
C O M P U T A T I O N AL
P R O V E N A N C E

Provenance for
Computational Tasks: A Survey

T h e p r o b le m o f s y s te m a t ic a l ly c a p tu r in g a n d m a n a g in g p r o v e n a n c e fo r c o m p u ta t io n a l

ta s k s h a s r e c e n tly r e c e iv e d s ig n if ic a n t a t t e n t io n b e c a u s e o f i ts r e le v a n c e to a w id e r a n g e

o f d o m a in s a n d a p p lic a t io n s . T h e a u th o r s g iv e a n o v e r v ie w o f i m p o r ta n t c o n c e p ts r e la te d

to p r o v e n a n c e m a n a g e m e n t , 50 t h a t p o t e n t i a l u se rs c a n m a k e in fo r m e d d e c is io n s w h e n

s e le c t in g o r d e s ig n in g a p r o v e n a n c e so lu tio n .

T he Oxford English Dictionary defines
provenance as “the source or origin
of an object; its history and pedigree;
a record of the ultimate derivation

and passage of an item through its various own­
ers.” In scientific experiments, provenance helps
us interpret and understand results: by examining
the sequence of steps that led to a result, we can
gain insights into the chain of reasoning used in
its production, verify that the experiment was per­
formed according to acceptable procedures, iden­
tify the experiment’s inputs, and, in some cases,
reproduce the result. Laboratory notebooks have
been the traditional mechanism for maintaining
such information, but because the volume of data
manipulated in computational experiments has
increased along with the complexity of analysis,
manually capturing provenance and writing de­
tailed notes is no longer an option—in fact, it can
have serious limitations. Scientists and engineers
expend substantial effort and time managing data
and recording provenance information just to an­
swer basic questions, such as, W ho created this
data product and when? W ho modified it and
when? W hat process created the data product?
Did the same raw data lead to two data products?

The problem of systematically capturing and
managing provenance for computational tasks is
relevant to a wide range of domains and appli­

cations. Fortunately, this problem has received
significant attention recently. O ur goal with this
survey article is to inform potential provenance
technology users about different approaches and
their trade-offs, thereby helping them make in­
formed decisions while selecting or developing
a provenance solution. Two other surveys also
touch on the issue of provenance for computa­
tional tasks: R. Bose and J. Frew1 provide a com­
prehensive overview that covers early work in the
area as well as standards used in specific domains,
and Y.L. Simmhan and colleagues2 describe a tax­
onomy they developed to compare five systems.
O ur survey, in contrast, discusses fundamental is­
sues in provenance management but isn’t intend­
ed for specialists. Specifically, we identify three
major components of provenance management
and discuss different approaches used in each of
them. We also cover recent literature and the cur­
rent state of the art. Although we can’t provide
a comprehensive coverage of all systems due to
space limitations, we do review a representative

1521-9615/08/S25.00 © 2008 IEEE
Copublished by the IEEE CS and the AIP

J u l i a n a F r e i r e , D a v i d K o o p , E m a n u e l e Sa n t o s ,

a n d C l a u d i o T . S i l v a

University of Utah

C o m p u t i n g i n S c i e n c e & E n g i n e e r i n g THIS ARTICLE HAS BEEN PEER-REVIEWED. 11

set, including those systems in wide use that il­
lustrate different solutions. Applications that use
provenance appear in other articles in this spe­
cial issue. The problem of managing fine-grained
provenance recorded for items in a database is out
of scope for this survey—a detailed overview ap­
pears elsewhere.3

Provenance Management:
An Overview
Before discussing the specific trade-offs among
provenance systems and models, let’s examine the
general aspects of provenance management. Spe­
cifically, let’s explore the methods for modeling
computational tasks and the types of provenance
information we can capture from these tasks. To
illustrate these themes, we use a scenario that’s
common in visualizing medical data—the cre­
ation of multiple visualizations of a volumetric
computer tomography (CT) data set.

