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A b strac t— A n  a lg e b ra ic  cu rv e  is defined  a s  th e  zero  se t o f 
a  po ly n o m ia l in  tw o v a riab le s . A lg eb ra ic  cu rv es a re  p ra c tic a l 
fo r m o deling  sh ap es m u ch  m o re  co m p lica ted  th a n  conics o r 
su p e rq u ad ric s . T h e  m ain  d ra w b a c k  in  re p re se n tin g  sh ap es by  a l­
g eb ra ic  c u rv es h a s  b een  th e  lack  o f  re p ea ta b ility  in  fittin g  a lg eb ra ic  
cu rv es to  d a ta . U sually , a rg u m e n ts  ag a in s t u sin g  a lg e b ra ic  cu rv es 
involve re fe ren ces to  m a th e m a tic ia n s  W ilk in so n  (see [1, ch. 7] a n d  
R u n g e  (see [3, ch. 4]). T h e  f irs t goal o f th is  a r tic le  is to  u n d e rs ta n d  
th e  s ta b ility  issue o f  a lg e b ra ic  c u rv e  fitting . T h en  a  fittin g  m eth o d  
b ased  on  rid g e  reg re ss io n  a n d  re s tr ic tin g  th e  re p re se n ta tio n  to 
w ell b eh av ed  su b se ts  o f  p o lynom ia ls is p ro p o sed , a n d  its  p ro p e rtie s  
a re  investiga ted . T h e  fittin g  a lg o rith m  is o f  suffic ien t s ta b ility  fo r 
very  fa st p o sitio n -in v a ria n t sh a p e  reco g n itio n , po sitio n  e stim a tio n , 
a n d  sh a p e  tra c k in g , b a se d  on  in v a ria n ts  a n d  new  rep re se n ta tio n s . 
A m ong  a p p ro p ria te  a p p lic a tio n s  a re  sh ap e -b ased  in dex ing  in to  
im age  d a tab ases .

In d e x  Terms— A lg eb ra ic  cu rv es, im p lic it po ly n o m ia l cu rv es, ro ­
b u s t cu rv e  fittin g , sh ap e  re p re se n ta tio n , sh ap e  reco gn ition ..

I. INTRODUCTION

A L G E B R A IC  tw o-d im ensional (2-D ) curves (and  th ree-d i­
m ensiona l (3-D ) surfaces) are  ex trem ely  pow erfu l fo r 

shape recogn ition  an d  sing le-com puta tion  p o se  estim ation  
b ecause  o f  the ir fast fitting , invarian ts, and  in terp re tab le  coeffi­
cients [10], [11], [13], [17 ]-[1 9 ], [21]. S ign ifican t advantages 
over F o u rie r descrip tors are  th e ir app licab ility  to  nonstar 
shapes, to  open  curves, to  curves tha t con ta in  gaps, and  to 
unordered  cu rve data, S ection  II. U n d er c ircum stances w here 
these  issues are  n o t relevan t, po lynom ials b ased  on  F ou rier 
analysis m ay  b e  very  effective, and  an  in teresting  fo rm ula tion  
re la ting  F o u rie r series and  po lynom ials is g iven in  [14]. A  
w eakness fo r use  o f  a lgeb ra ic  curves and  surfaces has been  
lack  o f  stab ility  o f  param eters. T his p ap e r studies th e  p ro b lem  
and  p rov ides a solution.

