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Abstract—Heterogeneous blocks, IP reuse, network-on-chip
interconnect, and multi-frequency design are becoming more
prevalent in integrated circuit design. Communication amongst
these blocks typically employs first-in-first-out (FIFO) buffering
for flow control. This paper characterizes and evaluates several
common designs in order to determine which structure is best
for various specific applications. Two clocked and four clockless
asynchronous FIFO designs are compared varying capacity,
bit width, and structural configurations. The FIFO layouts
are characterized in the IBM 65nm 10sf process for latency,
throughput, area, and power. First order models are created to
aid in CAD for FIFO synthesis, modeling, and optimization. Com-
parative results show that the asynchronous designs uniformly
out perform the clocked designs in nearly every aspect.

I. INTRODUCTION

FIFOs are an increasingly important component as design

has become more modular. The choice of which structured

memory to employ can have significant impact on the power,

performance, and cost of a design. The choices are broad and

range from clocked to asynchronous designs [1]–[6]. Some

excellent work on the properties of FIFOs has been published

[7], [8]. Yet a clear understanding of the comparative cost of

different designs in terms of power, throughput, latency, and

area – and of the key differences between specific structures

– is not generally available. This paper reports on a study

performed for a two fold purpose: to help designers choose the

best FIFO for their target design, and to develop the foundation

for an automatic CAD tool for selecting and synthesizing the

best structure.

The most common clocked and asynchronous designs are

compared across a broad range of design metrics. The designs

are characterized for buffering capacity, energy per data word,

leakage energy, width of the data path, forward and backward

latency, throughput for a given occupancy, and area. Many of

the asynchronous designs have various structural choices, and

these structures are compared and optimized. First-order equa-

tions are that allow designs to be compared across arbitrary

parameterized ranges are also developed.

This work evaluates the most common FIFO structures. Two

clocked and four asynchronous FIFO classes are investigated.

The clocked designs are assumed to operate entirely in a

single clock domain. Synchronization costs are ignored in

this analysis if the asynchronous design is placed in a clock

domain. No status information beyond full at the write port

and empty at the read port is assumed.

Fig. 1. Schematic of the linear pipeline controller

The end goal is to develop a tool to algorithmically evaluate

the merits of various FIFO structures and generate a parame-

terized synthesis system that will create the most appropriate

design. The choice can have significant impact. For instance,

the best 8 word asynchronous FIFO expends half the energy

with a forward latency that is almost a third that of the

best clocked FIFO while achieving nearly identical maximum

throughput. In general, the asynchronous designs are shown

to significantly out perform clocked designs for nearly every

metric and across nearly the full range of design parameters.

II. DESIGN AND CHARACTERIZATION

The results reported in this paper are derived from the

layout of designs that have been automatically synthesized and

characterized. The designs have been physically placed and

routed in the IBM 10sf 65nm process technology using the

Artisan RVt 12T library. Simulation results use full parasitic

extraction from layout.

The implementations are designed to achieve the goal of

making them as comparable as possible. This is accomplished

by employing the same universal subcomponents to construct

both the asynchronous and clocked FIFO designs. For in-

stance, the same clocked one-hot shift register is used for

address selection in the clocked head / tail pointer design

as well as the asynchronous parallel and rectangular FIFOs.

Likewise, the same pipeline controller, shown in Fig. 1, is used

in all the asynchronous designs.

The design and characterization flow proceed as follows.

First, a small set of shared circuit templates were designed.

Each are implemented as a behavioral or structural Verilog

module. The structural modules are mapped to the Artisan

65nm static library. There are 10 separate modules, three of

which are asynchronous state machines, the rest consist of

“clocked” components. The data registers are composed of
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banks of flip-flops for the clocked head / tail pointer design,

and data latches for all other designs.

The asynchronous modules consist of either pipelined stages

which contain a latch bank to store data, or unpipelined

stages that steer the control and data bits. The asynchronous

unpipelined modules consist entirely of “clocked” elements,

such as the one-hot shift register. The pipelined modules have

an asynchronous state machine that controls the clock signal to

the latch bank that stores the data, and performs flow control

between buffer stages. The linear pipeline controller circuit

of Fig. 1 is a typical example of an asynchronous finite state

machine (AFSM) controller. The other asynchronous AFSM

designs include the binary toggle and merge components that

buffer and steer data between three modules.