M o d e lin g C o m p u ta tio n a l Tasks
To allow reproducibility, we can represent compu­
tational tasks with a variety of mechanisms, includ­
ing computer programs, scripts, and workflows, or
construct them interactively by using specialized
tools (such as ParaView [www.paraview.org] for
scientific visualization and GenePattern [www.
broad.mit.edu/cancer/software/genepattern] for bio­
medical research). Some complex computational
tasks require weaving tools together, such as loose­
ly coupled resources, specialized libraries, or Web
services. To analyze a C T scan’s results, for ex­
ample, we might need to preprocess data with dif­
ferent parameters, visualize each result, and then
compare them. To ensure the reproducibility of the
entire task, it’s beneficial to have a description that
captures these steps and the parameter values used.
One approach is to order computational processes
and organize them into scripts; the session log in­
formation that some software tools expose can also
help document and reproduce results. However,
these approaches have shortcomings—specifically,
the user is responsible for manually checking-in
incremental script changes or saving session log
files. Moreover, the saved information often isn’t in
an easily queried format.

Recently, workflows and workflow-based sys­
tems have emerged as an alternative to these ad hoc
types of approaches. Workflow systems provide
well-defined languages for specifying complex
tasks from simpler ones; they capture complex
processes at various levels of detail and system­
atically record the provenance information nec­
essary for automation, reproducibility, and result

sharing. In fact, workflows are rapidly replacing
primitive shell scripts, as evidenced by the release
of Apple’s Mac OS X Automator, Microsoft’s
Workflow Foundation, and Yahoo!’s Pipes.

Workflows have additional advantages over pro­
grams and scripts, such as providing a simple pro­
gramming model that allows a sequence of tasks
to be composed by connecting one task’s outputs
to the inputs of another. Workflow systems can
also provide intuitive visual programming inter­
faces that are easier to use for people who don’t
have substantial programming expertise. In ad­
dition, workflows have an explicit structure—we
can view them as graphs, with nodes represent­
ing processes (or modules) and edges capturing
the data flow between those processes (see Figure
1). Having this explicit structure enables the in­
formation to be explored and queried. A program
(or script) is to a workflow what an unstructured
document is to a (structured) database.

Another important concept related to computa­
tional tasks is abstraction, which lets us split com­
plex tasks and represent them at different levels
of granularity. As Figure 1 illustrates, we can use
abstraction to create a simplified view of a work­
flow that hides some of its details. A researcher
studying a C T scan data set, for example, might
not know—or care about—the details of the Vis­
ualization Toolkit (VTK; www.kitware.com) li­
brary that created the visualizations. So, instead
of displaying the four distinct modules that ren­
der the final image (Figure lb), a user can abstract
them into a single module with a more descriptive
name such as “display on screen” (Figure lc).

D iffe re n t Form s o f P rovenance
We provided a high-level definition of provenance
at the beginning of this article. When it comes
to computational tasks, there are two forms of
provenance: prospective and retrospective.4 Pro­
spective provenance captures a computational task’s
specification (whether it’s a script or a workflow)
and corresponds to the steps (or recipe) that must
be followed to generate a data product or class of
data products. Retrospective provenance captures
the steps executed as well as information about
the environment used to derive a specific data
product—in other words, it’s a detailed log of a
computational task’s execution. Moreover, retro­
spective provenance doesn’t depend on the pres­
ence of prospective provenance—for example, we
can capture information such as which process
ran, who ran it, and how long it took without hav­
ing prior knowledge of the sequence of computa­
tional steps involved.

12 Computing in Science & Engineering

http://www.paraview.org
http://www.kitware.com

data = vtk.vtkStructuredPointsReaderO
d a ta .s e tF i l e N a m e /e x a m p le s /d a ta /h e a d .120.vtk")

contour = vtk.vtkContourFilter()
contour.SetInput(0, data.GetOutput())
contour.SetValue(0, 67)

import vtk

□□□□□□□ ►
vtkStructuredPointsReader QD

10 mapper = vtk.vtkPolyDataMapperO
11 mapper.SetInput(contour.GetOutput())
12 mapper.ScalarV isibilityO ff()
13
14 actor = vtk.vtkActor()
15 actor.SetMapper(mapper)
16
17 cam = v tk .vtkCamera()
18 cam.SetViewUp(0,0,-1)
19 cam.SetPosition(745,-453, 369)
20 cam.SetFocalPoint(135,135,150)
21 cam.ComputeViewPlaneNormal()
22
23 ren = v tk .vtkRenderer()
24 ren.AddActor(actor)
25 ren.SetActiveCamera(cam)
2 6 ren.ResetCamera()
27
2 8 renwin = vtk.vtkRenderWindow()
29 renwin.AddRenderer(ren)
30
31 sty le = vtk.vtklnteractorStyleTrackballCamera()
32 iren = v tk .vtkRenderWindowIneractor()
33 iren.SetRenderWindow(renwin)
34 iren .SetIn teractorS ty le(style)
35 i r e n .In i t ia l iz e ()
3 6 ire n .S ta r t()
(a)

vtkCountourFilter JDD

[!]□□□□□□□□□ ►
vtkDataSetMapper

□ ► [?]□□□□□ ►
vtkCamera vtkActor

•
Read file

>r

% Extract
isosurface

>r

0 Display
on screen

(b) (c)

