
Gaussian Transfer Functions for Multi-Field Volume Visualization

Joe Kniss1 Simon Premoze2 Milan Ikits1 Aaron Lefohn1 Charles Hansen1 Emil Praun2

1 Scientific Computing and Imaging Institute, University of Utah
2 School of Computing, University of Utah

A b s t r a c t

Volume rendering is a flexible technique for visualizing dense 3D
volumetric datasets. A central element of volume rendering is the
conversion between data values and observable quantities such as
color and opacity. This process is usually realized through the use
of transfer functions that are precomputed and stored in lookup ta
bles. For multidimensional transfer functions applied to multivari
ate data, these lookup tables become prohibitively large. We pro
pose the direct evaluation of a particular type of transfer functions
based on a sum of Gaussians. Because of their simple form (in
terms of number of parameters), these functions and their analytic
integrals along line segments can be evaluated efficiently on cur
rent graphics hardware, obviating the need for precomputed lookup
tables. We have adopted these transfer functions because they are
well suited for classification based on a unique combination of mul
tiple data values that localize features in the transfer function do
main. We apply this technique to the visualization of several mul
tivariate datasets (CT, cryosection) that are difficult to classify and
render accurately at interactive rates using traditional approaches.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism 1.3.7 [Computer Graphics]: Three
Dimensional Graphics

Keywords: Volume Rendering, Transfer Functions, Multi-field
visualization

1 In t r o d u c t io n

Direct volume rendering is a flexible technique for visualizing ar
bitrary three-dimensional scalar and multi-field datasets. Other 3D
visualization techniques require the computation of an intermediate
geometric representation of the data prior to rendering (e.g. creat
ing a polygonal mesh using isosurface extraction). In contrast, di
rect volume rendering does not require intermediate geometry; the
data is resampled and converted to optical properties as it is being
rendered. This conversion from data values to optical properties
is represented using a transfer function, which is typically imple
mented as a lookup table.

One advantage of direct volume rendering is its ability to visu
alize multiple values, or fields, simultaneously. Multi-field volume
rendering has been shown to dramatically improve our ability to
classify subtle features that may not be well characterized by any
single input field [Laidlaw 1995], Even scalar datasets can benefit

IEEE Visualization 2003,
October 19-24, 2003, Seattle, Washington, USA
0-7803-8120-3/03/$ 17.00 ©2003 IEEE

Figure 1: Volumetric rendering using Gaussian Transfer Functions
(GTF). Left: analytic approximation of the GTF integral evaluated
on graphics hardware (128 slices). Middle: numerical integration
of the GTF using 368 slices. Right: numerical integration of the
GTF using 128 slices.

from multi-field volume rendering techniques by adding fields for
local derivative information [Kindlmann 1999]. For example, gra
dient magnitude characterizes the rate of change of values in some
neighborhood and can help classify the input data set into homo
geneous and transition regions [Kindlmann 2002], Multiple data
fields effectively place the ranges of data values representing differ
ent features at different locations in a multidimensional data space.
Features may therefore be easier to classify in a multivariate dataset
because ambiguities can be better resolved when different features
share the same range of data values in an individual field.

Although a multi-field dataset can be visualized using separate
transfer functions for each field, multidimensional transfer func
tions that specify the optical properties for each unique combina
tion of data values are a more general and expressive representa
tion [Kniss et al. 2002b; Kniss et al. 2002a], A major limitation
of multidimensional transfer functions using a lookup table is the
increased storage requirement. Each additional field in the dataset
increases the size of the transfer function lookup table. For instance,
a ID transfer function for eight bit data would require 256 entries,
whereas a 2D transfer function requires 2562 entries. In practice,
we have found that it is not uncommon to encounter datasets that
require 3D or even 4D transfer functions.

One approach for handling the exponential memory require
ments of a multidimensional transfer function is to decompose it
into multiple transfer functions of a lower dimension, i.e. imple
ment it as a product of separable transfer functions. For instance,
a 4D transfer function for data fields d l ,d2,d-(,d 4 could be repre
sented as a 2D transfer function for fields d l and d2 multiplied with
another 2D transfer function for fields d , and d4. Alternatively,
this 4D transfer function could be represented as four ID trans
fer functions, one for each of the data fields, multiplied together.
Although separable transfer functions may reduce the memory re
quirements of a high dimensional transfer function, they also dra
matically limit the kinds of features that can be visualized when
compared to a general multidimensional transfer function. Sepa
rable transfer functions also have the potential to erroneously clas-

4 9 7
Proceedings of the 14th IEEE Visualization Conference (VIS'03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: The University of Utah. Downloaded on July 06,2010 at 21:34:14 UTC from IEEE Xplore. Restrictions apply.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276285712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

B
A

d-2 F< 1 _
1

T tf-th

tf-di I

Fi

tf-di'-tf-d

Figure 2: The limitations of separable transfer functions.

sify features. This occurs when the separable parts of a transfer
function unintentionally interact when they arc combined. Figure 2
illustrates how this unintentional interaction occurs in the transfer
function domain. Figure 2(A) shows the desired 2D transfer func
tion classifying some feature F(seen in red. Figure 2(B) shows
ID transfer functions for each of the data fields and d2 that when
multiplied together produce the desired transfer function. However,
if wc add a second classified feature to the 2D transfer function, F,
in Figure 2(C), wc can no longer represent this transfer function as
a product of two ID transfer functions. Figure 2(D) shows how the
ID transfer functions interact to produce an incorrect 2D transfer
function.

