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Improving the Stability of Algebraic Curves for
Applications

Tolga Tasdizen, Student Member, IEEE, Jean-Philippe Tarel, Member, IEEE, and David B. Cooper, Fellow, IEEE

Abstract—An algebraic curve is defined as the zero set of
a polynomial in two variables. Algebraic curves are practical
for modeling shapes much more complicated than conics or
superquadrics. The main drawback in representing shapes by al-
gebraic curves has been the lack of repeatability in fitting algebraic
curves to data. Usually, arguments against using algebraic curves
involve references to mathematicians Wilkinson (see [1, ch. 7] and
Runge (see [3, ch. 4]). The first goal of this article is to understand
the stability issue ofalgebraic curve fitting. Then a fitting method
based on ridge regression and restricting the representation to
well behaved subsets of polynomials is proposed, and its properties
are investigated. The fitting algorithm is of sufficient stability for
very fast position-invariant shape recognition, position estimation,
and shape tracking, based on invariants and new representations.
Among appropriate applications are shape-based indexing into
image databases.

Index Terms— Algebraic curves, implicit polynomial curves, ro-
bust curve fitting, shape representation, shape recognition..

1. INTRODUCTION

A LGEBRAIC two-dimensional (2-D) curves (and three-di-

mensional (3-D) surfaces) are extremely powerful for
shape recognition and single-computation pose estimation
because of their fast fitting, invariants, and interpretable coeffi-
cients [10], [11], [13], [17]-[19], [21]. Significant advantages
over Fourier descriptors are their applicability to nonstar
shapes, to open curves, to curves that contain gaps, and to
unordered curve data, Section Il. Under circumstances where
these issues are not relevant, polynomials based on Fourier
analysis may be very effective, and an interesting formulation
relating Fourier series and polynomials is given in [14]. A
weakness for use of algebraic curves and surfaces has been
lack of stability of parameters. This paper studies the problem
and provides a solution.

The classical least-squares fitting of algebraic curves, Section
I11, especially the more interesting cases of higher degree poly-
nomials, suffers three major problems: local inconsistency with
the continuity of the dataset; local oversensitivity of the poly-
nomial zero set around the data to small data perturbations; in-
stability of the coefficients due to excessive degrees of freedom
in the polynomial. Substituting an approximate Euclidean dis-
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tance for algebraic distance [21] is much more stable than the
classical least-squares algorithm, in many cases gives useful fits,
butin other cases the improvementis not sufficientto solve these
major problems. Similarly, the use of the exact Euclidean dis-
tance provides better results than the algebraic distance [16];
nevertheless, the fitting is sometimes not stable enough and the
minimization is solved iteratively, a time consuming process.
Another attempt to improve the stability of the fit was the de-
velopment of fitting algorithms which ensure that the obtained
zero set is bounded [8], [13], [22], but the middle one is for
second degree curves only, and increased stability for all and fit-
ting speed for the former two are still desired. Nonlinear param-
eterizations of polynomials that are guaranteed to satisfy certain
topological properties—boundedness and having a zero set that
is contained within another shape such as an ellipse—that have
recently appeared [9] are interesting, and their relative merits
need to be studied further. The problem of an excessive number
of parameters in implicit polynomial (IP) representations was
first studied in [15] in the framework of Bayesian estimation.
The linear 3L fitting algorithm [10] exhibits significantly im-
proved curve representation accuracy and stability but there is
significant value to further improvement in coefficient stability
in order that algebraic curves be generally applicable for ob-
ject-recognition purposes.

Following a short summary on algebraic curves in Section Il
and the classical least-squares fitting in Section Ill, we inves-
tigate the stability problems of one-dimensional (1-D) polyno-
mials in Section IV. In Section V, the solution of the first and
second problems by the 3L method [10] is analyzed from the
point of view of Section IV. In Section VI, we present a new
linear algorithm which produces accurate and stable curve-data
representations and stable coefficients. Results of objectrecog-
nition experiments based on this algorithm and a new set of in-
variants [18] are presented in Section VII.

Il. REPRESENTATIONS OF ALGEBRAIC CURVES
Formally, an algebraic curve is specifiedby a 2-D IP ofdegree

n given by the following equation:

fn(x,y) = N2
0<j-\-k<n;j%k>0

ajkxJyk = a00 + al0x + aOly

+ ...+ anQXn + an_nxn 1y + ... + aQnyn = 0.
The homogeneous binary polynomial of degree r in x and y
is a form, e.g.,, a20%2 + anxy + a02y2 is the second degree
form. The homogeneous polynomial of degree n is the so-called
leading form. An algebraic curve of degree 2 is a conic, degree

3 a cubic, degree 4 a quartic, and so on. Polynomial (x.y) is
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Fig. 1. A circle is the zero set of a second degree polynomial.

represented by the coefficientvector (ajk)o<jk;O<j+k<n which

has dimensionp = Vfa " 1)(n + 2) 7
fn(x,y) =Y fA 1)
wherel
and
Y =l x...xn x"y.-.y 1l

In general, the vector notation is convenient for IP fitting since
fitting can be setwithin a linear framework as detailed in Section
I11. A shapeisrepresented by the zero setoffn(x),i.e., the setof
points {x, y\ satisfying the IP equation fn(x,y) = 0 which is
the intersection of the surface defined by an explicitpolynomial
2 = fn(x,y) with the plane z = 0 [see Fig. 1],