Figure 1. D ifferent abstractions fo r a data flow, (a) A Python script containing a series of Visualization Toolkit (VTK) calls; (b) a
w ork flow tha t produces the same result as the script; and (c) a simplified view of the w orkflow tha t hides some of its details.

For our running example, Figure 2 illustrates
prospective provenance captured as the defini­
tion of a workflow that produces two kinds of data
products: a histogram and an isosurface visualiza­
tion. The retrospective provenance (the left side of
Figure 2a) contains information for each module
about input and output data, the executing user,
and the execution start and end times.

An important component of provenance is in­
formation about causality—the process description
(or sequence of steps) that, together with input data
and parameters, led to the data product’s creation.
We can infer causality from both prospective and
retrospective provenance; Figure 2b illustrates
the relationships in our running example. We can
also represent causality as a graph in which nodes
correspond to processes and data products and
edges correspond to either data or data-process
dependencies. Data-process dependencies (for ex­
ample, the fact that the first workflow produced
h ea d -h is t.p n g) are useful for documenting the
data generation process, but we can also use them
to reproduce or validate a process. Data depen­
dencies are likewise useful—for example, in the

event that we learn the C T scanner used to gener­
ate head. 12 0 .v tk is defective, we can examine
the data dependencies and discount the results
that rely on it.

Another key component of provenance is user-
defined information—documentation that isn’t
captured automatically but that records important
decisions and notes. This data often comes in the
form of annotations—as Figure 2a illustrates, users
can add them at different levels of granularity and
associate them with different components of both
prospective and retrospective provenance (such as
modules, data products, or execution log records).

Three Key Components
A provenance management solution consists of
three main components: a capture mechanism,
a representational model, and an infrastructure
for storage, access, and queries. In this section,
we examine different classes of solutions for each
of these components and discuss the trade-offs
among them. To illustrate the approaches, we use
examples that highlight some of the capabilities of
existing provenance-enabled tools.

May/June 2008 13

In contrast, both workflow- and process-based ap­
proaches require processes to be wrapped—in the
former, so that the workflow engine can invoke
them, and in the latter, so that instrumentation
can capture and publish provenance information.

Because workflow systems have access to work­
flow definitions and control their execution, they
can capture both prospective and retrospective
provenance. OS- and process-based mechanisms
only capture retrospective provenance: they must
reconstruct causal relationships through prov­
enance queries. The ES3 system (http://eil.bren.
ucsb.edu), for example, monitors the interactions
between arbitrary applications and their environ­
ments (via arguments, file I/O, system, and calls),
and then uses this information to assemble a prov­
enance graph to describe what actually happened
during execution.6

In fact, by capturing provenance at the OS level,
we can record detailed information about all system
calls and files touched during a task’s execution.
This forms a superset of the information captured
in workflow- and process-based systems, whose
granularity is determined by the wrapping provid­
ed for individual processes. Consider, for example,
a command-line tool integrated in a workflow sys­
tem that creates and depends on temporary files not
explicitly defined in its wrapper. The causal depen­
dencies the workflow system captures won’t include
the temporary files, but we can capture these de­
pendencies at the OS level. However, because even
simple tasks can lead to a large number of low-level
calls, the amount of provenance that OS-based ap­
proaches record can be prohibitive, making it hard
to query and reason about the information.7

P rovenance M od e ls
Researchers have proposed several provenance
models in the literature.9,10,12 All these models
support some form of retrospective provenance,
and most of those that workflow systems use pro­
vide the means to capture prospective provenance.
Many of the models also support annotations.

Although these models differ in several ways,
including their use of structures and storage strat­
egies, they all share an essential type of informa­
tion: process and data dependencies. In fact, a
recent exercise to explore interoperability issues
among provenance models showed that it’s possible
to integrate information that conforms to different
provenance models (http://twiki.ipaw.info/bin/
view/Challenge/SecondProvenanceChallenge).

