
C O M  P U T A T I O N  AL  
P R O V E N A N C E

Provenance for 
Computational Tasks: A Survey

T h e  p r o b le m  o f  s y s te m a t ic a l ly  c a p tu r in g  a n d  m a n a g in g  p r o v e n a n c e  fo r  c o m p u ta t io n a l  

ta s k s  h a s  r e c e n tly  r e c e iv e d  s ig n if ic a n t  a t t e n t io n  b e c a u s e  o f  i ts  r e le v a n c e  to  a  w id e  r a n g e  

o f  d o m a in s  a n d  a p p lic a t io n s .  T h e  a u th o r s  g iv e  a n  o v e r v ie w  o f  i m p o r ta n t  c o n c e p ts  r e la te d  

to  p r o v e n a n c e  m a n a g e m e n t , 50  t h a t  p o t e n t i a l  u se rs  c a n  m a k e  in fo r m e d  d e c is io n s  w h e n  

s e le c t in g  o r  d e s ig n in g  a  p r o v e n a n c e  so lu tio n .

T he Oxford English Dictionary defines 
provenance as “the source or origin 
of an object; its history and pedigree; 
a record of the ultimate derivation 

and passage of an item through its various own­
ers.” In scientific experiments, provenance helps 
us interpret and understand results: by examining 
the sequence of steps that led to a result, we can 
gain insights into the chain of reasoning used in 
its production, verify that the experiment was per­
formed according to acceptable procedures, iden­
tify the experiment’s inputs, and, in some cases, 
reproduce the result. Laboratory notebooks have 
been the traditional mechanism for maintaining 
such information, but because the volume of data 
manipulated in computational experiments has 
increased along with the complexity of analysis, 
manually capturing provenance and writing de­
tailed notes is no longer an option—in fact, it can 
have serious limitations. Scientists and engineers 
expend substantial effort and time managing data 
and recording provenance information just to an­
swer basic questions, such as, W ho created this 
data product and when? W ho modified it and 
when? W hat process created the data product? 
Did the same raw data lead to two data products?

The problem of systematically capturing and 
managing provenance for computational tasks is 
relevant to a wide range of domains and appli­

cations. Fortunately, this problem has received 
significant attention recently. O ur goal with this 
survey article is to inform potential provenance 
technology users about different approaches and 
their trade-offs, thereby helping them make in­
formed decisions while selecting or developing 
a provenance solution. Two other surveys also 
touch on the issue of provenance for computa­
tional tasks: R. Bose and J. Frew1 provide a com­
prehensive overview that covers early work in the 
area as well as standards used in specific domains, 
and Y.L. Simmhan and colleagues2 describe a tax­
onomy they developed to compare five systems. 
O ur survey, in contrast, discusses fundamental is­
sues in provenance management but isn’t intend­
ed for specialists. Specifically, we identify three 
major components of provenance management 
and discuss different approaches used in each of 
them. We also cover recent literature and the cur­
rent state of the art. Although we can’t provide 
a comprehensive coverage of all systems due to 
space limitations, we do review a representative
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set, including those systems in wide use that il­
lustrate different solutions. Applications that use 
provenance appear in other articles in this spe­
cial issue. The problem of managing fine-grained 
provenance recorded for items in a database is out 
of scope for this survey—a detailed overview ap­
pears elsewhere.3

Provenance Management: 
An Overview
Before discussing the specific trade-offs among 
provenance systems and models, let’s examine the 
general aspects of provenance management. Spe­
cifically, let’s explore the methods for modeling 
computational tasks and the types of provenance 
information we can capture from these tasks. To 
illustrate these themes, we use a scenario that’s 
common in visualizing medical data—the cre­
ation of multiple visualizations of a volumetric 
computer tomography (CT) data set.