The IP framework for shape representation and recognition
is generally compared with Fourier shape descriptors. Here we
briefly summarize some of the differences between these ap-
proaches. The two main types of Fourier descriptors are 1) that
which represents a shape as aradius as a function ofangle and 2)
thatwhich uses acomplex valued function to represent the coor-
dinates of the points along the curve as a function of arc-length.
There are certain disadvantages to both approaches. 1) is lim-
ited to the set of star-shapes which can be represented by a
single-valued radius as a function of angle; however, interesting
shapes generally do not fall into this category. 2) requires an
inputdata setto be an ordered setofpoints. 1) cannotbe directly
used for open shapes, a preprocessing step to artificially close
the curve is required. 2) can be used for open curves, but serious
difficulties with arc-length normalization arise. Arc-length pa-
rameterization is the main drawback of 2) because arc-length
can increase significantly if noise is added on to the curve. Both
have problems with varying data point density and gaps in the
data. IP’s do not suffer from any of the problems listed above:
they are directly applicable to nonstar shapes, open curves, un-
ordered data sets and arerobustto noisy data sets and inhomogo-
neously spaced data points. The main advantage of Fourier de-
scriptors over IP’s has been their better stability because they
are an explicitrepresentation. This paper focuses on the stability
issue with IP’s.

1Superscript denotes vector and matrix transpose.
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Fig. 2. (a)-(d) Classical least-squares algorithm gives unstable fourth degree
IP fits under even the smallest perturbations to the data. (¢) A much more
significant perturbation, (f) ten superimposed fourth degree polynomial fits
with the gradient-one algorithm to perturbed data sets like the one in (g).

I1l. Classical Least-Squares Fitting

The classical and simplest way to fit an algebraic curve to
data is to minimize the algebraic distance over the set of given
data points (xj,yj), 1 < j < m, thatis

1<j<m

()

by using vector representation of as in (1). Define the matrix
ofmonomials as thep x m matrix M = \\\ Y>... Ym] (or more
generally, the design matrix), and S = M M 1= Si<j<m YjYj
is the scatter matrix of the monomials. To avoid the trivial zero
solution in the minimization of (2), a constraint such as |[A\\2 =
1is imposed which modifies the problem to

mm | A*1 X Yyf A Ala - 1) 3)

with the introduction of Lagrange multiplier X. The solution to
(3) is given by the unit eigenvector A associated with Amin, the
smallest eigenvalue of SA = AA [21], Consequently, the clas-
sical least-squares fitting algorithm consists of computing the
monomial scatter matrix S from a set of data points, and then
finding the unit eigenvector of S associated with its smallest
eigenvalue. Although this algorithm is affine invariant [4], [21],
mostofthetimeitisnotofany practical use due to the following
problems. The fitted zero set does not respect the continuity of
the original data set as illustrated in Fig. 2(a)-(d) and Fig. 6(a)
and (d). This problem undermines the use of classical fitting
for obtaining good representations of the data. Moreover, re-
sults are highly sensitive to small errors in the data. Even seem-
ingly negligible perturbations in the data can lead to zero sets
that have no resemblance to the zero sets prior to the perturba-
tions in the data, Fig. 2(a)-(d). Even with low order degrees,
depending on the structure of the given data set, S may not
provide a stable unique eigenvector under small perturbations.
For example, several eigenvalues can have similar values to the
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TABLE |
Roots of the Perturbed Wilkinson Polynomial
1.00000 -4.00000 -6.99970 -20.84691 -13.99236 + 2.518831/
2.00000 -5.00000 -8.00727 -10.09527 + 0.643501?: -16.73074 + 2.8126217:
3.00000 —6.00001 -8.91725 -11.79363 + 1.6523317: -19.50244 + 1.940331/
TABLE 1
Estimates for Root Perturbations
-9.7998e-25 2.6102e-10 -0.00030308 0.90528 -72.188 286.9980 -36.8373
9.7620e-18 -7.2448e-08 0.0071163 -5.5366 158.9022 -227.0224 5.1379
-1.9477e-13 6.9438e-06 -0.10006 23.6634 -252.6122 118.6832

smallest one, and thus the solution will span a subspace in the
coefficient space when small perturbations are added to the data
set. Consequently, classical fitting is also practically useless for
recognition purposes based on the coefficients of the fitted poly-
nomials.

IV. PATHOLOGICAL POLYNOMIALS

Although we are interested in 2-D polynomials, i.e., functions
ofx andy. itisinstructive to first study stability in the 1-D case. It
is well known that some 1-D polynomials, in particular polyno-
mials ofhigh degree, are ill-conditioned. Consider the patholog-
ical example due to Wilkinson [1]: (x + 1){x + 2)... {x + 20) =
x20 + 210a:19 + ... + 20! This polynomial has very large co-
efficients and its roots are -1, -2, -3 ,..., -20. An accurate
calculation of the perturbed roots as given in [1] to five decimals
afteratiny changeof2 23isapplied tothe coefficientof./;19,are
shown in Table I. Though thisexample demonstrates how ill-con-
ditioned some polynomials are, it does not mean that all polyno-
mials are so, and as a consequence that all algorithms using high
degree polynomials have to be rejected as a priori unstable. In
fact, we will demonstrate thatitis possible to work in a subspace
ofnonpathological polynomials. First, letus try to understand the
pathology of this polynomial. A plot of this polynomial would
show varying oscillation amplitude between itsroots. This type of
ill-conditioned behaviorofpolynomialsiswell-knowninthecon-
textofinterpolation theory. Indeed, the Wilkinson polynomial is
anexampleofLagrange interpolation at20 points, and itisknown
thatLagrange interpolation suffers from oscillation problemsbe-
tween data points. This is the so-called Runge problem [3]. One
known solution is to change the way the interpolation is carried
out. Hermite interpolation, where the first derivative of the poly-
nomial is controlled in addition to the value of the polynomial at
each given point, can be proven to converge properly forall con-
tinuous functions when the number of sampling points and thus
the degree of the polynomial increases.