The three asynchronous finite state machine controllers

were synthesized or hand designed, and implemented as

structural Verilog modules mapped to the static Artisan cell

library. These circuits used a characterization flow that permits

their use in clocked ASIC CAD flows [9]. This character-

ization includes formal verification to prove behavioral and

timing correctness. Constraints are employed to ensure the

structure of the cells are not modified by the CAD tools,

but that the drive strengths can be correctly optimized for

power and delay by using the set_size_only com-

mands for these modules. Specific timing in the asynch-

ronous modules not understood by the clocked CAD are

defined with set_max_delay, set_min_delay, and

set_data_check commands. These sdc commands are

used by the logic synthesis and place and route tools. They are

employed in a way that ensures that the asynchronous designs

are power and timing optimized just as the clocked modules.

The “clocked” templates include a one-hot shift register for

address generation, a counter, unpipelined n-way toggle and

merge modules, and an elastic half buffer pipeline controller

[10], [11]. Each are implemented as a behavioral or structural

Verilog module depending on the design.

These components are assembled together to build the six

FIFO classes reported in this paper. A custom parameterized

script was written to synthesize the completed FIFO architec-

tures as Verilog designs. The result of the script is a Verilog

register transfer level (RTL) design. The RTL typically consists

of both structural and behavioral modules.

The Verilog designs are synthesized using Design Compiler

and then physically placed and routed using SoC Encounter.

The design area is measured from SoC Encounter and then

simulated for power and performance using Modelsim. Results

from Modelsim import delays calculated from parasitic ex-

traction from the physical layout in SoC Encounter using the

standard delay format (sdf). One simulation in Modelsim is

designed to measure the power. This simulation generates a

value change dump (vcd) file that logs the switching activity

on every node in the design. The vcd file is imported into SoC

which generates the power results based on the parasitics and

actual activity factors of the nodes from simulation.

The frequency of the clocked FIFOs is determined by

simulating the design, increasing the clock frequency until

Fig. 2. Phased Elastic Half Buffer (pEHB) design.

the design fails, then backing off the timing by 15%. The

frequency of the asynchronous FIFO designs are a result of

the system logic delays and margins designed in the race paths.

Multiple simulations were performed on each design to

evaluate latencies, worst case throughput, and energy under

various activity factors. A simulation algorithm to ensure a fair

energy comparison was developed by generating patterns that

guaranteed identical activity factors on all transfers between

storage elements. Data activity factors ranging from 6.25% to

50% on all data paths were simulated. The designs were also

simulated across all valid occupancies to generate throughput

versus occupancy graphs. Due to the volume of the tests,

simulation and characterization scripts were developed to

automate FIFO characterization.

Hundreds of different designs were synthesized and

characterized. Each FIFO class, and at times many structural

variants, were designed with capacities ranging from two

through 50 words and data path widths ranging from from

zero up to 64 bits. The scripts developed to generate the

Verilog FIFO designs is therefore highly parameterized. The

parameters include selections to identify (i) one of the six

FIFO classes, (ii) the structural configuration specific to that

class (e.g. different widths and depths described in Sec. IV),

(iii) the capacity of the FIFO, and (iv) the width of the data

path. Behavioral test interfaces are attached to the head and

tail of the FIFOs to aid in the characterization.

The simulation results are evaluated and first order models

developed for capacity, throughput, energy scaling, and perfor-

mance values. These models can be implemented in a CAD

tool to automatically select and synthesize the best FIFO for

specific design parameters and quality metrics.

III. FIFO CLASSES

Two clocked structures are used: linear flow-through FIFO

and head / tail pointer. The linear clocked FIFO is imple-

mented as phased elastic half buffer cells (Fig. 2) that employ

latches for data storage [10], [11]. This logic implements a

latency insensitive protocol [12], [13]. Elastic half buffers

must be connected where the control and data latches alternate

between transparent high and low cells in adjacent stages.



Fig. 3. Design of the Clocked Head/Tail Pointer FIFO. Read and write pointers are one-hot shift registers.

Fig. 4. Block diagram of a 4-deep Linear FIFO. L1–L4 are the controller
of Fig. 1, D1–D4 are latch banks.

The implementation of the clocked pointer FIFO is shown

in Fig. 3 [3]. The read and write pointers are implemented with

a circular clocked one-hot shift register for address selection.