M o d e lin g  C o m p u ta tio n a l Tasks
To allow reproducibility, we can represent compu­
tational tasks with a variety of mechanisms, includ­
ing computer programs, scripts, and workflows, or 
construct them interactively by using specialized 
tools (such as ParaView [www.paraview.org] for 
scientific visualization and GenePattern [www. 
broad.mit.edu/cancer/software/genepattern] for bio­
medical research). Some complex computational 
tasks require weaving tools together, such as loose­
ly coupled resources, specialized libraries, or Web 
services. To analyze a C T scan’s results, for ex­
ample, we might need to preprocess data with dif­
ferent parameters, visualize each result, and then 
compare them. To ensure the reproducibility of the 
entire task, it’s beneficial to have a description that 
captures these steps and the parameter values used. 
One approach is to order computational processes 
and organize them into scripts; the session log in­
formation that some software tools expose can also 
help document and reproduce results. However, 
these approaches have shortcomings—specifically, 
the user is responsible for manually checking-in 
incremental script changes or saving session log 
files. Moreover, the saved information often isn’t in 
an easily queried format.

Recently, workflows and workflow-based sys­
tems have emerged as an alternative to these ad hoc 
types of approaches. Workflow systems provide 
well-defined languages for specifying complex 
tasks from simpler ones; they capture complex 
processes at various levels of detail and system­
atically record the provenance information nec­
essary for automation, reproducibility, and result

sharing. In fact, workflows are rapidly replacing 
primitive shell scripts, as evidenced by the release 
of Apple’s Mac OS X Automator, Microsoft’s 
Workflow Foundation, and Yahoo!’s Pipes.

Workflows have additional advantages over pro­
grams and scripts, such as providing a simple pro­
gramming model that allows a sequence of tasks 
to be composed by connecting one task’s outputs 
to the inputs of another. Workflow systems can 
also provide intuitive visual programming inter­
faces that are easier to use for people who don’t 
have substantial programming expertise. In ad­
dition, workflows have an explicit structure—we 
can view them as graphs, with nodes represent­
ing processes (or modules) and edges capturing 
the data flow between those processes (see Figure 
1). Having this explicit structure enables the in­
formation to be explored and queried. A program 
(or script) is to a workflow what an unstructured 
document is to a (structured) database.

Another important concept related to computa­
tional tasks is abstraction, which lets us split com­
plex tasks and represent them at different levels 
of granularity. As Figure 1 illustrates, we can use 
abstraction to create a simplified view of a work­
flow that hides some of its details. A researcher 
studying a C T scan data set, for example, might 
not know—or care about—the details of the Vis­
ualization Toolkit (VTK; www.kitware.com) li­
brary that created the visualizations. So, instead 
of displaying the four distinct modules that ren­
der the final image (Figure lb), a user can abstract 
them into a single module with a more descriptive 
name such as “display on screen” (Figure lc).

D iffe re n t  Form s o f  P rovenance
We provided a high-level definition of provenance 
at the beginning of this article. When it comes 
to computational tasks, there are two forms of 
provenance: prospective and retrospective.4 Pro­
spective provenance captures a computational task’s 
specification (whether it’s a script or a workflow) 
and corresponds to the steps (or recipe) that must 
be followed to generate a data product or class of 
data products. Retrospective provenance captures 
the steps executed as well as information about 
the environment used to derive a specific data 
product—in other words, it’s a detailed log of a 
computational task’s execution. Moreover, retro­
spective provenance doesn’t depend on the pres­
ence of prospective provenance—for example, we 
can capture information such as which process 
ran, who ran it, and how long it took without hav­
ing prior knowledge of the sequence of computa­
tional steps involved.
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data = vtk.vtkStructuredPointsReaderO
d a ta .s e tF i l e N a m e /e x a m p le s /d a ta /h e a d .120.vtk")

contour = vtk.vtkContourFilter() 
contour.SetInput(0, data.GetOutput()) 
contour.SetValue(0, 67)

import vtk

□□□□□□□ ► 
vtkStructuredPointsReader QD

10 mapper = vtk.vtkPolyDataMapperO
11 mapper.SetInput(contour.GetOutput())
12 mapper.ScalarV isibilityO ff()
13
14 actor = vtk.vtkActor()
15 actor.SetMapper(mapper)
16
17 cam = v tk .vtkCamera()
18 cam.SetViewUp(0,0,-1)
19 cam.SetPosition(745,-453, 369)
20 cam.SetFocalPoint(135,135,150)
21 cam.ComputeViewPlaneNormal()
22
23 ren = v tk .vtkRenderer()
24 ren.AddActor(actor)
25 ren.SetActiveCamera(cam)
2 6 ren.ResetCamera()
27
2 8 renwin = vtk.vtkRenderWindow()
29 renwin.AddRenderer(ren)
30
31 sty le = vtk.vtklnteractorStyleTrackballCamera()
32 iren = v tk .vtkRenderWindowIneractor()
33 iren.SetRenderWindow(renwin)
34 iren .SetIn teractorS ty le(style)
35 i r e n .In i t ia l iz e ()
3 6 ire n .S ta r t()
(a)