We are referring to interpolation theory and Hermite poly-
nomials because they provide us with very useful insight in
trying to improve the classical least-squares fitting algorithm.
In essence, the problem with polynomials is that the functional
relationship between its coefficients and its roots is highly non-
linear. Let pn(x) be a 1-D polynomial defined as: pn(x) =
So<j<n = ao + aix + aX2+ ... + anxn. Roots xk
of this polynomial are defined by pn(xk) = 0. This last equa-
tion can be seen as an implicit equation for root x k where this

root is a function of coefficients «,. To determine the sensi-
tivity of this root to small changes of the coefficients, we dif-
ferentiate Pn(xk) = 0 with respect to aj. We obtain x8&
(dpn/dx)(xk)(dxk/daj) = 0 which is equivalent to

dxk z
dPn
dx

daj 4

Equation (4) has important consequences. It is desired that
small or large changes in the coefficients produce small or large
changes, respectively, in the roots, and vice versa. Thus we
should require that (dxk/daj) = 1. Due to the numerator xk,
we see that x /, should be close to values 1.0 or -1.0; otherwise,
the effect of a small coefficient perturbation has a larger effect
on roots with large absolute values. This explains why roots
with large absolute values are less stable than others for the
W ilkinson polynomial (Table I). Due to the denominator of (4),
we deduce that the sensitivity to a small coefficient perturbation
is also directly dependent on the value of the first derivative
of the polynomial at the root location. The Wilkinson’s poly-
nomial has derivatives 19! 0!, -18! 1!, 17! 2!, ..., -0! 19!
at -1, -2, -3, ..., -20 respectively. These huge variations in
the first derivative dpn/d x contributes to the instability of the
roots with respect to coefficient perturbations. Using (4), we
predict, with a first order Taylor expansion, the perturbations
of the roots of the Wilkinson polynomial when 2~23 is added
to aio = 210: These values are in good accordance with the
differences between the original roots, -20, ..., -1 and the
real perturbed roots (Table I). Tables | and Table Il provide an
experimental validation of (4).

V. Gradient-One Fitting

The insight developed in Section IV into how polynomials
can be ill-conditioned, enables us to determine a subset of well-
conditioned polynomials. What is a well-conditioned polyno-
mial? For the problem at hand, it is a polynomial for which the
relationship between its roots and its coefficients is such that
small changes in one induces small changes in the other and
larger changes induce larger changes. In Section IV, it was ar-
gued that a 1-D polynomial should have root values and first
derivative values at the root locations, all close to 1.0 or -1.0.
We can extend this result to 2-D polynomials: a set of polyno-
mials satisfying these constraints exactly in 2-D are the powers
of the unit circle: 1/ (x2+ y2)n - 1). Members of the set
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of polynomials “close” to these polynomials in the coefficient
space are well-conditioned. The topology of this set remains to
be studied in our future work.

The first requirement for stable fitting is to apply a data set
standardization to force the data points to be close to the unit
circle, and thus indirectly to force the zero set of the polyno-
mial to be as close as possible to the unit circle. The data set
standardization consists of centering the data-set center of mass
at the origin of the coordinate system and then scaling it by di-
viding the coordinates of each pointby the average of the square
roots of the eigenvalues of the 2 x 2 matrix of second order mo-
ments (normalized by the number of points in the data set). This
is a Euclidean invariant measure of the object size and can be
thought of as the average radius of the data points from the ob-
ject center. Thus, by data set standardization we are setting this
measure of object size to one.

The second requirement is to control the value of the first
derivatives along the zero set, i.e, the gradient of the 2-D poly-
nomial

duU
dx
Ofn ®)

.dy

The gradient vector along the zero set of the polynomial is al-
ways perpendicular to the curve defined by the zero set. Thus,
ifwe can compute the local tangent to the curve at each point of
the data set, we propose to constrain the gradient to be perpen-
dicular to the local tangent and with unit norm. This will force
the zero set of the polynomial to respect the local continuity of
the data set. The calculation of the tangent to the data set at a
point does not pose a serious problem. If the data set is ordered
as acurve, we calculate local tangents to the data using the lines
going through consecutive data points. If the data is not ordered,
a fast distance transform [17], [23] can be used to generate level
sets as in 3L [10] or to indirectly calculate tangent directions.
W hen working with real images, level sets may also be gener-
ated as described in [12]. Or, if the input to the fitting algorithm
comes from an edge detector, edge orientations can be used as
the tangent directions. The normal direction is the direction per-
pendicular to the tangent direction and pointing towards the out-
side of the object. In the case of open curves where no notion of
inside/outside is available, the sign of the normal direction can
be chosen arbitrarily. We do not apply any smoothing in com-
puting the tangents even in the presence of noise; indeed, itis the
fitting process which takes care of smoothing the fluctuations in
the tangent direction along the curve given that there are enough
points on the dataset (at least a few times the dimensionality of
the IP coefficient vector). The proposed fitting technique is set
as a least-squares problem with the following additional con-
straints: Local tangential and normal directional derivatives of
the IP mustbe as close as possible to 0 and 1, respectively. These
constraints add two terms to (2) to yield

v

*v/,,)2)
®)
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where Tj and Nj are the local tangent and normal at (X j,yj)
and \i is the relative weight on the gradient with respect to the
f 2 term. By using the vector notation (1) in (5), we deduce the
vector form of the gradient

pX1

dimension: 2Xp

wherep = \{n + I)(n + 2) is the number of coefficients of
a binary polynomial of degree n. And then after substitution in
(6), we expand eara<i as

earad =A*Y ,

YiYj A+ ~ Y. VV,V,VVV;A

S SN

ST Gn

In this equation, S is the scatter matrix of the monomials as
introduced before, ,S\- and ST are the scatter matrices of the
directional derivatives of monomials in directions perpendicular
and tangent to the data set, respectively, and G\ is the sum of
the gradients of the monomials in the normal direction. This
minimization is a linear least-squares problem and the solution
is then formally derived as

+ + St)) G~ t (7)

Let<S = S+ /i(SN +ST), ap xpmatrix. Am dG N are vectors
with p components.