Despite a base commonality, provenance mod­
els tend to vary according to domain and user
needs. Even though most models strive to store

Workflow template H Abstract workflow H Workflow evolution

Service instantiation
Workflow instance Workflow instance

Data instantiation

Executable workflow

Execution log Execution log Execution log

Pegasus REDUX VisTrails

Figure 3. Layered provenance models. For REDUX, the first layer
corresponds to an abstract description, the second layer describes the
binding of specific services and data to the abstract description, the
th ird layer captures runtim e inputs and parameters, and the final layer
captures operational data. O ther models use layers in d ifferent ways.
The top-layer in VisTrails captures provenance of w ork flow evolution,
and Pegasus uses an additional layer to represent the w orkflow
execution plan over grid resources.

general concepts, specific use cases often influ­
ence model design—for example, Taverna was de­
veloped to support the creation and management
of workflows in the bioinformatics domain, and
therefore provides an infrastructure that includes
support for ontologies available in this domain.
VisTrails was designed to support exploratory
tasks in which workflows are iteratively refined,
and thus uses a model that treats workflow speci­
fications as first-class data products and captures
the provenance of workflow evolution.

Because the provenance information a model
must represent varies both by type and specificity,
it’s advantageous to structure a model as a set of
layers to enable a normalized, configurable repre­
sentation. The ability to represent provenance at
different levels of abstraction also leads to simpler
queries and more intuitive results. Consider the
REDUX system,16 which uses the layered model
depicted in Figure 3. The first layer corresponds to
an abstract description of a workflow, in which each
module corresponds to a class of activities. This ab­
stract description is bound to specific services and
data sets defined in the second layer—for example,
in the workflow shown in Figure 1, the abstract
activity e x tra c t iso su rfa c e is bound to a call
to the v tk C o n to u rF ilte r—a specific implemen­
tation of isosurface extraction provided by VTK.
The third layer captures information about input
data and parameters supplied at runtime, and the
fourth layer captures operational details, such as
the workflow execution’s start and end time.

Structuring provenance information into mul­
tiple layers leads to a normalized representation

May/June 2008 15

http://eil.bren
http://twiki.ipaw.info/bin/

Figure 5. Provenance query im plem ented by three d ifferent systems. REDUX uses SQL, VisTrails uses a language specialized
fo r querying workflows and the ir provenance, and myGrid uses SPARQL.

systems that support abstractions (such as Vis-
Trails, Taverna, and Kepler), but the ability to cre­
ate views of provenance data would benefit OS- and
process-based provenance models as well.

The ability to query a computational task’s
provenance also enables knowledge reuse. By que­
rying a set of tasks and their provenance, users
not only identify suitable tasks and reuse them but
also compare and understand differences between
different tasks. Provenance information is often
associated with data products (such as images or
graphs), so this data helps users pose structured
queries over unstructured data as well.

A common feature across many approaches to
querying provenance is that their solutions are
closely tied to the storage models used. Hence, they
require users to write queries in languages such as
SQL,16 Prolog,20 and SPARQL.10’11 Although such
general languages are useful to those already famil­
iar with their syntax, they weren’t designed specifi­
cally for provenance, which means simple queries
can be awkward and complex to write. Figure 5

compares three representations of a single query in
the First Provenance Challenge that asked for tasks
using a specific module (Align Warp) with given
parameters executed on a Monday The VisTrails
approach uses a language specifically designed to
query workflows and their provenance, whereas
REDUX and myGrid use native languages for
their storage choices. Because the VisTrails lan­
guage abstracts details about physical storage, it
leads to much more concise queries.

However, even queries that use a language
designed for provenance are likely to be too
complicated for many users because provenance
contains structural information represented as a
graph. Thus, text-based query interfaces effec­
tively require a subgraph query to be encoded as
text. The VisTrails query-by-example (QBE) in­
terface (see Figure 6) addresses this problem by
letting users quickly construct expressive que­
ries using the same familiar interface they use
to build workflow.21 The query’s results are also
displayed visually.