Another issue affecting the size of a transfer function lookup ta
ble is the dynamic range of the data. The ideal transfer function
lookup table should have the same number of entries as the number
unique data values. Therefore, a typical transfer function for scalar
8-bit data has 256 entries. Similarly, a transfer function for scalar
16-bit data would need to have 65.536 entries. Most industrial and
medical scanners acquire data with a tixed-point dynamic range of
at least 12 bits. Nearly all modem numerical simulations produce
32-bit floating-point or double precision floating-point data. Using
a transfer function with a different dynamic range and resolution
than that of the source data requires scaling the source to the dy
namic range and quantizing it to the resolution of the transfer func
tion. It is not always clear how to appropriately map floating point
data to a discrete transfer function with finite size.

The dynamic range and dimensionality of the transfer function
affect how finely the data volume must be sampled during render
ing. Engel et al. [20011 observed that the maximum frequency
along the viewing ray in volume rendering is the product of the
highest frequency in the source data and the highest frequency in
the transfer function. Kniss et al. [2002b] observed that the max
imum frequency along the viewing direction is also proportional
to the dimension of the transfer function. These observations im
ply that it is not sufficient to sample the volume with the Nyquist
frequency of the data field, because undersampling artifacts would
become visible. This problem is exacerbated if non-linear transfer
functions arc allowed. That is, the narrower the peak in the transfer
function, the more finely wc must sample the volume to render it
without artifacts. Similarly, as more dimensions arc added to the
transfer function, wc must also increase the sampling rate of the
volume rendering.

This paper develops a framework for the compact representation
of multidimensional transfer functions. Wc choose a transfer func
tion based on the Gaussian as the underlying primitive. While many
other functions could be used in general, its capability for feature

classification and several implementation issues justify our choice
of the Gaussian.

First, wc show that the Gaussian and its properties enable flex
ible feature classification. Second, the Gaussian can be efficiently
evaluated even for multiple dimensions while preserving its gener
ality and expressiveness. This function can be explicitly evaluated
which also remedies the size and dynamic range issues of transfer
functions that would ordinarily be implemented as lookup tables.
Third, mathematical properties of the Gaussian allow us to approx
imate the volume rendering equation in closed form over a line seg
ment with linearly varying multivariate data values. As shown in
Figure 1 this approximation enables us to render high quality im
ages with significantly fewer samples than arc required for ordinary
numerical integration techniques.

In Section 3 wc present a class of transfer functions based on the
Gaussian. Section 4 describes how this class of transfer function
primitives can be analytically integrated over a line segment under
the assumption that data values vary linearly between two sampled
points. In Section 5 wc describe the practical implementation de
tails of Gaussian transfer functions and their analytic integration. In
Section 6 wc show examples of multivariate data visualization and
compare the described approach with commonly used methods.

2 P re v io u s W o rk

Visualization of volumetric datasets has been studied extensively.
[Blinn 1982] introduced a particle model for computer graphics
adapting the radiative transfer theory. [Kajiya and Von Herzen
1984] extended the particle model to inhomogeneous volumetric
media. Modem direct volume rendering methods arc based on work
of [Drebin ct al. 1988], [Sabclla 1988fand [Lcvoy 1988], [Sabclla
1988] presented a simple raytracing algorithm for rendering three
dimensional scalar fields. The illumination model was based on a
varying density emitter and a simple transfer function was applied
to the scalar data field for visualization. Accurate and convincing
visualization of data sets can be achieved by direct volume render
ing if the data is sampled at high rates. Unfortunately, high sam
pling rates result in performance penalties and therefore slow ren
dering times. Slow performance is exacerbated if non-linear trans
fer functions arc used and complex optical models [Max 1995] arc
employed in volume shading computation. [Max ct al. 1990] re
alized the need for pre-integration in the projected tetrahedra (PT)
volume rendering algorithm [Shirley and Tuchman 1990]. They an
alytically integrate the opacity and intensity integrals in the sorted
convex polyhedra cells comprising the volume. These individual
segments arc then composited together using standard compositing
operators. Color sample compositing has been derived by [Blinn
1982] and [Porter and Duff 1984], [Williams and Max 1992] de
scribed a simple analytic volume density optical model for piece
wise linear transfer functions. [Williams ct al. 1998] further im
prove the accuracy of visualization of unstructured grids by improv
ing pre-integration and adding more sophisticated optical models.
Previous volume rendering algorithms only allowed linear trans
fer functions [Stein ct al. 1994], Arbitrary transfer functions can
also be prc-intcgratcd by storing the integral in a three-dimensional
texture and later used efficiently in the visualization step [Roettger
ct al. 2000; Roettger and Ertl 2002], [Engel ct al. 2001] applied
the idea of volume pre-integration to regular meshes and employed
programmable consumer hardware for visualization. They achieved
high-quality visualizations of volume data even for coarse data sets
and non-linear transfer functions without the performance penalty.
Pre-integration can sometimes result in artifacts if preshaded col
ors and opacity values arc interpolated separately. [Wittenbrink
ct al. 1998] improved the compositing step by interpolating opacity-
weighted color.

Interactive direct volume rendering has become possible by ex
ploiting graphics hardware support for texture mapping. [Cabral

4 9 8
Proceedings of the 14th IEEE Visualization Conference (VIS'03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: The University of Utah. Downloaded on July 06,2010 at 21:34:14 UTC from IEEE Xplore. Restrictions apply.

et al. 19941 east the volume rendering problem into a 3D texture re
sampling problem that ean be efficiently implemented in graphics
hardware. Numerous other authors made significant improvements
to texture based volume rendering such as performance optimiza
tions, sophisticated light and shading models and improved qual
ity [Westermann and Ertl 1998; MeiBner et al. 1999; Rezk-Salama
et al. 2000; Westermann and Sevenieh 2001; Engel et al. 20011.