We named this algorithm gradient-one fitting. Like Hermite
interpolation [3], gradient-onefitting is Euclidean invariant, see
[4] and Section VI-C, respectively, butnot affine invariant. Gra-
dient-one fitting is also scale invariant since the data standard-
ization step sets some Euclidean invariant measure of the size
of the shape to one before fitting. We use the scattering radius
of the data points as the shape size measure; this measure is
Euclidean invariant. Data set standardization introduces a nu-
merical advantage by improving the condition number of the
scatter matrix S = S + + ST) of the problem (7). The
condition number gives an idea of the numerical stability of
linear algorithms such as the computation of the inverse of a
matrix [5]. Data standardization improves the stability of the
fits; however, if the standardization step has to be omitted, in
order to have scale invariance it is necessary to modify (7) to

n + St)) Gn,where s is the shape size
measure.

The necessity to introduce information about the first deriva-
tives was first pointed out in [10] and handled in a linear way
with the so-called 3-levels (3L) fitting algorithm. The idea of
the 3L fitting is to constrain the polynomial to fit not only the
data set but also two level sets of the distance transform of this
data set, thus preventing the presence of singularities of f(x, y)
in the vicinity of the data to be fitted. Therefore, indirectly, 3L
fitting puts constraints on the gradient of the fitted IP. In fact, it
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Fig. 3. Comparison of polynomial zero sets and polynomial graphs obtained
by classical fitting (a) and (b) to gradient-one fitting (c) and (d).

can be proved that the gradient-one algorithm is similar to the
3L fitting algorithm expanded to the first order with respect to
the inter-level distance parameter.

In comparison to the classical least-squares fits [see Fig. 6(a)
and (d)], results obtained on the same data sets are much better
as shown in Fig. 6(b) and (e). Especially, obtained fits are locally
consistent with the continuity of the data set. To gain further in-
sight into how local consistency is achieved by controlling the
gradient across the data set, we examine Fig. 3. Fig. 3(d) shows
that the gradient direction along the zero set obtained by gra-
dient-one fitting consistently points into the shape whereas in
Fig. 3(b) it can be seen that this direction switches between in-
wards and outwards. The zero set from solution of (3) is broken
into pieces as can be seen in Fig. 3(a) whereas in Fig. 3(c) the
zero setis a smooth representation of the data curve. Also notice
that in the vicinity of the data, the surface in Fig. 3(b) is flatter
than is the surface in Fig. 3(d) which means that with small per-
turbations of the data, classical fitting is prone to much larger
changes in the zero set. In addition to better stability of the zero
set and better shape representation power, gradient-one fitting
also provides better interpolation properties which allow IP’s to
be robust to a certain amount of missing data along the curve.
The stability of the zero set achieved by the gradient-one fit-
ting algorithm is an important improvement over classical fit-
ting techniques. It can be seen in Fig. 2(f) that the zero sets of
the resulting fits are stable under local data perturbations. Even
though the perturbations in Fig. 2(e) are much larger than those
in Fig. 2(a)-(d), the changes in the fitted IP’s are much smaller
in Fig. 2(f).

Parameter |ahas important effects on the properties of the fits.
It controls the relative weight of the gradient constraint with re-
spect to the algebraic distance constraint. The effect of the gra-
dient constraint on the zero set of the fit is a smoothing of the
high curvature areas. Fig. 4 is an example of smoothing of the
zero set when [j, is increasing. In all our experiments, ), is fixed
to j which gives satisfying results as shown in Fig. 6(b) and (e).
This value is a good tradeoff between the accuracy of the rep-

(b)

Fig. 4. (a) Sixth degree IP fits with the gradient-one algorithm for three
different values |j.. (b) The average percentage standard deviation of the
coefficients with respect to their average norm under colored noise (see
Section V1I-A) for increasing values of |j..

resentation and the stability of the fitted parameters. However,
better stability of the estimated polynomial coefficients can be
achieved with equal weights on the gradient and data fit con-
straints as shown in Fig. 4 because the resulting fits will be
“closer” to the set ofwell behaved polynomials, the powers of
the unit circle. In a more general framework, |a can be made a
user-specified function along the length of the curve providing
more control for interactive curve representation purposes. It
should also be pointed out that information about the higher
order derivatives such as curvature can be incorporated into gra-
dient-one fitting to provide additional constraints.

VI. Ridge Regression Fitting

A. Unstable Subspaces

Although, local stability of the zero set around the data is ex-
cellent with gradient-one fitting, there is still significant room
for improvement in the stability of the coefficients of the poly-
nomial and the global behaviour of the polynomial. Coefficient
vectors in certain subspaces of the coefficient space may pro-
duce very similar zero sets around the data set. As an example,
assume that the data is a setof aligned points along x —y = 0,
and that we are trying to fit a full conic. If we do the fit many
times subject to small perturbations of the data, we can observe
that the resulting coefficient vectors span a 3-D subspace con-
taining the solutions x (x —y) and y(x —y) as well as x —y. This
isaconsequence ofthe factthateach ofthese three solutions and
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GOODNESS OF FIT
|

Fig. 5. Graphofanerrorfunctionoftwovariables;here V isthe stablevariable
while W is relatively unstable. The unstable ridge is marked by a heavier line.
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Fig. 6. (a) and (d): Classical Fitting Algorithm. (b) and (e): Gradient-one
Fitting Algorithm. (c) and (f): RR Fitting Algorithm. Degree 6 and 8 are used
for the airplane and pliers shapes, respectively. Notice that there are no extra
components in (c) and (f).

all of their linear combinations fit the original data set equally
well. The global instability of polynomials is also evident in the
extra pieces of the zero set that lie away from the data [see Fig.
6(d) and (e)]. Indeed, these pieces are extremely sensitive to
small perturbations in the data even though the zero set around
the data is stable.