vtkCountourFilter JDD

[!]□□□□□□□□□ ► 
vtkDataSetMapper

□ ► [?]□□□□□ ►
vtkCamera vtkActor

•
Read file

>r

% Extract 
isosurface

>r

0 Display 
on screen

(b) (c)

Figure 1. D ifferent abstractions fo r a data flow, (a) A Python script containing a series of Visualization Toolkit (VTK) calls; (b) a 
w ork flow  tha t produces the same result as the script; and (c) a simplified view of the w orkflow  tha t hides some of its details.

For our running example, Figure 2 illustrates 
prospective provenance captured as the defini­
tion of a workflow that produces two kinds of data 
products: a histogram and an isosurface visualiza­
tion. The retrospective provenance (the left side of 
Figure 2a) contains information for each module 
about input and output data, the executing user, 
and the execution start and end times.

An important component of provenance is in­
formation about causality—the process description 
(or sequence of steps) that, together with input data 
and parameters, led to the data product’s creation. 
We can infer causality from both prospective and 
retrospective provenance; Figure 2b illustrates 
the relationships in our running example. We can 
also represent causality as a graph in which nodes 
correspond to processes and data products and 
edges correspond to either data or data-process 
dependencies. Data-process dependencies (for ex­
ample, the fact that the first workflow produced 
h ea d -h is t.p n g ) are useful for documenting the 
data generation process, but we can also use them 
to reproduce or validate a process. Data depen­
dencies are likewise useful—for example, in the

event that we learn the C T scanner used to gener­
ate head. 12 0 .v tk  is defective, we can examine 
the data dependencies and discount the results 
that rely on it.

Another key component of provenance is user- 
defined information—documentation that isn’t 
captured automatically but that records important 
decisions and notes. This data often comes in the 
form of annotations—as Figure 2a illustrates, users 
can add them at different levels of granularity and 
associate them with different components of both 
prospective and retrospective provenance (such as 
modules, data products, or execution log records).

Three Key Components
A provenance management solution consists of 
three main components: a capture mechanism, 
a representational model, and an infrastructure 
for storage, access, and queries. In this section, 
we examine different classes of solutions for each 
of these components and discuss the trade-offs 
among them. To illustrate the approaches, we use 
examples that highlight some of the capabilities of 
existing provenance-enabled tools.
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In contrast, both workflow- and process-based ap­
proaches require processes to be wrapped—in the 
former, so that the workflow engine can invoke 
them, and in the latter, so that instrumentation 
can capture and publish provenance information.

Because workflow systems have access to work­
flow definitions and control their execution, they 
can capture both prospective and retrospective 
provenance. OS- and process-based mechanisms 
only capture retrospective provenance: they must 
reconstruct causal relationships through prov­
enance queries. The ES3 system (http://eil.bren. 
ucsb.edu), for example, monitors the interactions 
between arbitrary applications and their environ­
ments (via arguments, file I/O, system, and calls), 
and then uses this information to assemble a prov­
enance graph to describe what actually happened 
during execution.6

In fact, by capturing provenance at the OS level, 
we can record detailed information about all system 
calls and files touched during a task’s execution. 
This forms a superset of the information captured 
in workflow- and process-based systems, whose 
granularity is determined by the wrapping provid­
ed for individual processes. Consider, for example, 
a command-line tool integrated in a workflow sys­
tem that creates and depends on temporary files not 
explicitly defined in its wrapper. The causal depen­
dencies the workflow system captures won’t include 
the temporary files, but we can capture these de­
pendencies at the OS level. However, because even 
simple tasks can lead to a large number of low-level 
calls, the amount of provenance that OS-based ap­
proaches record can be prohibitive, making it hard 
to query and reason about the information.7

P rovenance M od e ls
Researchers have proposed several provenance 
models in the literature.9,10,12 All these models 
support some form of retrospective provenance, 
and most of those that workflow systems use pro­
vide the means to capture prospective provenance. 
Many of the models also support annotations.