Transfer functions and methods for generating them have also
been extensively studied. [Pfister et al. 20011 and [Kindlmann
20021 provide an excellent survey of existing methods and trade
offs between them. While 1D and 2D transfer function have re
ceived much attention, true multidimensional transfer functions
have not. [Laidlaw 19951 developed a framework for magnetic
resonance imaging (MRI) classification and visualization using vol
ume rendering algorithms that included 2D Gaussian transfer func
tions for data classification.

3 G a u s s ia n T ra n s fe r F u n c t io n s

In direct volume rendering, data points are directly mapped to op
tical properties such as color and opacity that are then compos
ited along the viewing direction into an image. This mapping is
achieved using transfer functions. These functions have to be able
to efficiently classify data features and produce various different
outputs such as color, opacity, emission, phase function, etc. Typ
ically these functions have many parameters that have to be set by
the user by hand or through interactive exploration of the volume
data. As the survey by [Kindlmann 20021 on transfer functions
and generation methods shows, the process of creating expressive
transfer functions ean be a very time consuming and frustrating
task. For multivariate volumes, this problem becomes even more
daunting since the number of parameters grows with the number
of dimensions, sometimes exponentially. It is therefore important,
especially for multivariate datasets, to have transfer functions with
simple expressions that rely on a limited number of free parameters.
We have found transfer functions based on the Gaussian primitive
to be particularly useful.

3.1 General GTF

The Gaussian Transfer Function (GTF) is defined in one dimension
as:

g(v . c . o) = e - {' - c)2/a2 (1)

where v is the sampled data value, c is the data value that the Gaus
sian is centered over, and a is the width of the Gaussian. Note that
this function does not represent a probability distribution. The GTF
is a scaled version of the normal distribution that does not integrate
to one, yet retains its shape and simplicity.

While the above definition illustrates the shape and some de
sirable properties of the GTF in one dimension, we are interested
in multidimensional transfer functions. The multivariate Gaussian
transfer function is written as:

GTF(v.e.K) = e-(v-r)'K 'K(v-r) (2)

where v is the sampled data vector of dimension n (the number of
values at each sample in the data set), c is the vector data value
that the Gaussian is centered over, and K is an n x n linear transfor
mation matrix that can scale and rotate the Gaussian (see Table 1).
For example, if K is a diagonal matrix, it scales the Gaussian along
the primary axes of the data domain. In the more general case, the
matrix K can rotate and scale the Gaussian about the center c. As
defined above, the GTF takes values between 0 and 1. We obtain
achromatic opacity a by scaling the GTF with the maximum opac
ity value a„lm.

To select several features from the data set and show each one
in its own color, we build a transfer function by combining several

K Linear transformation matrix

4 Vector representing scaling
Ks Scalar representing uniform scaling
p Density
T Extinction
c Center of the Gaussian
c' Transformed center of the Gaussian
V Vector data value
V Scalar data value
erf Error function
GTF Gaussian transfer function
C Color
a Opacity
V-nm\ Maximum opacity

Table 1: Notation and important terms used in the paper

Gaussian primitives. We sum the opacities a. and average the colors
Cj together:

a = Y j ai ar,d C = Yj a f j . (3)

where a and C are the resulting opacity and color contributions
from all primitives. Note that these operators combine the indi
vidual contributions without taking into account the order in which
they are specified.

Using Gaussian primitives is just one possible approach to build
ing transfer functions. In the past, researchers have explored the
use of precomputed lookup tables, piecewise linear or piecewise
quadratic functions. While individual elements of these functions
are simple and can be evaluated efficiently, the number of elements
required to build transfer functions that can faithfully select tine
features can grow very large for multivariate datasets. For example,
representing an n-dimensional transfer function capable of select
ing a neighborhood of size A around a data value v may require
a lookup table with 1 / A" entries. Commonly used datasets can
have 1 /A = 256 and n = 4, leading to table sizes larger than the
available texture memory on current graphics cards. Piecewise lin
ear and piecewise quadratic functions are more memory efficient
than lookup tables but can still suffer from an exponential growth
in the number of free parameters with respect to the number of di
mensions. For rendering, we are interested in the transfer function
applied to a line segment between two data values. Even for trans
fer functions that can be represented with relatively few segments
along each of the primary data axes, the restriction of the function’s
domain to an arbitrary line through data space may be quite com
plicated (use a large number of segments). Our Gaussian primitives
have higher expressive power while still being simple enough to al
low intuitive parameter control and efficient hardware evaluation.
In addition, multidimensional GTFs restricted to arbitrary lines re
sult in a simple one-dimensional Gaussian that can be analytically
integrated. We explore uses of this property in Section 4.

3.2 Triangular GTF

For visualizing boundaries between materials in scalar data, one
can benefit from transfer functions that also depend on the data
gradient magnitude. We extend 1D GTFs to 2D transfer functions
using a construction introduced by [Levoy 19881. A triangular
transfer function primitive can be generated using Gaussians by ad
justing their widths depending on the gradient magnitude ||¥v|| :
a = ct'HVvH. where a ' is a free parameter (corresponding to the
width of the triangular GTF for ||¥v|| = 1). The intuition behind
this construction is that in regions of the volume with high gradient
magnitude, the data values are changing fast, so it is likely that the
region will contain the boundary (feature) that we are looking for.
Therefore, it is advantageous to apply a wider Gaussian to increase

4 9 9
Proceedings of the 14th IEEE Visualization Conference (VIS'03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: The University of Utah. Downloaded on July 06,2010 at 21:34:14 UTC from IEEE Xplore. Restrictions apply.

the chance that the region will be selected by the transfer function.
The use of the triangular classification function can also be easily
extended for use with multi-field datasets by replacing the gradient
magnitude from the univariate case with the norm of the ma
trix D 7 D where the rows of D are the gradients of each of the data
fields.