We now examine global instability problems. S, defined in
(7), is symmetric positive since it is a sum of scatter matrices,
and thus can be written as S = 1J'AlJ where U is a rotation in
the coefficient space. The elements of A and the columns of U
are the eigenvalues and eigenvectors of S, respectively. If there
is exact collinearity in the data, S will be singular and one or
more eigenvalues will be 0. A much more common problem is
near collinearity where some eigenvalues are very small com-
pared to others and S is nearly singular with a very large con-
dition number. Least-squares estimation produces the coeffi-
cient vector A that globally minimizes the error function in (6).
Eigenvectors of S associated with the very small eigenvalues
do not contribute to the polynomial significantly around the
dataset; thus such vectors multiplied with large scalars getadded
into the solution in pursuit of slightly better solutions. This re-
sults in very large variances for coefficients in the subspaces
spanned by these eigenvectors. In Fig. 5 the graph of a goodness
of fit function in two variables is shown. Notice that the function
drops off steeply with the stable variable V. but changes only
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very slowly with unstable W. Thus, the solution of LSE which
seeks the highest point on the graph, marked LS in the Fig. 5,
moves along the unstable ridge (heavy line in Fig. 5) with the
addition of small amounts of noise to the data. Consequently,
the variance of the variable W due to noise is much larger than
thatof V. What we desire is that scalars multiplying such eigen-
vectors be pushed to zero rather than up to unstabily-cancelling
infinities. This requires modifying LSE as we explain next.

B. Ridge Regression (RR)

As stated in Section VI-A, we would like variables that do not
contribute significantly to the fit to be forced to attain values as
close to zero as possible while other variables are effectively un-
changed. Since the solution has to move along the ridge, the sta-
bilization of the least-square is known as ridge regression (RR)
[6], [24], The method of RR modifies S so that it is closer to
what it would be for data in which there is no collinearity, that
is, data in which all the explanatory variables are uncorrelated
with one another. The modified coefficient vector, Arr is ob-
tained by

D (8)

where D is a positive definite and symmetric matrix and k is
the RR parameter. Although D could in principle be chosen as
any positive definite matrix, in this paper we restrict ourselves
to the simple case where D is a diagonal matrix. The addition
of a diagonal matrix D to the scatter matrix S has the effect of
adding a bias which produces coefficient vectors with smaller
norms (smaller ZJArr 1). In this sense, RR is analogous to weight
decay regularization used in training neural networks. Elements
of D are functions of the sum of squared values of the mono-
mials (in other words, D is a function of the main diagonal of
S). A specific choice for the elements of D that meets the rota-
tional invariance requirements and which has a desired limiting
behavior is proposed and explained in further detail in Section
VI-C. Notice thatas k is increased, S + kD approaches D. and
A approaches the limit Aumit = (/j,/k)D ~1G N . We examine
the limiting behavior of G \ in Section VI-D.

W hen there is collinearity, (8) biases the solution closer to
G \. For the example given in the beginning of this section,
Gn = [0n -2yjf. Thus, if the data set
is centered at the origin, the solution obtained by RR is biased
toward [0 1 -1 0 0 Q]*, i.e. the equation of the linex —y = 0
we are searching for. It can easily be shown [24] that

—n 2x] yj - Xxj

Arr = UAIPA. 9)

A is a diagonal matrix of shrinkage factors and U is as defined
in Section VI-A. In other words, RR modifies the least-squares
estimate by first rotating it to obtain uncorrelated components,
shrinking each componentby some amountand finally restoring
the original coordinate system by another rotation. The crucial
point is the amount of shrinkage applied to each component. If
D in (8) were chosen to be the identity matrix, then it is shown
in [24] that

(10)
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Fig. 7. Sixth degree IP fits with the gradient-one algorithm and RR for
increasing values of parameter

where k is the RR parameter and A, are the eigenvalues of <S, i.e.,
the diagonal components of A. The shrinkage factor Si multi-
plies the /(h eigenvalue of <S_1 which is , thus the /th eigen-
vector is shrunk by a factor of Si in the solution. Since the eigen-
vectors related to the very small eigenvalues of S are unstable,
we would like to shrink them while leaving other eigenvectors
largely unaffected. With (8), this is accomplished as shown by
(10). Consider a simple case similar to the one depicted in Fig. 5
where there are two variables one of which is significantly less
stable than the other. This would resultin an ill-conditioned ma-
trix S with eigenvalues, e.g., Ai = 1land A2= 10 4,and 6 1
having eigenvalues 1 and 104which are the reciprocals of Aiand
A2, respectively. If we select k = 10-3 we obtain the shrinkage
factors 8i = 0.999 and 82 = 0.0909. Thus, the eigenvalues of
(S +kl)“lwillbe 1x 0.999 = 0.999 and 104 x 0.0909 = 909.
Notice that the stable eigenvector corresponding to the larger
eigenvalue of S (equivalently the smaller of <S_1) remains rel-
atively unchanged whereas the condition number is improved
from (104/1) = 104 to (909/0.999) ps 909, an approximately
11-fold improvement. We address the question of choosing the
value of k in Section VI-E.