T he classica l least-squares fitting  o f  a lgebra ic  curves, Section  
III, especia lly  the m ore  in teresting  cases o f h ig h er degree  p o ly ­
nom ials, suffers th ree m a jo r prob lem s: local inconsistency  w ith  
the con tinu ity  o f  th e  dataset; local oversensitiv ity  o f  th e  p o ly ­
n om ia l zero  se t a round  the data  to  sm all da ta  pertu rbations; in ­
stab ility  o f the coeffic ien ts due  to  excessive degrees o f freedom  
in the po lynom ial. S ubstitu ting  an  approx im ate  E uclidean  dis-
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tance  fo r a lgebra ic  d is tance  [21] is m uch  m ore  stab le  than  the 
classica l least-squares algo rithm , in  m any  cases gives usefu l fits, 
b u t in  o th er cases th e  im provem en t is no t suffic ien t to  so lve these 
m ajo r p rob lem s. Sim ilarly, th e  use  o f  the  exac t E uclidean  d is­
tance  prov ides b e tte r resu lts than  the a lgebra ic  d is tance  [16]; 
nevertheless, the fitting  is som etim es n o t stab le  enough  and  the 
m in im ization  is so lved  iteratively, a  tim e consum ing  p rocess. 
A no ther a ttem p t to  im prove the stab ility  o f th e  fit w as the d e ­
velopm en t o f fitting  a lgorithm s w hich ensu re  tha t the ob ta ined  
zero  set is b o unded  [8], [13], [22], b u t the m idd le  one is for 
second  degree  curves only, and  increased  stab ility  fo r a ll and  fit­
ting  speed  fo r the fo rm er tw o a re  still desired . N o n lin ea r param - 
e terizations o f  po lynom ials tha t a re  guaran teed  to  sa tisfy  certa in  
topo log ica l p ropertie s— boundedness and  hav ing  a  zero  set that 
is con ta ined  w ith in  ano ther shape such  as an  ellip se— th a t have 
recen tly  appeared  [9] are  in teresting , and  th e ir re la tive m erits 
n eed  to  be  stud ied  further. T he p ro b lem  o f  an excessive num ber 
o f  param eters in  im p lic it  p o ly n o m ia l  (IP) rep resen ta tions w as 
first stud ied  in  [15] in  the fram ew ork  o f  B ayesian  estim ation. 
T he linear 3L fitting  a lgo rithm  [10] exhib its sign ifican tly  im ­
p roved  cu rve  rep resen ta tion  accuracy  and  stab ility  b u t there  is 
sign ifican t va lue  to  fu rther im provem ent in  coeffic ien t stab ility  
in  o rder tha t a lgeb ra ic  curves b e  genera lly  app licab le  fo r ob- 
jec t-reco g n itio n  purposes.

F o llow ing  a short sum m ary  on  a lgebra ic  curves in S ection  II 
and  th e  classica l least-squares fitting  in  S ection  III, w e inves­
tigate  th e  stab ility  p rob lem s o f  one-d im ensional (1-D ) p o ly n o ­
m ials in  S ection  IV. In  Section  V, the so lu tion  o f  the first and  
second  prob lem s by  th e  3L m eth o d  [10] is ana lyzed  fro m  the 
p o in t o f v iew  o f S ection  IV. In  S ection  V I, w e p resen t a new  
linear a lgo rithm  w hich  p roduces accura te  and  stab le  cu rve-data  
rep resen ta tions and  stab le  coeffic ien ts. R esu lts o f  ob jec t reco g ­
n ition  experim en ts b ased  on  th is a lgo rithm  and  a new  set o f in ­
variants [18] are  p resen ted  in  Section  V II.

II. REPRESENTATIONS OF ALGEBRAIC CURVES

Form ally , an  a lgeb ra ic  cu rve  is specified  b y  a  2 -D  IP  o f  degree 
n  g iven b y  the fo llow ing  equation:

f n ( x ,  y )  =  ^ 2  a j k x J y k =  a 00 +  a 10x  +  a 01y
0 < j  - \ - k < n ; j  7k > 0

+  . . .  +  a n QXn  +  a n _ n x n 1y  +  . . .  +  aQn y n =  0.