4 P ie c e w is e A n a ly t ic I n te g r a t io n
The intersection of the multidimensional GTF with an arbitrary line
through data space results in one-dimensional Gaussian. This al
lows us to integrate the transfer function over line segments in the
volume for which the data varies linearly. As shown in Figure 3
for narrow peaked transfer functions, this analytical integration is
much more accurate than a numerical (Riemann sum) integration
using the same number of samples for each viewing ray.

The emission-cibsorption volume rendering equation over a line
segment is defined as [Sabella 1988]:

l(a,b) = I**Cp(v(u)) z/,Mt))rltdu (4)
■la

where r is extinction (expressing attenuation along the ray), p is
density. C is radiant intensity or color. v(t) is the data value at the
position along the ray parameterized by t starting at the spatial po
sition x in direction (6. If we assume that the color C and extinc
tion r are constant over the segment, the intensity can be expressed
as [Max etal. 1990]:

C
I(a,b) = —a (5)

where the opacity term a is:

- z l ’pivitm (6)

If we further assume that data values along the ray between param
eters a and b vary linearly, the opacity term becomes:

a(v ,, v2J) = 1 - e - TlI'> p(v> +Hv?-v>))dt = 1 - -z ip ’ (7)

where v, = via) is the data value at ray parameter a. vs = v(b) is the
value at ray parameter b. I = b —a. and p ' is the density line integral
along the segment. For arbitrary one dimensional transfer functions
the integral can be expressed as [Williams and Max 1992]:

, /■' R(vn) - R (v ,)
p (vv v2)= p(v, +/ (i ' 2 ^ (8)

where R(v) is the integral function of the density:

K(v) = j p(x)dx (9)

The opacity is computed similarly to (7) when p is a multidimen
sional function:

a(vv v2,l) = 1 = \ - e- x,P' (10)

In general, the line integral p' has no analytic solution. In the com
panion paper [Kniss et al. 2003], we show that if we let pl y) =
GTF(v,c, K). p f becomes:

P V V ‘?2) = ^ i 4 | (e rf(B) - e rf(A)) (ID

where

Figure 3: Setup for analytic integration using Gaussian transfer
functions. The top image shows a parameterized ray going through
a volume. The volume is sampled at points .v,...*,, along this ray.
A continuous function f is reconstructed from these samples using
linear interpolation. A Gaussian transfer function T is then applied
to the function / . and becomes T(f (v)) . Traditionally, the integral
of T(f (v)) is computed using a Riemann sum. seen at the bottom
labeled S. Notice how the peaks A and B in T(f) are missing in the
Riemann sum. Piecewise analytic integration of T(f) ensures that
we do not miss these peaks.

n K (r'| r) . r l K (r,

and erf(z) is the error function:

U ‘
erf(z

(12)

(13)

Notice that the s /n /2 in equation (11) cancels the 2 / i/tt in equa
tion (13). While erf has no explicit representation, it can be closely
approximated with simple functions. We found the approximation
of [Abramowitz and Stegun 1974] particularly useful and easy to
implement.

Note that if i-f1 = iv i.e.. when we have two samples in a homo
geneous region. ||rf|| = 0 and we cannot use equation (11) directly.
In this case the formula converges to:

P >p(v (14)

as ||rf|| —► 0. since p ' becomes the derivative of the integral function,
which is the integrand itself.

We use the following formulae to combine transfer function ele
ments during piecewise analytic integration of each segment:

Id Pj(vi +>(';2 - ,;i))dt P<(v) = GTF(';- 0- K /)
a =

C--

1-
v Xjpi c; _ v p/ c,

V r,p/ (15)

where the integrals in the sum for computing the opacity a are eval
uated separately similarly to equation (11). Note that even though
the sum of GTFs is not a GTF we can still integrate them sepa
rately. scale them by r • and sum them in the exponent. Combining
the color contributions employs a commonly used approximation
that neglects the order in which the primitives appear along the line
segment [Engel et al. 2001], We also have to divide the input color
Cj by the input extinction coefficient r according to equation (5).

500
Proceedings of the 14th IEEE Visualization Conference (VIS'03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: The University of Utah. Downloaded on July 06,2010 at 21:34:14 UTC from IEEE Xplore. Restrictions apply.

Note that in theory the extinction coefficient t(- takes values be
tween 0 and °o. In practice the necessary upper limit is much lower
because t(- is integrated resulting in an opacity value that quickly
reaches one.

5 I m p le m e n ta t io n

In this section, we describe the practical implementation details of
Gaussian transfer functions from Section 3 and the implementation
of the analytical integration described in Section 4.

5.1 Gaussian Transfer Function

The goal of Gaussian transfer functions is to provide a general and
scalable class of transfer function primitives for specifying fully
general multidimensional transfer functions. Rather than utilizing
a lookup table to evaluate the transfer function for data values sam
pled within the volume, the Gaussian transfer function is evaluated
as a true function for each sample. The down side of transfer func
tions that are evaluated explicitly is that the computational cost of
evaluation is linearly proportional to the number of transfer func
tion primitives used. Although it may seem that this computational
cost would preclude the use of this class of transfer functions for in
teractive volume rendering, we have found them quite practical for
a number of reasons. First, the simple and continuous form of the
Gaussian transfer function makes it an efficient function to compute
on modern graphics hardware. Second, we found that in practical
applications we rarely use more than four or five transfer function
primitives at a time.