Fig. 6(c) and (f) shows fits of degrees 6 and 8 obtained by
RR. Comparing these results with the results from standard gra-
dient-one fitting shown in Fig. 6(b) and (e), we observe two im-
portant properties of RR: 1) the extra pieces of the zero set in
the fit to the pliers shape is gone and both fits are bounded and
2) the smoothing introduced around the data set is negligible.
These properties follow from the fact that stable dimensions are
left largely unaffected by RR while unstable ones are shrunk to
insignificant values.

The effect of increasing the parameter k from 0 to higher
values is shown in Fig. 7. Notice that the unbounded pieces that
are close to the data in fitting with no RR, k = 0, startto move
away with increasing k. Actually, these pieces totally disappear
and the polynomial zero set becomes bounded. Recall that in
Section VI-A it was pointed out that unboundedness and extra
pieces ofthe zero set were symptoms of the instability in fitting.
Thus, RR achieves the goal of getting rid of these effects, a qual-
itative improvement in fitting. In Section VII we present results

of experiments that show the quantitative improvement in sta-
bility obtained by RR which we believe is strongly linked to the
qualitative improvements summarized above. We also prove in
Section VI-D that a fit to data for a closed shape is guaranteed
to converge to a bounded IP curve as k goes to infinity.

C. Rotational Invariance ofRR

The question of the invariance of the fitting algorithm to Eu-
clidean transformations of the data is important to insure re-
peatability of the results. In this section, we show that the Gra-
dient-one fitting is rotation and translation invariant and that the
matrix D mustbe ofa special form to keep the rotational invari-
ance property in RR.

When a Euclidean transformation is applied to the data set,
vector Y of monomials is transformed as Y' = V(t9,t... t,,)Y.
where the p x p matrix V is a function of only 0, the applied
rotation angle, and (tx,ty), the applied translation. The zero set
of the polynomial is defined by A*Y = 0. After substitution
Y = 1'-1Y". the transformed coefficients are Al = (I1')-1-!.
A' resulting from fitting to Euclidean transformed data is A" =
(S/+/j,(SN+S!r))~1GN ,from (7). We now show this is exactly
(Vt)~1A. substituting for A from (7)

TS+ (SN + st))~1V~1VGn
=(VSV' 4+ u(VS,ivi+ VSTV1)-1VG I

but from Section IIl, S is Y Y t, and thus transforms as S' =
V SV 1. Similarly, the matrices containing the information on
the normals and tangents transform as: ST = VSj-V1. S'N =
V SNV f using the fact that normals are Euclidean covariant.
Gn transforms like Y thus G'N = VG N. This leads to A" =
(s' + + S't))~1G'n as was to be shown. Consequently,
Gradient-one fitting is Euclidean invariant. Notice that the Eu-
clidean properties of V (6, tx,ty) is used only for the computa-
tion of the normal components. This leads to a possible exten-
sion to affine invariant fitting if a method to robustly compute
affme invariant normals is developed.

Ifwe apply the same substitutions to (8), we obtain [V-1 (S'+
/3,(SN + S'T)) (V*)-1+ kD ~A'~, = V~1Gn .RR fitting will
be Euclidean invariantilM' = (S'-
which is exactly (8) in the transformed reference system. From
the equations in the preceding paragraph, we see that this re-
quirement is satisfied if vVDV' = D. This means that the in-
variance of the algorithm to Euclidean transformations dictates
the structure of the matrix D. It is known [21] that, if the Eu-
clidean transformation is reduced to a pure rotation, V can be
decomposed as V = iJ- M/2)R B 1/2 where B is the diagonal
matrix of binomial coefficients

(11)

and li is a block diagonal rotation matrix. Rotation block
Rk is associated with the /cth form, for each k. See [21] for
details. Upon substitution of V in VDV1 = D. we have
B-1U2RB12DB12RtB~12 = D which simplifies to
RBDR' = BD under the asumption that D is diagonal. It is
sufficient for satisfying the previous equation that D isblock by
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block, the inverse of B. Therefore, a D sufficient for rotation
invariance is

i+j (12)

where n,+J is a free parameter for the i + .yth block. In prob-
lems where invariance is not of concern, Principal Component
Methods [7] which do not provide any freedom in the choice of
.D, can be used alternatively. Since invariance is a major con-
cern for us, we choose to work in the more general framework
of RR.

There are n +1 parameters, corresponding to then +1 blocks
and forms. We are free to set these parameters in a Euclidean
invariant way. The simplest approach would be to set all to 1.
Using the binomial coefficients once more, we set each of these
parameters to the invariantly weighted sum of the diagonal ele-
ments of S associated with the i + jth form. In other words,

(r+ Q

pi>oX " +. iy

the weighted total scattering of the terms in i + jth degree form.
This choice of n,+J is Euclidean invariant. The motivation for
this choice comes from the fact that RR is equivalent to adding
independent random noise on the matrix of monomials. When
we compute S = MM *, the expected changes on the off diag-
onal terms are 0 because of the independence of the noise added
to each monomial. However, the variances, of the noises added
to the monomials, add onto the main diagonal of S exactly as
in RR. So our choice of . i+; is equivalent to adding indepen-
dentnoise to each monomial with variance proportional to aEu-
clidean invariant function of the scattering of all the monomials
in its form. This is very closely related to weight decay regu-
larization used to overcome problems of overfitting in iterative
optimization schemes [2]. We have found that this choice brings
significantimprovements in power of shape representation over
simply setting n,+J = 1 foralli,j.