Although these models differ in several ways, 
including their use of structures and storage strat­
egies, they all share an essential type of informa­
tion: process and data dependencies. In fact, a 
recent exercise to explore interoperability issues 
among provenance models showed that it’s possible 
to integrate information that conforms to different 
provenance models (http://twiki.ipaw.info/bin/ 
view/Challenge/SecondProvenanceChallenge).

Despite a base commonality, provenance mod­
els tend to vary according to domain and user 
needs. Even though most models strive to store

Workflow template H  Abstract workflow H  Workflow evolution

Service instantiation
Workflow instance Workflow instance

Data instantiation

Executable workflow

Execution log Execution log Execution log

Pegasus REDUX VisTrails

Figure 3. Layered provenance models. For REDUX, the first layer 
corresponds to  an abstract description, the second layer describes the 
binding of specific services and data to the abstract description, the 
th ird  layer captures runtim e inputs and parameters, and the final layer 
captures operational data. O ther models use layers in d ifferent ways. 
The top-layer in VisTrails captures provenance of w ork flow  evolution, 
and Pegasus uses an additional layer to represent the w orkflow  
execution plan over grid resources.

general concepts, specific use cases often influ­
ence model design—for example, Taverna was de­
veloped to support the creation and management 
of workflows in the bioinformatics domain, and 
therefore provides an infrastructure that includes 
support for ontologies available in this domain. 
VisTrails was designed to support exploratory 
tasks in which workflows are iteratively refined, 
and thus uses a model that treats workflow speci­
fications as first-class data products and captures 
the provenance of workflow evolution.

Because the provenance information a model 
must represent varies both by type and specificity, 
it’s advantageous to structure a model as a set of 
layers to enable a normalized, configurable repre­
sentation. The ability to represent provenance at 
different levels of abstraction also leads to simpler 
queries and more intuitive results. Consider the 
REDUX system,16 which uses the layered model 
depicted in Figure 3. The first layer corresponds to 
an abstract description of a workflow, in which each 
module corresponds to a class of activities. This ab­
stract description is bound to specific services and 
data sets defined in the second layer—for example, 
in the workflow shown in Figure 1, the abstract 
activity e x tra c t  iso su rfa c e  is bound to a call 
to the v tk C o n to u rF ilte r—a specific implemen­
tation of isosurface extraction provided by VTK. 
The third layer captures information about input 
data and parameters supplied at runtime, and the 
fourth layer captures operational details, such as 
the workflow execution’s start and end time.

Structuring provenance information into mul­
tiple layers leads to a normalized representation
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Figure 5. Provenance query im plem ented by three d ifferent systems. REDUX uses SQL, VisTrails uses a language specialized 
fo r querying workflows and the ir provenance, and myGrid uses SPARQL.

systems that support abstractions (such as Vis- 
Trails, Taverna, and Kepler), but the ability to cre­
ate views of provenance data would benefit OS- and 
process-based provenance models as well.

The ability to query a computational task’s 
provenance also enables knowledge reuse. By que­
rying a set of tasks and their provenance, users 
not only identify suitable tasks and reuse them but 
also compare and understand differences between 
different tasks. Provenance information is often 
associated with data products (such as images or 
graphs), so this data helps users pose structured 
queries over unstructured data as well.

A common feature across many approaches to 
querying provenance is that their solutions are 
closely tied to the storage models used. Hence, they 
require users to write queries in languages such as 
SQL,16 Prolog,20 and SPARQL.10’11 Although such 
general languages are useful to those already famil­
iar with their syntax, they weren’t designed specifi­
cally for provenance, which means simple queries 
can be awkward and complex to write. Figure 5

compares three representations of a single query in 
the First Provenance Challenge that asked for tasks 
using a specific module (Align Warp) with given 
parameters executed on a Monday The VisTrails 
approach uses a language specifically designed to 
query workflows and their provenance, whereas 
REDUX and myGrid use native languages for 
their storage choices. Because the VisTrails lan­
guage abstracts details about physical storage, it 
leads to much more concise queries.