The fragment processing pipeline on modern GPUs provides a
rich set of SIMD vector operations such as component-wise arith
metic, vector dot products, exponentiation and trigonometric func
tions. The current generation of graphics hardware supports all of
the necessary instructions to implement explicit evaluation of trans
fer functions at full 32-bit floating point precision. High precision
is important since we would like the transfer function primitives to
be general with respect to both dimension and dynamic range.

The GTF can be evaluated on modern graphics hardware in as
few as four instructions; a multiply-add instruction, a dot product,
an exponential, and a multiply. This holds for datasets with up to 4
fields, and each additional multiple of 4 fields adds 3 instructions;
a multiply-add, a dot product, and an add. The algorithm for evalu
ating the GTF is shown below in pseudo code:

1 r — J\y j v c j Vector Multiply-Add
2 r = T -r Vector Dot Product
3 r = ex p (- r) Scalar Exponent
4 a- = a -* rt max.! Scalar Multiply

Table 2: Fragment program for computing opacity using the GTF.

The GTF parameters c ' = Kv *c. Kv . and h are stored as frag
ment program constants, while the sampled data value vector v can
be read from a data texture and/or come from other variables such
as a spatial position or the dot product of the view direction and
normal, r is a temporary register. The program in Table 2 assumes
that the matrix K only scales the GTF along the primary axes of the
transfer function domain, so the diagonal matrix K can be repre
sented with just a vector Kv with n elements, where n is the num
ber of fields in the dataset, A general matrix representation for K
would be more expressive allowing us to specify an arbitrary orien
tation for the GTF. However, it would significantly complicate any
user interface for the transfer function, and the additional computa
tional cost of evaluating the matrix-vector multiply may outweigh
the benefits. An example of classification using a 3D GTF is seen
in Figure 4.

Figure 4: Examples of multi-field volume classified using a GTF.
The dataset is the Visible Male Color Cryosection, courtesy of the
National Institutes of Health. Dataset size is 2563

1 ro = y g Scalar Reciprocal
2 ? i = Kyj *V — Cj Vector Multiply-Add
3 ? i = r() * f t Scalar Vector Multiply
4 r\ Vector Dot Product
5 = exp(—r ,) Scalar Exponent
6 ct. = a nmx,i * r \ Scalar Multiply
7 a i = if(,s? = 0){0}else{a(} Scalar Conditional

where g = || Vv-|| is the gradient magnitude of one of the data
values, and rQ and r (are temporary registers. Kv is the scaling
vector that scales the Gaussians along the axes of the transfer
function domain.

Table 3: Fragment program for computing opacity using the trian
gular GTF.

The triangular GTF described in Section 3.2 requires three ad
ditional instructions (a scalar reciprocal, a vector multiply, and a
scalar conditional-move operation) compared to the general GTF
(see Table 3). The conditional in line 7 of Table 3 is required be
cause we have a divide by zero when g = 0. Note that we do not
always have to check for division by zero if the graphics hardware
architecture implements the IEEE floating point standard. If g is
equal to zero in the first instruction, the result will be properly car
ried through subsequent instructions as expected, setting pixels with
invalid values to zero. An example of classification using a 4D tri
angular GTF is seen in Figure 5.

Notice that the algorithm for computing the GTF involves two
vector operations and two scalar operations. Similarly, the triangu
lar GTF requires three vector and four scalar operations. This sym
metry is important since modern programmable GPUs allow us to
compute one vector and one scalar operation in parallel. We cannot
exploit this parallelism in the computation of a single GTF because
each operation is serially dependent on the previous one. However,
the computation of multiple GTF primitives can be interleaved such
that the vector operations for one are computed in parallel with the
scalar operations for another. Therefore, we can effectively com
pute two transfer function primitives at once. Combining multiple
GTFs requires us to keep track of the summed colors and GTFs, as
in equation (3), adding an additional vector/scalar pair of instruc
tions per GTF:

1 C = C,.*a,. + C Vector Multiply-Add
2 a = a, + a Scalar Add

where C is the cumulative opacity weighted color, a is the cu
mulative opacity, a (- is computed using the program from Table 2
or Table 3 and C- is the color for the current primitive.

501
Proceedings of the 14th IEEE Visualization Conference (VIS'03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: The University of Utah. Downloaded on July 06,2010 at 21:34:14 UTC from IEEE Xplore. Restrictions apply.

Figure 5: An example of classification using the triangular GTF. The data set is a numerical weather simulation courtesy of the Canadian
Meteorological Centre and includes 4 fields, temperature, humidity, wind speed, and a derived multi-gradient. The left image identities the
simulation domain. The left-center image shows a default transfer function created by centering a triangular GTF at the median value for
each axis and setting its width to one. The right-center image shows some of the airmass boundaries (fronts). The right image was created by
modifying the triangular GTF's width along the wind speed axis to select only those portions of the previously classified airmass that have
wind speeds greater than fifty percent of the maximum wind speed in the simulation. Dataset size is 256.v256.v64.

5.2 Piecewise Analytic Integration

5 .2 .1 O n e D im en s io n a l C a se

The use of explicitly evaluated transfer functions as described in
the previous scction, assumes that the volume rendering equation
is being solved by compositing color and opacity segments along
the viewing ray using a Riemann sum. It is well known that this
technique produces significant artifacts if the sampling rate is not
high enough. Wc use analytic integration based on the equations
derived in Scction 4 in order to significantly reduce the number of
samples required to reconstruct the data with good fidelity.

The analytic integral for scalar data and gradient magnitude can
be implemented as a special case of equation (11). In this case wc
can simplify the general multidimensional case to ID, because the
gradient magnitude only modifies the width of a ID GTF.