Four asynchronous structures are implemented: linear, par-

allel, binary tree, and square [1], [4], [8]. A linear structure

with capacity of four is shown in Fig. 4. All asynchronous

FIFOs and the clocked linear FIFO use latches for data storage.

The structure of Fig. 4 is used in each of the asynchronous

designs, where the combination of the linear controller and

latch bank form a pipeline stage, just like a Di Li pair in

Fig. 4. A “normally closed” latching protocol is used for

energy efficiency where the latches are only briefly transparent

to store the data.

A block diagram of the parallel FIFO is shown in Fig. 5.

The T and M blocks are unpipelined modules that steer data

to and from a set of parallel “legs”. The capacity of the legs

is configurable; each leg in Fig. 5 has a capacity of two. The

parallel design is the same as a linear structure in the degen-

erate case with only a single leg. Likewise the configuration

where each leg contains a single buffer is an asynchronous

implementation of the clocked H/T pointer FIFO.

The design of the toggle template for the parallel FIFO is

shown in Fig. 6. The one-hot shift register is the same design

as the circular shift register used in the read and write pointers

of the clocked head / tail pointer FIFO (Fig. 3. This template

implements an unpipelined protocol that steers the handshake

signals without storing the data. The data is “broadcast” to

all downstream modules. This module reduces the frequency

of the parallel FIFO to the first order by about a factor of

Fig. 5. Block diagram of the parallel FIFO. Each L blocks is the same as a
pipelined controller / latch pair in Fig. 4.

Fig. 6. Schematic of the unpipelined Tparallel module

two when placed between two linear controllers because it is

not pipelined. However, it is highly modular and scales well.

The parallel merge module has a design similar to the parallel

toggle, but requires a mux to select and steer data.

The block diagram of the binary tree FIFO is shown in

Fig. 7. In this design the data is steered through a pipelined

logarithmic fanout tree to a number of parallel legs. The

legs are then merged through a logarithmic binary tree to

the output. The parallel legs can have a capacity >= 0. The

binary toggle and merge modules are pipeline asynchronous

templates with a protocol and implementation similar to the

linear controller in Fig. 1.



Fig. 7. Block diagram of Tree FIFO. The T and M blocks are pipelined.

Fig. 8. Block diagram of the S-4-4 square FIFO. 〈1〉 shows the path of the
first datum, 〈2〉 of the second.

The block diagram of a square FIFO is shown in Fig. 8.

This design consists of a row of steering cells on the top and

bottom, with parallel legs in between. Data flows across the

top row to each leg in order, down, and then out at the bottom

right. The path of the first two tokens is shown in the figure

with arcs labeled 〈1〉 and 〈2〉. The controllers in the bottom

row first steer the datum from the top to the output, then take

one or more tokens from the left based on the location in the

rectangle. The degenerate case of a single leg equals a linear

structure. The square toggle and merge templates, like the

parallel modules, are not pipelined. Fig. 9 shows a pipelined

linear controller connected to a square toggle module. Like

the unpipelined parallel design, these templates also reduce

the frequency of the design approximately in half.

Fig. 9. Linear controller with a Tsquare3 template.

Fig. 10. Throughput vs. occupancy for five 14-deep parallel FIFO configu-
rations. Labels are shown in inverse order of maximum throughput.

IV. CHARACTERIZATION

First order equations were developed to represent the struc-

ture, capacity, and forward latency for each design. The

equations are based on the number of parallel legs Nl, the

capacity of each leg Cl, the capacity of the FIFO Cf , the

clock period Pc and the latency of the asynchronous linear

controller Lc. The top two classes in the following table are

clocked, the latter four are asynchronous.

Design Structure Capacity Fwd Latency

Clk Linear – Cl (Cf/2)Pc

Clk H/T – Nl 3Pc

A. Linear – Cl CfLc

Parallel P-Nl-Cl 2 + NlCl (Cl + 4)Lc

Tree T-Nl-Cl 2(Nl − 1) + NlCl (2log
2
Nl + Cl)Lc

Square S-Nl-(Cl + 2) Nl(Cl + 2) (2Nl + Cl)Lc

The structures are specified by the class, number of parallel

legs, and capacity of each leg. Thus the parallel FIFO of Fig. 5

is a P-4-2 FIFO and the tree design of Fig. 7 is a T-4-1

configuration.