T he h o m o g e n e o u s  b in a ry  p o ly n o m ia l  o f  degree  r  in x  and  y  
is a  form , e.g ., a 2o%2 +  a n x y  +  a 02y 2 is th e  second  degree 
form . T he hom ogeneous p o lynom ia l o f  degree  n  is th e  so -called  
lead ing  form . A n a lgeb ra ic  cu rve  of degree 2 is a conic, degree 
3 a  cubic, degree  4  a  quartic , and  so on. P o lynom ial ( x .  y )  is

S1057-7149/00$10.00 © 2000 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276285711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tt@lems.brown.edu
mailto:cooper@lems.brown.edu
mailto:jean-philippe.tarel@inrets.fr


406 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 3, MARCH 2000

Fig. 1. A circle is the zero set of a second degree polynomial.

rep resen ted  b y  the coeffic ien t vec to r ( a j k )o< j,k ;0< j+ k< n  w hich 
l f -  ' 1 )(n  +  2) ’ ’has d im ension  p  =  \ { n

w here1

and

f n ( x , y ) =  Y f A

Y  =  [l x . . . x n  x ^ y . - . y 11]1.

(1)

Fig. 2. (a)-(d) Classical least-squares algorithm gives unstable fourth degree 
IP fits under even the smallest perturbations to the data. (e) A much more 
significant perturbation, (f) ten superimposed fourth degree polynomial fits 
with the gradient-one algorithm to perturbed data sets like the one in (e).

III. Cl a s s ic a l  L e a s t -S q u a r es  F it t in g

T he classica l and  sim p lest w ay to  fit an  a lgeb ra ic  cu rve  to 
data  is to m in im ize  the a lgeb ra ic  d is tance  over the set o f g iven 
da ta  po in ts ( x j , y j ) ,  1 <  j  <  m ,  th a t is

In  general, th e  vecto r no ta tion  is convenien t fo r IP  fitting  since 
fitting  can  b e  se t w ith in  a  linear fram ew ork  as d e ta iled  in  Section
III. A  shape is rep resen ted  by  the ze ro  s e t  o f  f n  ( x ) , i.e ., the  se t o f  
po in ts { x ,  y \  sa tisfy ing  the IP  equation  f n ( x ,  y )  =  0 w hich  is 
the in tersec tion  o f th e  surface defined  by  an  exp lic it po lynom ial
2  =  f n ( x , y )  w ith  the p lane  z  =  0 [see F ig . 1],

T he  IP  fram ew ork  fo r shape rep resen ta tion  and  recogn ition  
is genera lly  com pared  w ith  F o u r ie r  sh a p e  d e sc r ip to r s . H ere  w e 
b rie fly  sum m arize som e o f  th e  d ifferences be tw een  these  ap ­
proaches. T he  tw o  m ain  types o f  F ou rie r descrip tors are  1) tha t 
w h ich  rep resen ts a  shape as a  rad ius as a  function  o f  ang le  and  2) 
th a t w h ich  uses a  com plex  valued  function  to  rep resen t the co o r­
dinates o f  the po in ts a long th e  cu rve as a  function  o f  arc-length . 
T here  are  certa in  d isadvantages to  bo th  approaches. 1) is lim ­
ited  to  th e  se t o f  s ta r - s h a p e s  w h ich  can  b e  rep resen ted  b y  a  
sing le-valued  rad ius as a function  of angle; how ever, in teresting  
shapes genera lly  do  n o t fa ll in to  this category. 2) requ ires an 
in p u t da ta  se t to  be  an  ordered  se t o f  po in ts. 1) canno t b e  d irectly  
u sed  fo r open  shapes, a  p rep rocessing  step  to  artific ia lly  c lose 
the cu rve is requ ired . 2) can  b e  u sed  fo r open  curves, bu t serious 
d ifficu lties w ith  a rc-leng th  no rm aliza tion  arise. A rc-leng th  p a ­
ram eteriza tion  is the  m ain  d raw back  of 2) because  arc-length  
can  increase  sign ifican tly  if no ise  is added  on  to  the curve. B oth 
have  p rob lem s w ith  vary ing  data  p o in t density  and  gaps in  the 
data. IP ’s do  n o t suffer from  any  o f  the p rob lem s listed  above: 
they  are  d irec tly  app licab le  to  n o n sta r shapes, open  curves, un ­
o rdered  da ta  sets and  are  ro b u st to  no isy  da ta  sets and  inhom ogo- 
neously  spaced  da ta  po in ts. T he m ain  advan tage  o f  F o u rie r d e ­
scrip tors over IP ’s has b een  the ir b e tte r stab ility  because  they 
a re  an e x p lic it  rep resen ta tion . T his pap er focuses on  th e  stab ility  
issue  w ith  IP ’s.

