

We, however, observed that there may be the potential to 

effect some degree of conservative voltage scaling. Fig. 7 

shows a histogram of the percentage of intervals spent at 

each frequency by the in-order trailer with RVP. Peak 

frequency is exercised for only 0.56 percent of all intervals. 

If we operate at a low voltage that can support a frequency 

of 0.9 x peak frequency but not the peak frequency, then we 

will be forced to increase the voltage (and stall the leader for 

at least 10,000 cycles) for a maximum of 0.56 percent of all 

1,000-cycle intervals. This amounts to a performance over­

head of up to 5.6 percent, which may be tolerable. The 

corresponding power benefit may be marginal, especially 

considering the small amount of power consumed within 

each in-order core, as illustrated below.
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Fig. 8. Trailer power as a function of contribution of leakage to the 

baseline processor.

Consider the following example scenario when the 

trailer is executed on a frequency-scaled in-order core 
augmented with RVP. Ff 100 units of power are consumed 
within the leader, an in-order trailer will consume 14 units 

of power (ratio similar to the EV5 and EV8), of which about 

10 units can be attributed to dynamic power. A  DFS 

heuristic with an effective frequency of 0.5 will reduce the 
in-order core's dynamic power by five units. Thus, out of 

the total 109 units consumed by this system, four units can 
be attributed to in-order leakage and five units to in-order 

dynamic power. Any additional optimizations to this 
system must take note of the fact that the margin for 

improvement is very small.

Based on the simple analysis above, we also examine the 

potential benefits of parallelizing the verification workload 

[19]. With RVP, the trailing thread has a very high degree of 

ILP as every instruction is independent. Instead of execut­

ing a single trailing thread on an in-order core, the trailing 

thread can be decomposed into (say) two threads and made 

to execute in parallel on two in-order cores. When the 

workload is parallelized by a factor of 2, the effective 

frequency can be lowered by a factor of 2. Hence, the power 

consumed by this system will equal 113 units (100 for the 

leading core + 8 for leakage on two in-order cores + 2.5 for 

dynamic on first in-order core + 2.5 for dynamic on second 

in-order core). Thus, parallelization with DFS does not 

reduce dynamic power, but increases leakage power and is 

therefore not worthwhile. For parallelization to be effective, 

DFS has to be combined with a technique such as DVFS or 

body biasing. Assume that an effective frequency of 0.5 can 

be combined with a voltage reduction of 25 percent (similar 
to that in the Xscale). Parallelization on two in-order cores 

yields a total power consumption of 108.8 units (100 for 

leading core + 6 for leakage, which is a linear function of 

supply voltage, + 1.4 for dynamic on first in-order core, 

which is a quadratic function of supply voltage, + 1.4 for 

dynamic on second in-order core). The reduction in 

dynamic power is almost entirely negated by the increase 

in leakage power. Clearly, different assumptions on voltage 

and frequency scaling factors, leakage, in-order power 

consumption, and so forth can yield different quantitative 

numbers. Fn the next section, we use our analytical model to 

show that, for most reasonable parameters, workload 

parallelization yields little power benefit, even when we 

aggressively assume that voltage scaling has no overhead.

% Leakage Contribution

Fig. 9. Power overhead of the trailing core, relative to the leading core, 
with and without parallelizing the verification workload.

There are other problems associated with voltage scaling: 

1) Lower voltages can increase a processor's susceptibility 

to faults, 2) as voltage levels and the gap between the 

supply and threshold voltages reduce, opportunities for 

voltage scaling may cease to exist, and 3) parallelization has 

low scalability in voltage terms: Parallelizing the workload 

across four cores allows frequency to be scaled down by a 

factor of 4, but reductions in voltage become increasingly 

marginal.

5.5 Sensitivity Analysis
As an example application of the analytical model, we 

present power overheads as a function of the contribution 

of leakage to the baseline OoO leading core (Fig. 8). The 

three forms of trailers shown are an OoO core with the DFS 

heuristic and in-order cores with RVP and DFS, which 

consume 0.55 times and 0.14 times the power of the OoO 

core, respectively. The overall conclusions of our study hold 

for all of these design points.

We discussed workload parallelization in an earlier section 

and reconfirm our observations with the help of analytical 

models for various design points. Fig. 9 shows the effect of 

workload parallelization and leakage contribution on the 

trailing core's power, where the trailing thread executes on an 

in-order processor enabled with DVFS. Based on detailed 

simulation results, we assume wrongpath.f actor =  1.17, 

e./’/’_/reg=0.44, v.factor =  1.25, and Ikgjratio and dynjratio 
=  1.8. For N =  2, as the contribution of leakage power 

increases, the workload parallelization yields marginal 

improvement over the base case (N =  1). Note that the base 

case has a single DFS-enabled in-order core and does not 

employ voltage scaling. Even for low leakage contribution, 

the power reduction with the workload parallelization is only

2.5 percent.

The effect of various parameters on FPC is harder to 

capture with analytical models and we report on some of 

our salient observations:

1. The relative benefits of a perfect cache and a branch 

predictor are significant for most processor models. 

For example, increasing the window size improves 

the ability of the baseline OoO core to tolerate cache 

misses and likewise improves the ability of the core 

with the perfect cache/branch predictor to mine 

greater FLP.

2. We have observed that, for a multithreaded workload, 

scheduling leading and trailing threads on the same 

SMT core (as in CRTR) yields a 9.4 percent throughput
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improvement over a model where the leading threads 

are scheduled on the same SMT core. As the total 

number of functional units is increased, this perfor­

mance gap reduces to 6.3 percent because contention 

for resources becomes less of an issue.

3. For an in-order core with RVP, the only limitation to 

IPC is the number of functional units available and 

the fetch bandwidth. The effective frequency of the 

in-order core can be reduced by increasing the 

number of functional units and, hence, the IPC. 

Likewise, the ability to fetch from multiple basic 

blocks in the same cycle has a much greater impact 
on the IPC of the in-order core with RVP than on 

other cores.

4. The slack between leading and trailing threads is 

closely related with interval size. If we examine the 
slack every 1,000 cycles to make a decision for trailer 

frequency, then the slack must be about 1,000 in 

order to absorb a significant IPC change of 1.0 in the 

leading thread in the next interval. A  smaller slack 

can lead to the intercore buffers getting full and 

stalling the leading thread. A  large slack allows more 

opportunities for frequency reduction, but incurs a 

nontrivial power overhead for the intercore buffers.

6 C o n c l u s io n s  a n d  F u tu r e  W o r k

In this paper, we have presented novel microarchitectural 

techniques for reducing the power overheads of RMT. When 

executing leading and trailing redundant threads, we take 

advantage of the fact that the leading thread prefetches data 

and resolves branches for the trailing thread. The results of 

the leading thread also allow the trailing core to implement a 

perfect register value predictor. All of the information from 

the leading thread makes it possible for the trailing thread to 

achieve high IPC rates even with an in-order core, thereby 

justifying the cost of high intercore traffic. DFS further helps 

reduce the power consumption of the trailing thread. Our 

results indicate that workload parallelization and voltage 

scaling hold little promise. We quantify the power perfor­

mance trade-off when scheduling the redundant threads of a 

multithreaded workload and derive analytical models to 

capture the insight from our detailed simulations. None of the 

mechanisms proposed in this paper compromises the error 

coverage of the baseline system.

As our future work, we w ill study the thermal 

characteristics of RMT implementations. As the degree of 

redundancy increases, the contribution of redundant 

threads to total system power also increases. In such a 

setting, it may be worth studying how the power consumed 

by in-order cores can be further reduced.
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