However, even queries that use a language 
designed for provenance are likely to be too 
complicated for many users because provenance 
contains structural information represented as a 
graph. Thus, text-based query interfaces effec­
tively require a subgraph query to be encoded as 
text. The VisTrails query-by-example (QBE) in­
terface (see Figure 6) addresses this problem by 
letting users quickly construct expressive que­
ries using the same familiar interface they use 
to build workflow.21 The query’s results are also 
displayed visually.

May/June 2008 17





tomatically maps high-level workflow specifica­
tions into executable plans that run on distributed 
infrastructures such as the TeraGrid.11 Although 
Pegasus models prospective provenance using 
OWL, it captures retrospective provenance via 
the Virtual Data System (VDS; a precursor of 
Swift) and then stores it in a relational database. 
Queries that span prospective and retrospective 
provenance must combine two different query 
languages: SPARQL and SQL.

R E D U X  extends the Windows Workflow 
Foundation engine to transparently capture the 
workflow execution trace. As discussed earlier, 
it uses a layered provenance model to normalize 
data and avoid redundancy REDUX stores prov­
enance data (both prospective and retrospective) 
in a relational database’s set of tables that can be 
queried with SQL. The system can also return an 
executable workflow as the result of a provenance 
query (for example, a query that requests all the 
steps used to derive a particular data product).

Swift (www.ci.uchicago.edu/swift) builds on 
and includes technology previously distributed 
as the GriPhyN VDS.2"' The system combines 
a scripting language (SwiftScript) with a power­
ful runtime system for the concise specification 
and reliable execution of large, loosely coupled 
computations. Swift specifies these computations 
as scripts, which the runtime system translates 
into an executable workflow. A launcher program 
invokes the workflow’s tasks, monitors the exe­
cution process, and records provenance informa­
tion, including the executable name, arguments, 
start time, duration, machine information, and 
exit status. Similar to VDS, Swift captures the 
relationships among data, programs, and com­
putations and uses this information for data and 
program discovery as well as for workflow sched­
uling and optimization.

VisTrails is a workflow and provenance man­
agement system designed to support exploratory 
computational tasks. An important goal of the 
VisTrails project is to build intuitive interfaces 
for users to query and reuse provenance infor­
mation. Besides its QBE interface (which is built 
on top of its specialized provenance query lan­
guage), VisTrails provides a visual interface to 
compare workflows side by side12 and a mecha­
nism for refining workflows by analogy—users 
can modify workflows by example without hav­
ing to directly edit their definitions.21 VisTrails 
internally represents prospective provenance as 
Python objects that can be serialized into XML 
and relations; it stores retrospective provenance 
in a relational database.

OS-Based Systems
PASS (www.eecs.harvard.edu/syrah/pass) oper­
ates at the level of a shared storage system: it 
automatically records information about which 
programs are executed, their inputs, and any new 
files created as output. The capture mechanism 
consists of a set of Linux kernel modules that 
transparently record provenance—it doesn’t re­
quire any changes to computational tasks. PASS 
also constructs a provenance graph stored as a set 
of tables in Berkeley DB. Users can pose prov­
enance queries using nq, a proprietary tool that 
supports recursive searches over the provenance 
graph. As discussed earlier, the fine granularity 
of PASS’s capture mechanism often leads to very 
large volumes of provenance information; another 
limitation of this approach is that it’s restricted to 
local filesystems. It can’t, for example, track files 
in a grid environment.

ESS’s goal is to extract provenance information 
from arbitrary applications by monitoring their in­
teractions with the execution environment.6 These 
interactions are logged to the ES3 database, which 
stores the information as provenance graphs, rep­
resented in XML. ES3 currently supports a Linux 
plug-in, which uses system call tracing to capture 
provenance. As in PASS, ES3 requires no changes 
to the underlying processes, but provenance cap­
ture is restricted to applications that run on ES3- 
supported environments.