Wc use equation (8) to compute the density integral using the
GTF. For the triangular version, p ' will depend on the gradient mag
nitudes and wc use the same formulation with the following input
parameters:

K(Vj-

We found that this approximation of the density integral works well
in practice. Further justification for using the average of the gradi
ent magnitudes can be found in [Kniss ct al. 20031.

For this special case wc precompute a 2D function:

IGaussf.v

IGaussf.v

y/j erf(A-,)-erffA-,) ,
2 a-.-a-, AlA-1 -A,

2
(16)

In our implementation wc evaluate this function within a domain
from [—10.10] in both ,v(and as. and store it as a 2D texture. Since
the function is smooth wc have found 1282 16-bit samples to be suf
ficient. A scale and bias arc required to access the texture correctly,
since its texture coordinates arc [0.1], The analytic piecewise inte
gral of the triangular GTF for scalar data can be implemented with
only four more instructions than the triangular GTF itself:

- ci = (C j-a.Cj.v.Cj . Tj} Color and extinction input
1 r.x = K y j * v { - c ' j Scalar Multiply-Add
2 r.y = Kv i * v 2 - c ' j Scalar Multiply-Add

2(a) r = r* (l / g) Scalar Multiply
3 r = r()*. 0 5 + .5 Vector Multiply-Add
4 r.x = IGauss(r..vv) 2D Texture Read
5 c = c + r.x* Cj Vector Multiply-Add

where c = (C. r) contains the combined color and extinction
terms, and c- = (C-. r). Step 2(a) is used for the triangular GTF
only.

Once all primitive's color and extinction quantities have been
computed, a final step is required to compute the opacity and the
correctly weighted color:

- r = {—/.0.0.0} Length input
1 r.w = I / c. w Scalar Reciprocal
2 c = c* r.vt’vt’vt’A Scalar Multiply
3 c.w = exp(c.w) Scalar Exponential
4 c.w = 1 — c.w Scalar Add
5 c.xvz = c.xvz * c.w Scalar Multiply

where r is a temporary register.

This algorithm leverages the fact that most modern graphics
hardware architectures arc capable of executing a texture read and
a vector/scalar pair of operations simultaneously. For instance, the
Nvidia EX series can handle two texture reads and two operations
simultaneously. This algorithm also permits interleaving of instruc
tions for the evaluation of multiple GTFs.
5 .2 .2 M u ltid im e n s io n a l C ase

The analytic integral of the general multidimensional GTF for lin
early varying data, defined in equation (11), can be implemented
entirely in a fragment program including an approximation of the
erf function. Wc have however found that the large number of
instructions required (over 30) affects performance dramatically.
About half of these instructions arc devoted to computing the two
erf functions. Similarly to the one-dimensional case, wc can pre
compute erf (a) — erf(v) and store it into a 2D texture. Since this
function asymptotically approaches constant values as the absolute
value of the argument grows, wc only need to represent a small in
terval around the origin and clamp to the edges of the texture when
accessing values outside this interval. Wc have found that the do
main —3.6 < a .y < 3.6, is adequate for a 16-bit lookup table.

Table 4 shows the fragment program used in the multidimen
sional case. Naturally, 20 fragment instructions arc a lot for a ren
dering tcchniquc that is already till bound. This computation takes

5 0 2
Proceedings of the 14th IEEE Visualization Conference (VIS'03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: The University of Utah. Downloaded on July 06,2010 at 21:34:14 UTC from IEEE Xplore. Restrictions apply.

Type
Ni

1
imber o

2
' Primit

3
ives

4
Separable 2D Texture .20 .26 .39 .54
3D GTF (RGB only) .21 .30 .39 .55
4D TGTF (Triangle) .24 .33 44 .59
Analytic 3D GTF .55 1.11 1.79 2.45
Analytic 4D TGTF .57 1.23 2.00 2.60

1 V| = Ky * V| — c' Vector Multiply-Add
2 V, = Ky * v, — c ' Vector Multiply-Add
3 d = v2 — v, Vector Subtract
4 rQ = d -d Vector Dot Product
5 r i = 1/ v ^ Scalar Recip. Sqrt.
6 ABG .x = d ■ v, Vector Dot Product
7 ABG .x = ABG.x * r (Scalar Multiply
8 ABG.y = rQ* r { + ABG.x Scalar Multiply-Add
9 ABG.z = v, • v, Vector Dot Product
10 ABG.w = ABG .z — ABG.x Scalar Move
11 ABG.z = exp (-A B G .z) Scalar exponentiation
12 ABG.w = exp(- ABG. w) Scalar exponentiation
13 ABG.xv = ABG.xv * 1 /7 .2 + .5 Vector Multiply-Add
14 E = erf (ABG.xv) 2D Texture Read
15 1 = hi* r (Scalar Multiply
16 1 = E*1 Scalar Multiply
17 1 = 1 * ABG.w Scalar Multiply
18 1 = l * r | Scalar Multiply
19 LH = ABG .z* hi' Scalar Multiply
20 1 = if (r0 = 0) { L H\ else {/} Scalar Conditional

Table 4: Fragment program for analytic integration in the multidi
mensional case.

more than twice as long as the point sampled multidimensional
GTF, meaning that this analytic integral is as computationally ex
pensive as the Riemann sum of a GTF with at least 2 extra samples
over the same domain. In general, this analytic solution would only
be required when one of the components of K is very large, i.e. the
GTF is very narrow along one of the dimensions of the dataset, or
the gradient magnitude is being used to emphasize boundaries.

6 R e s u lts

As can be seen in Figure 1, one advantage of the analytic triangu
lar GTF is the ability to extract thin material boundaries with fewer
slices than using Riemann sum integration methods. On the left is
the CT tooth dataset extracting the enamel, dentin, and pulp bound
aries rendered with the analytic triangular GTF using 128 slices.
In the middle is an image with a non-analytic triangular GTF using
368 slices. On the right is an image rendered with a non-analytic tri
angular GTF but with only 128 slices. This example demonstrates
the ability to extract thin material boundaries with similar quality
using far fewer slices by employing the analytic GTF.