D. Boundedness Properties and Limiting Behavior ofRR

The limitofthe solution of (8) as K goes to infinity is Aumit =
D ~1Gn , up to a scale factor. It turns out that the polynomial
specified by Aumit has important properties. Indeed, when the
data shape is closed and the degree of the fitted polynomial is
even, the IP curve converges to the curve given by A In!l,, which
is always bounded, as shown in Fig. 8. The proof that follows
is based on the divergence theorem for closed 2-D curves. To
begin, using (12), components ciij of vector A/,,,,,, can be ap-
proximated as an integral along a contour, C, when the data
shape is closed and the sampling of the curve is not too coarse

g NV y).

Therefore, by applying the divergence theorem and using the
vector identity V «V/y = V2l itbecomes

// V 2(xly-i) dx dy
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Fig. 8. Left: sixth degree polynomial fits with the gradient-one algorithm and
RR for increasing values of parameter « (« = 0, « = 0.0001, 0.001, 0.01,
0.05, 0.5, 2.0, and 32, respectively). We can observe that the fitted zero set is
becoming smoother and converging to a point.

i(i- DxI V. +j(j ~ )xly3 2dx d
CXijilil //I(I ) X i )xly x dy

where V 2g is the Laplacian of function g and the double integral

applies in the data shape’s interior.Using (1), and introducing

the monomial vectorY' = (x 'y the zero setof A/,,,,,, is
limit aijx % J = 0.

To prove that the zero setof this polynomial is always bounded,

itis enough to show that the leading form of this polynomial is

always strictly positive. By using the two previous equations we
find

N2

aijx'ly'3
/e
—{xx") o/y dx dy
Then, we derive that
y, a”xly3
w 2) (xx'+ yy)n 2dx dy

is always positive for even degrees. As an important conse-
quence of this proof, itis always possible to find some k > 0
such that the fitted polynomial (to a closed shape) has bounded
level sets, as desired.

E. Choosing the RR Parameter

The bias of an estimator is the distance between the true value
of the parameter being estimated, A,r/l,. and the expected
value of the estimator, Arr. The variance of an estimator
is its expected square deviation from its expected value,
||[Arr - Arr]||2. k controls the bias-variance tradeoff. Usually,
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Fig. 9. Fits for fourth, sixth, and eighth degrees with shapes of different

complexities. No extra components are close to data sets. The RR parameter
was chosen manually for each shape in this example.

the variance is significantly reduced by deliberately introducing
a small amount of bias so that the net effect is a reduction in
total mean squared error which is defined as Has2 + variance.
Introducing bias is equivalent to restricting the range of func-
tions for which a model can account. Typically this is achieved
by removing degrees of freedom. Contrary to other approaches
such as principal component methods [7], [15], RR does not
explicitly remove degrees of freedom but instead smoothly
reduces the variability of parameters. This makes the model
less sensitive to small perturbations. Selection of the parameter
k in practice can be done in one of two ways depending on
what the resulting fit will be used for the following.

1) Choosing k for Shape Modeling: Here the main goal of
fitting is to obtain a good representation of the shape without
too much smoothing, with bounded zero sets and without ex-
traneous pieces in the zero set. In Fig. 8, it can be seen that
increasing k results in first smoothing high curvature parts of
the shape and then convergence to a bounded shape that does
not visually represent the data. So the aim here is to choose the
smallestpossible value of k that gets rid ofunstable artifacts like
unboundedness (see Fig. 9 for examples where k was chosen in
this manner). This can be done iteratively since fitting for mod-
eling can usually be done off-line. Parameter k can be increased
from 0 to larger values until significant amounts of error start
to be introduced into the fit. Polynomial interpolated measure
(PIM) [11] can be used to track this error as a difference in the
polynomial at k = 0 and at the value of k under consideration.

2) Choosing k for Recognition: Here the main goal is to
minimize the total mean squared error of estimator Arr. Such
an optimal value of k is empirically shown to existand is found
in Section VII. Choosing the optimal value of k analytically re-
mains to be done in our future work. Optimal values of k could
differ for different data sets. In [20], it is shown that k can be
computed from a data independent threshold t, on the condition
number of S + kD. The optimal value of I will be data inde-
pendent.

VII. Experiments
A. Perturbation Models

Before we present experimental results, it is important to
clarify how the perturbed data sets in these experiments were

@

(c) (d)

Fig. 10. Comparison of noisy data simulation using white noise (a) and (b)
with standard deviations 0.05 and 0.1, respectively, and colored noise (c) and
(d) with standard deviations 0.05 and 0.1, respectively.

generated. Most researchers in the field of computer vision
use random white noise (the noise added to each point in the
data is independent of others) in their experiments on shape
recognition, and thus most algorithms are optimized to handle
this type of noise. White noise when used with very small
standard deviations is good for simulating quantization errors;
however, itisnota good model for generating deformed copies
of a shape as might be sketched by a human or as might appear
after segmentation from an image of an object taken under
slightly different viewing conditions. We would like to be able
to model these variations of shape since our motivation is to use
IP fitting for indexing into image databases by query by sketch
and query by example. Fig. 10(a) and (b) shows the silhouette
of a fish and white noise with standard deviations 0.05 and 0.1,
respectively. It is clear that these shapes cannot represent the
shape variations we desire. The solution we propose is simply
to use colored noise instead of white noise. First, generate a
white noise sequence equal in length to the number of data
points. Then convolve this sequence with an averaging window
of length 0.15 times the number of data points. This sequence
is added in the direction perpendicular to the data at each point.
Fig. 10(c) and (d) was obtained with this method. Comparing
these with Fig. 10(a) and (b), it appears that colored noise
models represent meaningful shape distortions whereas white
noise can only represent quantization errors. The connection
between distortions in shapes sketched by humans and appro-
priate colored noise models will be investigated in future work.
Also, the arbitrary choice of setting the length of the averaging
window to be 0.15 times the length of the data sequence can be
changed to obtain different effects in the distortion produced.
Another type of perturbation used in our experiments is missing
data where a random point on the given shape is picked and a
number of consecutive points are removed. Removing intervals
introduces much stronger perturbations then removing an equal
number of randomly spaced points.