Process-Based Systems
The Provenance-Aware Service Oriented Ar­
chitecture (PASOA) project (www.pasoa.org) 
developed a provenance architecture that relies 
on individual services to record their own prov­
enance/'1 The system doesn’t model the notion of a 
workflow—rather, it captures assertions produced 
by services that reflect the relationships between 
represented services and data. The system must 
infer the complete provenance of a task or data 
product by combining these assertions and recur­
sively following the relationships they represent. 
The PASOA architecture distinguishes the notion 
of process documentation—that is, the provenance 
recorded specifically about a process—from the 
notion of a data item's provenance, which is derived 
from the process documentation. The PASOA 
project developed an open source software pack­
age called PreServ that lets developers integrate 
process documentation recording into their ap­
plications. PreServ also supports multiple back 
end storage systems, including files and relational 
databases; users can pose provenance queries by 
using its Java-based query API or XQuery.
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Table 1. An ove rv iew  o f provenance-enab led systems.

System Capture m echanism Prospective provenance
Retrospective
provenance W o rk flo w  evo lu tion

REDUX W orkflow-based Relational Relational No

Swift W orkflow-based SwiftScript Relational No

VisTrails W orkflow-based XML and relational Relational Yes

Karma W orkflow - and 
process-based

Business Process Execution 
Language

XML No

Kepler W orkflow-based M oM L M oM L variation Under developm ent

Taverna W orkflow-based Scufl RDF Under developm ent

Pegasus W orkflow-based OWL Relational No

PASS OS-based N/A Relational No

ES3 OS-based N/A XML No

PASOA/PreServ Process-based N/A XML No

4. B. C lifford et al., "Tracking Provenance in a Virtual Data 
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vol. 20, no. 5, 2008, pp. 565-575.

5. P. Croth, The Origin of Data: Enabling the Determination of 
Provenance in Multi-Institutional Scientific Systems through the 
Documentation of Processes, PhD thesis, Univ. of Southamp­
ton, 2007.

6 . J. Frew, D. Metzger, and P. Slaughter, "Automatic Capture 
and Reconstruction of Computational Provenance," Concur­
rency and Computation: Practice and Experience, vol. 20, no.
5, 2008, pp. 485-496.
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Proc. Int'l Provenance and Annotation Workshop (IPAW), LNCS 
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9. S. Cohen, S.C. Boulakia, and S.B. Davidson, "Towards a 
Model of Provenance and User Views in Scientific Work­
flows," Data Integration in the Life Sciences, LNCS 4075, 
Springer, 2006, pp. 264-279.

10. ]. Colbeck and ]. Hendler, "A Semantic Web Approach to 
the Provenance Challenge," Concurrency and Computation: 
Practice and Experience, vol. 20, no. 5, 2008, pp. 431-439.

11. ]. Kim et al., "Provenance Trails in the Wings/Pegasus Sys­
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12. J. Freire et al., "M anaging Rapidly-Evolving Scientific 
Workflows," Proc. Int'l Provenance and Annotation Workshop 
(IPAW), LNCS 4145, Springer, 2006, pp. 10-18.

1 3. S. Miles et al., "Extracting Causal Graphs from  an Open 
Provenance Data M odel," Concurrency and Computation: 
Practice and Experience, vol. 20, no. 5, 2008, pp. 577-586.

14. Y.L. Simmhan e ta l., "Karma2: Provenance Management 
fo r Data Driven W orkflows," to  be published in In t'l]. Web 
Services Research, vol. 5, no. 1, 2008.

15. J. Zhao et al., "M in ing  Taverna's Semantic Web of Prov­
enance," Concurrency and Computation: Practice and Experi­
ence, vol. 20, no. 5, 2008, pp. 463-472.

16. R.S. Barga and L.A. D igiampietri, "Automatic Capture and

P rovenance management is a new area, 
but it’s advancing rapidly. Researchers 
are actively pursuing several directions 
in this area, including the ability to in­

tegrate provenance derived from different systems 
and enhanced analytical and visualization mech­
anisms for exploring provenance information. 
Provenance research is also enabling several new 
applications, such as science collaboratories, which 
have the potential to change the way people do sci­
ence—sharing provenance information at a large 
scale exposes researchers to techniques and tools 
to which they wouldn’t otherwise have access. By 
exploring provenance information in a collabora- 
tory, scientists can learn by example, expedite their 
scientific work, and potentially reduce their time 
to insight. The “wisdom of the crowds,” in the 
context of scientific exploration, can avoid duplica­
tion and encourage continuous, documented, and 
reproducible scientific progress.24 se
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