In evaluating performance, the computational cost of explicitly
evaluating transfer functions must be considered. Each classified
feature adds a new transfer function primitive, which increases the
time for the evaluation. Table 5 lists the timings achieved for dif
ferent numbers of transfer function primitives using the approaches
presented in this paper, and compares them to the traditional ap
proaches using table lookups. Separable 2D Textures use one pair
of 2D textures for each transfer function primitive. This ensures we
do not have classification errors detailed in Section 1. It is clear
from the table that the cost of explicitly computing the analytic
solution is higher, due to the long fragment program, than either
separable transfer function or just the GTF.

Figure 6 shows another example of the tradeoff between quality
and speed for the analytic triangular GTF and the Riemann sum in
tegration methods. The data is a multi-modal MRI of a mouse brain,
and the transfer function uses three primitives representing the cor
tex, white matter, and the ventricles. Figure 6 (A) shows the results
of using the 4D triangular GTF (TGTF) rendered by Riemann sum
integration with 270 slices. Figure 6 (B) is the same dataset and

Table 5: Time comparisons in seconds per-frame using the Duke
Mouse Brain at 1.2 average samples per voxel on an Nvidia
GeForceFX 5900. GTF computations were not interleaved in these
timings.

number of slices but rendered with the analytic 4D TGTF. For fig
ure 6 (C), the Riemann sum was again used but the number of slices
was increased (1000 slices) to match the rendering speed required
by figure 6(B). Note the higher quality result of the analytic inte
gration.

If speed is the primary concern in a volume rendering system,
it is likely that a separable transfer function using table lookups
will suffice. However, if accuracy and scalability are primary con
cerns, Gaussian transfer functions may be preferable over separable
lookup tables. Although a general fi-dimensional transfer function
cannot be decomposed into n 1D transfer functions without errors
in the classification, it is possible to decompose it if it consists of m
separable transfer function primitives. In this case the transfer func
tion could be represented by n*m 1D transfer functions. Naturally,
the computational cost of this decomposition could be much higher
compared to an explicitly evaluated transfer function with the same
characteristics. The cost for evaluation of the analytic GTF is high
but is clearly effective for thin material boundaries.

User interface concerns are very important in multi-field transfer
function design. Although direct manipulation of classified fea
tures is often necessary, we have found that a simple modification
of dual-domain interaction [Kniss et al. 2002bl can provide the
primary transfer function interface without an explicit representa
tion of the transfer function domain. Our system allows the user
to probe a simple color-mapped slice of the multi-field data. As
the user probes a feature, all sample locations are recorded and ba
sic statistics are performed on these samples to derive the mean,
standard deviation, and covariance required for GTF specification.
The user is then able to refine the GTF specification by modify
ing simplified and independent parameters like size, opacity, color,
etc. Each classification element can be manipulated independently,
or grouped with other elements representing the same feature and
modified simultaneously. An explicit representation of the transfer
function is required for fine tuning. Each classification element or
group is modified independently of all others. The interface pro
vides a number of 2D projections of the multi-dimensional transfer
function space that allow the user to modify the position and size of
GTFs along each axis simultaneously or independently.

7 C o n c lu s io n s

We have presented a general and scalable framework for classifying
and rendering multi-field datasets, using transfer functions based
on Gaussian primitives. We have adopted these transfer functions
because they are well suited for classifying narrow features in mul
tidimensional domains. The triangular Gaussian transfer function
is a simple modification of the basic GTF that makes it useful for
classification based on gradient magnitude measures.

These transfer functions are efficient to implement, especially
on the modern programmable graphics hardware and do not require
the large amount of texture memory storage as do high dimensional
lookup tables. With reasonable assumptions, e.g. data values only
vary linearly between two sample points, they can be analytically

503
Proceedings of the 14th IEEE Visualization Conference (VIS'03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: The University of Utah. Downloaded on July 06,2010 at 21:34:14 UTC from IEEE Xplore. Restrictions apply.

(A) 0.43 s/frame (B) 2.11 s/frame (C) 2.20 s/frame

Figure 6: A multi-field MR of a mouse brain, courtesy of the Duke Center for In Vivo Microscopy, consisting of four fields; PD, T2, Diffusion
Tensor trace, and a derived multi-gradient. The images are rendered with the Riemann sum and analytically integrated TGTF (3 primitives:
cortex (tan), white matter (gray), and ventricles (red)). The dataset size is 2563.

integrated over a line segment even in multiple dimensions. Al
though functions would work as an underlying transfer function
primitive, the GTF is valuable because it is easy to control, very
simple to implement, and analytically integrable.