May/June 2008 17

tomatically maps high-level workflow specifica­
tions into executable plans that run on distributed
infrastructures such as the TeraGrid.11 Although
Pegasus models prospective provenance using
OWL, it captures retrospective provenance via
the Virtual Data System (VDS; a precursor of
Swift) and then stores it in a relational database.
Queries that span prospective and retrospective
provenance must combine two different query
languages: SPARQL and SQL.

R E D U X extends the Windows Workflow
Foundation engine to transparently capture the
workflow execution trace. As discussed earlier,
it uses a layered provenance model to normalize
data and avoid redundancy REDUX stores prov­
enance data (both prospective and retrospective)
in a relational database’s set of tables that can be
queried with SQL. The system can also return an
executable workflow as the result of a provenance
query (for example, a query that requests all the
steps used to derive a particular data product).

Swift (www.ci.uchicago.edu/swift) builds on
and includes technology previously distributed
as the GriPhyN VDS.2"' The system combines
a scripting language (SwiftScript) with a power­
ful runtime system for the concise specification
and reliable execution of large, loosely coupled
computations. Swift specifies these computations
as scripts, which the runtime system translates
into an executable workflow. A launcher program
invokes the workflow’s tasks, monitors the exe­
cution process, and records provenance informa­
tion, including the executable name, arguments,
start time, duration, machine information, and
exit status. Similar to VDS, Swift captures the
relationships among data, programs, and com­
putations and uses this information for data and
program discovery as well as for workflow sched­
uling and optimization.

VisTrails is a workflow and provenance man­
agement system designed to support exploratory
computational tasks. An important goal of the
VisTrails project is to build intuitive interfaces
for users to query and reuse provenance infor­
mation. Besides its QBE interface (which is built
on top of its specialized provenance query lan­
guage), VisTrails provides a visual interface to
compare workflows side by side12 and a mecha­
nism for refining workflows by analogy—users
can modify workflows by example without hav­
ing to directly edit their definitions.21 VisTrails
internally represents prospective provenance as
Python objects that can be serialized into XML
and relations; it stores retrospective provenance
in a relational database.

OS-Based Systems
PASS (www.eecs.harvard.edu/syrah/pass) oper­
ates at the level of a shared storage system: it
automatically records information about which
programs are executed, their inputs, and any new
files created as output. The capture mechanism
consists of a set of Linux kernel modules that
transparently record provenance—it doesn’t re­
quire any changes to computational tasks. PASS
also constructs a provenance graph stored as a set
of tables in Berkeley DB. Users can pose prov­
enance queries using nq, a proprietary tool that
supports recursive searches over the provenance
graph. As discussed earlier, the fine granularity
of PASS’s capture mechanism often leads to very
large volumes of provenance information; another
limitation of this approach is that it’s restricted to
local filesystems. It can’t, for example, track files
in a grid environment.

ESS’s goal is to extract provenance information
from arbitrary applications by monitoring their in­
teractions with the execution environment.6 These
interactions are logged to the ES3 database, which
stores the information as provenance graphs, rep­
resented in XML. ES3 currently supports a Linux
plug-in, which uses system call tracing to capture
provenance. As in PASS, ES3 requires no changes
to the underlying processes, but provenance cap­
ture is restricted to applications that run on ES3-
supported environments.

Process-Based Systems
The Provenance-Aware Service Oriented Ar­
chitecture (PASOA) project (www.pasoa.org)
developed a provenance architecture that relies
on individual services to record their own prov­
enance/'1 The system doesn’t model the notion of a
workflow—rather, it captures assertions produced
by services that reflect the relationships between
represented services and data. The system must
infer the complete provenance of a task or data
product by combining these assertions and recur­
sively following the relationships they represent.
The PASOA architecture distinguishes the notion
of process documentation—that is, the provenance
recorded specifically about a process—from the
notion of a data item's provenance, which is derived
from the process documentation. The PASOA
project developed an open source software pack­
age called PreServ that lets developers integrate
process documentation recording into their ap­
plications. PreServ also supports multiple back
end storage systems, including files and relational
databases; users can pose provenance queries by
using its Java-based query API or XQuery.

May/June 2008 19

http://www.ci.uchicago.edu/swift
http://www.eecs.harvard.edu/syrah/pass
http://www.pasoa.org

Table 1. An ove rv iew o f provenance-enab led systems.