1Superscript denotes vector and matrix transpose.

1< j <m

M M t = S

(2)

b y  using  vecto r rep resen ta tion  o f  as in  (1). D efine  the m atrix  
o f  m onom ials as the  p  x  m  m atrix  M  =  \ \ \  Y> . . .  Y m ] (o r m ore  
generally , the d e s ig n  m a tr ix ) ,  and  S  =  M M 1 =  S i < j< m  Y j Y j  
is the sc a tte r  m a tr ix  o f  the m onom ials. To avoid  the  triv ia l zero  
so lu tion  in  th e  m in im ization  o f  (2), a  constra in t such as || A \ \ 2 =  
1 is im posed  w hich  m odifies th e  p ro b lem  to

m m  | A * 1 X Y Y f 1A  -  1) (3)

w ith  the in troduction  o f  L ag range  m u ltip lie r X. T he  so lu tion  to
(3) is g iven b y  th e  u n it e igenvecto r A  assoc ia ted  w ith  Amin, the 
sm allest e igenvalue o f  S A  =  A A  [21], C onsequently , the  c las­
sical least-squares fitting  a lg o rith m  consists o f  com puting  the 
m onom ia l sca tter m a trix  S  fro m  a  se t o f  da ta  po in ts, and  then  
finding th e  u n it e igenvecto r o f  S  associa ted  w ith  its sm allest 
e igenvalue. A lthough  this a lgo rithm  is affine invarian t [4], [21], 
m o s t o f  the  tim e it  is n o t o f  any  p rac tica l use  due to  th e  fo llow ing 
p rob lem s. T he fitted  zero  se t does n o t re sp ec t the con tinu ity  o f 
the o rig inal da ta  set as illu stra ted  in  F ig . 2 (a )-(d )  and  F ig . 6(a) 
and  (d). This p ro b lem  underm ines the use  of c lassica l fitting 
fo r ob tain ing  good  rep resen ta tions of the data. M oreover, re ­
sults a re  h igh ly  sensitive to  sm all errors in  the data. E ven  seem ­
ing ly  n eg lig ib le  pertu rbations in  the data  can  le ad  to  zero  sets 
th a t have  n o  resem b lance  to  th e  zero  sets p rio r to  the pertu rb a ­
tions in  th e  data, F ig . 2 (a )-(d ). E ven  w ith  low  o rder degrees, 
depending  on  th e  structu re  o f  th e  g iven da ta  set, S  m ay  n o t 
p rov ide  a stab le  un ique  e igenvector u nder sm all pertu rbations. 
F o r exam ple, several e igenvalues can  have  sim ilar values to  the
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TABLE I
Roots of the Perturbed Wilkinson Polynomial

1.00000 -4.00000 -6.99970 -20.84691 -13.99236 ±  2.518831/
2.00000 -5.00000 -8.00727 -10.09527 ±  0.643501?: -16.73074 ±  2.812621?:
3.00000 —6.00001 -8.91725 -11.79363 ±  1.652331?: -19.50244 ±  1.940331/

TABLE II
Estimates for Root Perturbations

-9.7998e-25
9.7620e-18
-1.9477e-13

2.6102e-10
-7.2448e-08
6.9438e-06

-0.00030308
0.0071163
-0.10006

0.90528
-5.5366
23.6634

-72.188
158.9022

-252.6122

286.9980
-227.0224
118.6832

-36.8373
5.1379

sm allest one, an d  thus the so lu tion  w ill span a  subspace in  the 
coeffic ien t space w hen  sm all pertu rbations are  added  to the data  
set. C onsequently , c lassica l fitting  is a lso  p rac tica lly  useless fo r 
recogn ition  purposes b ased  on  th e  coeffic ien ts o f  the fitted  p o ly ­
nom ia ls .