8 A c k n o w le d g m e n ts

We would like to thank Will Nesse, Dmitriy Pavlov, and Frank
Stenger for stimulating conversations about functional approxima
tion, statistics, and analytic integration techniques, which aided
greatly in the development of this work. Dave Weinstein and Helen
Hu read drafts of the paper. This work was funded by the follow
ing grants: NSF ACR-9978032. NSF MRI-9977218 ̂ NSF ACR-
9978099 and the US Department of Energy's VIEWS program.
R e fe re n c e s
ABR AMOWITZ, M,, AND STEGUN, I, A, 1974. Handbook of Mathematical Func
tions. Dover, June,
Blinn, J, F, 1982, Light reflection functions for simulation of clouds and dusty
surfaces. Computer Graphics (SIGGRAPH ’82 Proceedings) 16, 3 (July), 21-29.
C ab ral, B,, Cam, N,, and Foran, J, 1994, Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware. In 1994 Symposium on
Volume Visualization, 91-98,
Drebin, R. A., C arpen ter, L., and H anrahan, P. 1988. Volume rendering.
In Computer Graphics (SIGGRAPH ’88 Proceedings), J. Dill, Ed,, vol. 22, 65-74,
Engel, K„ Kraus, M„ and E r tl , T. 2001. High-Quality Pre-Integrated Vol
ume Rendering Using Hardware-Accelerated Pixel Shading, In Eurographics / SIG
GRAPH Workshop on Graphics Hardware VI, 9-16.
Kajiya, J. T., and Von Herzen, B, P. 1984. Ray tracing volume densities. In
Computer Graphics (SIGGRAPH ’84 Proceedings), vol. 18, 165-174.
Kindlmann, G. 1999. Semi-Automatic Generation of Transfer Functions for Di
rect Volume Rendering. Master’s thesis, Program of Computer Graphics, Cornell
University.
Kindlmann, G., 2002, Transfer functions in direct volume rendering: Design,
interface, interaction. Siggraph Course Notes.
Kniss, J., Hansen, C., Grenier, M,, and Robinson, T. 2002. Volume ren
dering multivariate data to visualize meteorological simulations: A case study. In
Eurographics - IEEE TCVG Symposium on Visualization 2002.
Kniss, J., Kindlmann, G., and Hansen, C. 2002. Multi-dimensional transfer
functions for interactive volume rendering, IEEE Transactions on Visualization and
Computer Graphics 8, 3, 270-285.
Kniss, J., Premoze, S., Ikits, M., Lefohn, a ., and Hansen, C. 2003.
Closed-form approximations to the volume rendering integral with Gaussian transfer
functions. Tech, Rep, UUCS-03-013, School of Computing University of Utah,
Laidlaw, D, H, 1995, Geometric Model Extraction from Magnetic Resonance
Volume Data. PhD thesis, Department of Computer Science, California Institute of
Technology.
Levoy, M, 1988. Display of surfaces from volume data. IEEE Computer Graphics
and Applications 8, 3 (May), 29-37,
Max, N., H anrahan, P., and Crawfis, R, 1990, Area and volume coherence
for efficient visualization of 3D scalar functions. In Computer Graphics (San Diego
Workshop on Volume Visualization), vol. 24, 27-33.
Max, N. 1995. Optical models for direct volume rendering, IEEE Transactions on
Visualization and Computer Graphics 1, 2 (June), 99-108,

Meissner, M,, Hoffmann, U., and S tra sse r, W, 1999. Enabling Classifica
tion and Shading for 3D Texture Mapping based Volume Rendering using OpenGL
and Extensions. In IEEE Visualization ’99 Proc.
Pfister, H,, Lorensen, B,, Bajaj, C., Kindlmann, G., Schroeder, W,,
Avila, L, S., M artin , K,, M achiraju, R., and Lee, J, 2001, The transfer
function bake-off. IEEE Computer graphics and Applications 21, 3 (May/June), 16
22,
P o rte r, T,, and Duff, T, 1984, Compositing digital images. In Computer Graph
ics (SIGGRAPH ’84 Proceedings}, vol. 18, 253-259.
Rezk-Salama, C., Engel, K,, Bauer, M,, Greiner, G., and E r t l , T. 2000,
Interactive Volume Rendering on Standard PC Graphics Hardware Using Multi
Textures and Multi-Stage-Rasterization, In Eurographics / SIGGRAPH Workshop
on Graphics Hardware ’00, 109-118,147,
R oettger, S., and E r tl , T, 2002, A Two-Step Approach for Interactive Pre
Integrated Volume Rendering of Unstructured Grids. In Proc. IEEE VolVis ’02.
R oettger, S., Kraus, M,, and E r tl , T. 2000. Hardware-accelerated vollume
and isosurface rendering! based on cell-projection. In Preceedings of IEEE Visualiza
tion, 109-116.
S ABELL A, P. 1988. A rendering algorithm for visualizing 3D scalar fields. In
Computer Graphics (SIGGRAPH ’88 Proceedings), vol. 22, 51-58.
Shirley, P., and Tuchman, A, 1990, A polygonal approximation to direct
scalar volume rendering. In Computer Graphics (San Diego Workshop on Volume
Visualization), vol. 24, 63-70,
Stein, C., Becker, B,, and Max, N. 1994. Sorting and hardware assisted
rendering for volume visualization. In 1994 Symposium on Volume Visualization,
83-90.
Westerm.ANN, R., and E r tl , T. 1998. Efficiently using graphics hardware in vol
ume rendering applications. In SIGGRAPH 98 Conference Proceedings, M, Cohen,
Ed., 169-178.
W estermann, R., and Sevenich, B, 2001, Accelerated volume ray-casting
using texture mapping. In Proceedings of IEEE Visualization, 271-278,
W illiams, P, L,, and Max, N, 1992, A volume density optical model, 1992
Workshop on Volume Visualization, 61-68,
W illiams, P. L„ Max, N. L„ and Stein, C. M, 1998. A high accuracy volume
renderer for unstructured data, IEEE Transactions on Visualization and Computer
Graphics4, 1 (Jan,-Mar.),
W ittenbrink, C. M„ M alzbender, T., and Goss, M. E. 1998. Opacity-
weighted color interpolation for volume sampling. In IEEE Symposium on Volume
Visua liza tion, 135-142,

5 0 4
Proceedings of the 14th IEEE Visualization Conference (VIS'03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: The University of Utah. Downloaded on July 06,2010 at 21:34:14 UTC from IEEE Xplore. Restrictions apply.