A. Latency and Throughput

Forward latency is defined as the delay from placing a token

into the head of an empty FIFO until it has been read from the

tail. The backward latency is its dual: the delay from removing

a token from the tail of a full FIFO until one can place a new

token in the head.

Latency has a major effect on FIFO throughput under certain

occupancy ranges. Throughput is limited by the latency in all

designs when the occupancy is near empty or full [7]. The

throughput of a FIFO is therefore dependent on its occupancy

and cycle time.

Throughput vs. occupancy is measured keeping the number

of data items in the FIFO constant at all times. When a

datum is removed from the tail of the FIFO, a new datum

is simultaneously added to the head of the FIFO. The FIFO is

first initialized with a particular occupancy. When a FIFO is

near empty, throughput is reduced due to the forward latency

of tokens. More data could be added to the FIFO, but this

must be delayed until data is valid at the output to maintain

a constant occupancy. When the FIFO is nearly full, the dual

applies. New data can not be removed from the FIFO until a

bubble, or empty position, propagates backward to the input.

Throughput reaches a condition where it is limited by the cycle



Fig. 11. A P-4-2 and P-2-4 parallel design w/ capacity of 10

Fig. 12. Latency and cycle time of five 14-deep FIFOs

time of the design if forward and backward latencies are small.

This results in the graphs in Fig. 10 where throughput triangles

saturate due to the maximum cycle time of the design.

Designs with small forward and backward latencies saturate

their throughput quickly based on the maximum frequency

of the design. However, designs with large latencies restrict

throughput across a large range of occupancies. The clocked

linear FIFO has a very high latency. For this design the

throughput is reduced due to latency in all cases except for

FIFOs of even length that are exactly half full.

The forward and backward latencies for clocked designs are

equivalent. However, The forward and backward latencies of

asynchronous structures can have different values which are

dependent on the handshake protocol. In this study we selected

a protocol with a faster forward latency than backward latency.

This results in different slopes as can be seen in Fig. 10. Since

the forward latency is less than the backward latency for this

design, the maximum throughput is reached when the FIFO

contains two or three tokens. However, maximum throughput

is not reached until up to 5 bubbles exist in the designs when

the FIFO is nearly full.

Lf

tc
≤ Ot ≤ Cf −

Lb

tc
(1)

Equation 1 models the effect of latency on throughput. Lf

and Lb are the forward and backward latencies, Cf is the total

capacity, tc is the cycle time, and Ot is the range of number

of tokens across which the optimal throughput is reached.

The smaller the forward and backward latency, the sooner the

maximum throughput of the FIFO is reached.

Fig. 13. Power and Energy of 14 deep Parallel FIFOs

B. Optimal Asynchronous Structures

All asynchronous FIFOs except the linear structure have

multiple configurations that achieve similar capacity. Fig. 11

shows two configurations of a parallel structure each with a

capacity of 10. The first part of our characterization determines

the best configuration for the asynchronous designs. This

is illustrated with a parallel FIFO having a capacity of 14

words. Five structures are synthesized and characterized: the

P-2-6, P-3-4, P-4-3, P-6-2, and P-12-1. As the number of

parallel legs increases, the cycle time increases but the forward

latency decreases. This creates the tradeoff shown in Fig. 12.

Fig. 13 shows the energy per token tradeoff for each of the

configurations, showing P-6-2 as clearly the best. Throughput

versus occupancy is shown in Fig. 10, displaying the tradeoff

between maximum throughput and the range over which the

maximum throughput is obtained. The graph for area is not

shown, but it correlates rather well to the cycle time in Fig. 12.

The area increases from 20,636 to 22,093 to 26,767 µm2

for the P-4-3, P-6-2, and P-12-1 configurations. The parallel

FIFOs with capacity of two in each leg achieves the best cycle

time × area × energy × throughput versus occupancy. Hence

these configurations are used in this paper.

The same tradeoffs occur in the tree structures with a

similar optimum. The results can be explained as follows: (i)

Latency, energy, and the breadth of the maximum throughput

versus occupancy improve by reducing the number of linear

stages a datum must pass through. (ii) The steering logic is

significantly more expensive than the linear pipeline logic in

terms of latency, energy, and area. (iii) The difference between

a capacity of one and two tokens per leg doubles the cost of

the steering logic, but only increases the number of tokens

a datum flows through by a small percentage (depending on

total FIFO capacity).