System Capture m echanism Prospective provenance
Retrospective
provenance W o rk flo w evo lu tion

REDUX W orkflow-based Relational Relational No

Swift W orkflow-based SwiftScript Relational No

VisTrails W orkflow-based XML and relational Relational Yes

Karma W orkflow - and
process-based

Business Process Execution
Language

XML No

Kepler W orkflow-based M oM L M oM L variation Under developm ent

Taverna W orkflow-based Scufl RDF Under developm ent

Pegasus W orkflow-based OWL Relational No

PASS OS-based N/A Relational No

ES3 OS-based N/A XML No

PASOA/PreServ Process-based N/A XML No

4. B. C lifford et al., "Tracking Provenance in a Virtual Data
Grid," Concurrency and Computation: Practice and Experience,
vol. 20, no. 5, 2008, pp. 565-575.

5. P. Croth, The Origin of Data: Enabling the Determination of
Provenance in Multi-Institutional Scientific Systems through the
Documentation of Processes, PhD thesis, Univ. of Southamp­
ton, 2007.

6 . J. Frew, D. Metzger, and P. Slaughter, "Automatic Capture
and Reconstruction of Computational Provenance," Concur­
rency and Computation: Practice and Experience, vol. 20, no.
5, 2008, pp. 485-496.

7. K.-K. Muniswamy-Reddy, D.A. Holland, and U.B.M.I. Seltzer,
"Provenance-Aware Storage Systems," Proc. USENIX Conf.,
Usenix, 2006, pp. 43-56.

8. I. Altintas, O. Barney, and E. Jaeger-Frank, "Provenance Col­
lection Support in the Kepler Scientific W orkflow System,"
Proc. Int'l Provenance and Annotation Workshop (IPAW), LNCS
4145, Springer, 2006, pp. 118-132.

9. S. Cohen, S.C. Boulakia, and S.B. Davidson, "Towards a
Model of Provenance and User Views in Scientific Work­
flows," Data Integration in the Life Sciences, LNCS 4075,
Springer, 2006, pp. 264-279.

10.]. Colbeck and]. Hendler, "A Semantic Web Approach to
the Provenance Challenge," Concurrency and Computation:
Practice and Experience, vol. 20, no. 5, 2008, pp. 431-439.

11.]. Kim et al., "Provenance Trails in the Wings/Pegasus Sys­
tem ," Concurrency and Computation: Practice and Experience,
vol. 20, no. 5, 2008, pp. 587-597.

12. J. Freire et al., "M anaging Rapidly-Evolving Scientific
Workflows," Proc. Int'l Provenance and Annotation Workshop
(IPAW), LNCS 4145, Springer, 2006, pp. 10-18.

1 3. S. Miles et al., "Extracting Causal Graphs from an Open
Provenance Data M odel," Concurrency and Computation:
Practice and Experience, vol. 20, no. 5, 2008, pp. 577-586.

14. Y.L. Simmhan e ta l., "Karma2: Provenance Management
fo r Data Driven W orkflows," to be published in In t'l]. Web
Services Research, vol. 5, no. 1, 2008.

15. J. Zhao et al., "M in ing Taverna's Semantic Web of Prov­
enance," Concurrency and Computation: Practice and Experi­
ence, vol. 20, no. 5, 2008, pp. 463-472.

16. R.S. Barga and L.A. D igiampietri, "Automatic Capture and

P rovenance management is a new area,
but it’s advancing rapidly. Researchers
are actively pursuing several directions
in this area, including the ability to in­

tegrate provenance derived from different systems
and enhanced analytical and visualization mech­
anisms for exploring provenance information.
Provenance research is also enabling several new
applications, such as science collaboratories, which
have the potential to change the way people do sci­
ence—sharing provenance information at a large
scale exposes researchers to techniques and tools
to which they wouldn’t otherwise have access. By
exploring provenance information in a collabora-
tory, scientists can learn by example, expedite their
scientific work, and potentially reduce their time
to insight. The “wisdom of the crowds,” in the
context of scientific exploration, can avoid duplica­
tion and encourage continuous, documented, and
reproducible scientific progress.24 se

Acknowledgments
This work was partially supported by the US Nation­
al Science Foundation, the US Department of Energy,
and IBM faculty awards.

References
1. R. Bose and). Frew, "Lineage Retrieval for Scientific Data

Processing: A Survey," ACM Computing Surveys, vol. 37, no.
1, 2005, pp. 1-28.