B. Object Recognition Experiments

Various object recognition experiments were performed to
verify that RR improves object recognition performance. A set
of 27 objects (Fig. 11) including real-world objects and artifi-
cial free-form shapes ranging from simple to complex was used
for all of the experiments outlined in this section. Itis important
to note that some objects have very similar shapes such as the
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Fig. 11. Objects used in the experiments.

fighter aircrafts, eels, and fishes. This makes objectrecognition
for this set of objects a nontrivial task.

Recognition performance was tested under various perturba-
tion models which are combinations of colored noise, missing
data and rotation as explained in Section VII-A. Given a per-
turbation model, 1000 samples (perturbed shapes) are gener-
ated from each base shape. Each sample is fit with an IP using
the methods outlined in the previous sections, thus producing
a sample in coefficient-vector space for each perturbed shape.
Then, a recently developed complete set of invariants [18] is
computed for each coefficient-vector sample. One of the most
important advantages for recognition using this specific set of
invariants is that each invariant is either a linear or quadratic
function of the coefficients or an angle determined by a pair of
components of the coefficient-vector. This leads us to believe
that they should out-perform highly nonlinear algebraic invari-
ants in robustness. Finally, a mean and full covariance matrix
in the invariant space is learned for each object. Test sets (100
samples of each object) are generated in the same manner inde-
pendently of the training set.

Average recognition rates for the 27 objects are plotted
against the logarithm of the RR parameter k in Fig. 12.
Recognition rates obtained without using RR are shown with
the horizontal lines. In Fig. 12(a) fourth degree polynomials
were used with a perturbation model of 10% colored noise
and random rotations combined. Optimal choice of the RR
parameter provides approximately 3% increase over the already
high recognition rate of 96.5%. Note that there is an optimal
value of k; this is expected since k controls the bias-variance
tradeoffin invariant space and some value of k has to minimize
bias2 + variance. The following experiments verify this fact
with the further importantimplication that for this set of objects,
best recognition performance is obtained using approximately
k = 10~3 regardless of the degree of the polynomial or the
perturbation model being used. One question to be investigated
is if this optimal value of k will generalize to larger sets of
objects.

The experiments presented in Fig. 12(b) use a stronger pertur-
bation model combining 10% colored noise, 10% missing data
and random rotations. Both fourth and sixth degree polynomials
were tested. For degree 4, optimal choice of k provides 7% im-
provementin recognition achieving approximately 97%. For de-
gree 6, a much more substantial 16% improvement is obtained
raising the bestrecognition performance to approximately 99%.
These top rates are impressive when one looks at some typical
perturbed samples generated in this experiment, Fig. 13. Note
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Fig. 12.  Onethousand perturbations of each object are used as the training set.
Another 100 independent perturbations of each object are used as the test set.
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Fig. 13. A few shapes perturbed with 10% colored noise and 10% missing
data.

that random rotations are omitted in Fig. 13 for easy compar-
ison with the original shape. Using sixth degree IP’s provides
only a 2% advantage in recognition over using using fourth de-
gree; moreover for some nonoptimal values of k and with no
RR it actually does worse. There are two important deductions
here. 1) Since sixth degree IP’shave more coefficients (degrees
of freedom) they are more prone to problems of unstable sub-
spaces then fourth degree IP’s, especially for simpler shapes that
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mightnotrequire a sixth degree polynomial. Since this is exactly
the problem RR sets out to solve, the observation made above
is totally expected. 2) It might seem tempting to restrict object
recognition to the use of fourth degree IP’s; however, as will be
made clear in the next example there are much more substantial
gains to be made with the use of higher degrees in some cases.
We now use even a stronger model of perturbation, by keeping
the 10% colored noise and rotation and doubling the amount of
missing data to 20%. Robustness to missing data crucially de-
pends on a good representation. Fig. 12(c) confirms this state-
ment; fourth degree IP’s yield a top recognition rate of approx-
iamtely 88%, sixth degree IP’s are able to improve this rate to
approximately 94%. Having established that using high degree
IP’s is necessary in certain problems, itis also very important to
once more realize the crucial role played by RR in the success
ofhigh degree IP’s; using the optimal value of k provided a gain
of over 35% compared to no RR, with sixth degree IP’s in this
example.

VIII.

Conclusions

In the continuing quest for achieving maximum stability in
the representation of curve data by algebraic curves (i.e., the
zero sets of polynomials in x and y) and in the stability of the
polynomial coefficients, this paper makes two important contri-
butions. The firstis an understanding of the role of data normal-
ization and polynomial gradient-constraint in improving repre-
sentation and coefficient stability. This also sheds light on why
the 3L fitting algorithm [10] is so much more stable than pre-
vious fitting algorithms. The second contribution is the use of
rotation-invariant RR, in the fitting, for improving the stability
of both the representation and the coefficients even further. RR
drives those portions of the polynomial zero-set, thatare notap-
propriate to the curve data, far from the data. It also shrinks to
near-zero those polynomial coefficients not important for repre-
senting the curve data. The remaining coefficients are stable and
resultin increased stability when used for pose-invariant object
recognition or object pose estimation.
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