V. RESULTS

Fig. 14 shows a comparison of the latencies of the six

FIFO designs across capacities ranging from three to 50 words.

One of the graphs highlights small capacity FIFOs. Forward

latency is a measure of how quickly maximum throughput is

reached, as well as the time to propagate a value through the

FIFO. The asynchronous linear structure has the best forward

latency for very small capacities of four or less. Between four

and 16 the parallel and tree structures have the best latency.



Fig. 14. Forward and Backward Latencies of 64-bit FIFOs. Labels in
decreasing order at maximum depth.

Beyond 16 elements the tree architecture is best. Backward

latency produces a result similar to forward latency. However,

backward latency in the asynchronous designs is degraded.

Thus the elastic half buffer is best up to about seven data items,

after which the head / tail pointer is the best. This implies that

under a stalled condition, the clocked designs will recover to

full throughput quicker than these asynchronous designs.

The cycle time and maximum throughput of the designs are

compared across many capacities. Fig. 15 shows the results for

small capacity designs. The design with the highest throughput

is the clocked linear structure. However, this architecture has

the largest latency by far of any design and only achieves

Fig. 15. Cycle time and maximum throughput

Fig. 16. Throughput versus occupancy comparison for FIFO capacities of
10 and 50 tokens

maximum throughput under a single token occupancy value.

The next highest throughput is the asynchronous linear design,

but it suffers similar problems with the clocked elastic buffer

design. For some designs, these could be the optimal choice

– if throughput is the primary metric and the FIFOs could be

maintained in the small optimal range. However, for FIFOs

that require high throughput and low latency the asynchronous

tree FIFO and the clocked head / tail pointer FIFO are the best

up to a capacity of around 16, beyond which the tree FIFO

has the highest throughput.

Fig. 16 compares the throughput versus occupancy for

designs with a capacity of 10 and 50 words. The asynchronous

tree and parallel designs reach maximum throughput sooner

than all other designs with a broad maximum throughput

range, and the tree reaches a significantly higher maximum.



Fig. 17. Energy comparison of small capacity FIFOs

Fig. 18. Leakage power of small capacity FIFOs

For an application where dynamic buffering is required with

good throughput and low latency from the empty state, the

asynchronous tree design appears to be the best option.

Fig. 17 compares the average energy for a datum to pass

through the various structures for small capacity designs. The

asynchronous tree design is the most energy efficient. The

clocked head / tail pointer expends substantially more energy

than all other designs. This relationship and the relative slopes

hold for the full design space investigated, including designs

ranging from a 6.25% to 50% data activity factor, and for data

widths ranging from zero to 64 bits.

Leakage power is compared in Fig. 18. These values also

correspond well to the layout area of the designs. The clocked

linear design gives lowest leakage, but this does not account

for leakage in the clock distribution network and clock gating

circuitry.

VI. SUMMARY

This paper reports on several common FIFO structures

that can be used for flow control. They are compared with

maximum throughput, throughput versus occupancy, energy

efficiency, area, leakage energy, and latencies. First order

equations are derived to model the capacity, latency, and

maximum throughput based on occupancy of the designs. Most

asynchronous FIFO classes have multiple configurations that

result in similar capacity but different power and performance

values. The optimal configurations for a given capacity were

determined. A huge design space is investigated through gener-

ating modular designs and synthesizing hundreds of instances

of six FIFO classes. Results are for physical layout in a

65nm process with parasitic extraction, and include varying the

capacity, data width, configurations, and data activity factors.

Clocked and asynchronous designs are compared and con-

trasted to determine the best structure for a specific need.

The square FIFO, while academically interesting, is shown

to be an impractical design as it is never the best choice

for any parameter. In general an asynchronous FIFO is the

best choice across nearly every capacity and for most metrics.

Latency, energy, and throughput will usually be the primary

factors used to select the best design. In such cases, one of

three asynchronous FIFO structures are usually the best. The

clocked linear FIFO does attain the highest throughput of any

design. However, this performance is only reached for a single

occupancy value.

This work facilitates generating CAD that will weigh the

priorities, utilize the first order equations to select a structure,

and synthesize the correct design for the application.
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