2. Y.L. Simmhan, B. Plale, and D. Cannon, "A Survey of Data
Provenance in E-Science," SICMOD Record, vol. 34, no. 3,
2005, pp. 31-36.

3. W.C. Tan, "Provenance in Databases: Past, Current, and Fu­
ture," IEEE Data Eng. Bulletin, vol. 30, no. 4, 2007, pp. 3-12.

20 Computing in Science & Engineering

Storage Q uery s u p p o rt
A vailab le as
open source?

Relational database management
system (RDBMS)

SQL No

RDBMS SQL Yes

RDBMS and files Visual query by example, specialized
language

Yes

RDBMS Proprietary API Yes

Files; RDBMS planned Under developm ent Yes

RDBMS SPARQL Yes

RDBMS SPARQL fo r metadata and workflow ;
SQL fo r execution log

Yes

Berkeley DB nq (proprie tary query too l) No

XML database XQuery No

Filesystem, Berkeley DB XQuery, Java query API Yes

Efficient Storage of e-Science Experiment Provenance,"
Concurrency and Computation: Practice and Experience, vol.
20, no. 5, 2008, pp. 419-429.

1 7. B. Ludascher et al., "From Computation Models to Models
of Provenance: The RWS Approach," Concurrency and
Computation: Practice and Experience, vol. 20, no. 5, 2008,
pp. 507-518.

18. T. Oinn et al., "Taverna: Lessons in Creating a W orkflow
Environment fo r the Life Sciences," Concurrency and Com­
putation: Practice Sr Experience, vol. 18, no. 10, 2006, pp.
1067-1100.

19. O. Biton e ta l., "Querying and Managing Provenance
through User Views in Scientific Workflows," to be published
in Proc. IEEE Int'l Conf. Data Eng., 2008.

20. S. Bowers, T. McPhillips, and B. Ludaescher, "Provenance in
Collection-Oriented Scientific Workflows," Concurrency and
Computation: Practice and Experience, vol. 20, no. 5, 2008,
pp. 519-529.

21. C.E. Scheidegger et al., "Querying and Creating Visualiza­
tions by Analogy," IEEE Trans. Visualization and Computer
Graphics, vol. 13, no. 6, 2007, pp. 1560-1567.

22. J. Futrelle and |. Myers, "Tracking Provenance Semantics
in Heterogeneous Execution Systems," Concurrency and
Computation: Practice and Experience, vol. 20, no. 5, 2008,
pp. 555-564.

23. Y. Zhao et al., "Swift: Fast, Reliable, Loosely Coupled Parallel
Com putation," IEEE Int'l Workshop on Sci. Workflows (SWF),
IEEE CS Press, 2007, pp. 199-206.

24. J. Freire and C. Silva, "Towards Enabling Social Analysis of
Scientific Data," CHI Social Data Analysis Workshop, 2008,
(to appear).

Juliana Freire is an assistant professor at the Univer­
sity of Utah. Her research interests include scientific
data management, Web information systems, and
information integration. Freire has a PhD in comput­
er science from SUNY at Stony Brook. She is a mem­
ber of the ACM and the IEEE. Contact her at juliana@
cs.utah.edu.

David Koop is a research assistant and graduate stu­
dent at the University of Utah. His research interests
include scientific data management, visualization,
and visualization systems. He has an MS in comput­
er science from the University of Wisconsin-Madison.
Contact him at dakoop@cs.utah.edu.

Emanuele Santos is a research assistant and gradu­
ate student at the University of Utah. Her research
interests include scientific data management, visual­
ization, and comparative visualization. Santos has an
MS in computer science from the Federal University of
Ceara in Brazil. Contact her at esantos@cs.utah.edu.

Claudio T. Silva is an associate professor at the
University of Utah. His research interests include
visualization, geometry processing, graphics, and
high-performance computing. Silva has a PhD in
computer science from SUNY at Stony Brook. He is
a member of the IEEE, the ACM, Eurographics, and
Sociedade Brasileira de Matematica. Contact him at
csilva@cs.utah.edu.

IEEE C om puter S o c ie ty
M em bers

S A V E

2 5 %

on all conferences sponsored
by the IEEE Computer Society

w w w .co m p u te r.o rg /jo in

May/June 2008 21

mailto:dakoop@cs.utah.edu
mailto:esantos@cs.utah.edu
mailto:csilva@cs.utah.edu
http://www.computer.org/join