IV. PATHOLOGICAL POLYNOMIALS

A lthough  w e are  in terested  in  2-D  po lynom ials, i.e ., functions 
o f  x  a n d y .  it is in structive to  firs t study stab ility  in th e  1 -D  case. It 
is w ell know n th a t som e 1-D po lynom ials, in p articu la r po ly n o ­
m ials o f  h igh  degree, a re  ill-cond itioned . C onsider th e  pa th o lo g ­
ical exam ple  due to  W ilk inson  [1]: (x  +  l ) { x  +  2 ) . . .  { x  +  2 0) =  
x 20 +  210a:19 +  . . .  +  20!. T his p o lynom ia l has very  large co ­
efficients and  its roo ts are  - 1 ,  - 2 ,  - 3 , . . . ,  - 2 0 .  A n accura te  
ca lcu la tion  o f  the pertu rb ed  roo ts as g iven in  [ 1 ] to  five decim als 
a fter a  tiny  change o f  2 23 is app lied  to  th e  coeffic ien t o f./;19, a re  
show n in  T able I. T hough  th is exam ple  dem onstra tes how  ill-con ­
d itioned  som e po lynom ials are, i t  does no t m ean  that a ll p o lyno ­
m ials are  so, and  as a  consequence  tha t all a lgo rithm s using  h igh  
degree po lynom ials have  to b e  re jec ted  as a p r io r i  unstab le . In 
fact, w e w ill dem onstra te  th a t it  is p o ss ib le  to  w ork  in  a  subspace 
o f  nonpa tho log ica l po lynom ials. F irst, le t us try  to  understand  the 
patho logy  o f  th is po lynom ial. A  p lo t o f  this po lynom ial w ou ld  
show  vary ing  osc illa tion  am p litude  be tw een  its roo ts. T his type  o f  
ill-cond itioned  behav io r o f  po lynom ials is w ell-know n in the  co n ­
tex t o f  in terpo la tion  theory. Indeed , the W ilk inson  p o lynom ia l is 
an exam ple  o fL ag ran g e  in terpo la tion  a t 20  po in ts, and  it  is know n 
tha t L ag range  in terpo la tion  suffers from  oscilla tion  prob lem s b e ­
tw een  da ta  po in ts. This is the so -ca lled  R unge p ro b lem  [3]. O ne 
know n so lu tion  is  to  change  the w ay  the in te rpo la tion  is  carried  
out. H erm ite  in terpo lation , w here  the firs t derivative o f  the p o ly ­
nom ial is  con tro lled  in  add ition  to  the value o f  the po lynom ial at 
each  g iven po in t, can  b e  proven  to  converge p roperly  fo r a ll co n ­
tinuous functions w hen  the n u m b er o f  sam pling po in ts an d  thus 
the degree o f  the  po lynom ia l increases.

W e are  referring  to  in te rpo la tion  theory  and  H erm ite  p o ly ­
nom ials because  they  prov ide  us w ith  very  usefu l in s ig h t in  
try ing  to  im prove the classica l least-squares fitting  algorithm . 
In  essence, the p rob lem  w ith  po lynom ials is  tha t the functional 
re la tionsh ip  betw een  its  coeffic ien ts an d  its  roo ts is  h igh ly  n o n ­
linear. L e t p n ( x )  b e  a  1-D po lynom ial defined  as: p n ( x )  =  
S o < j< n  =  ao  +  a i x  +  a 2X 2 +  . . .  +  a n x n . R oots x k 
o f  this p o lynom ia l a re  defined  by  p n ( x k) =  0. T his las t equa­
tion  can  b e  seen as an  im p lic it equation  fo r ro o t x k w here  this

ro o t is a  function  o f  coeffic ien ts « , .  To d eterm ine  th e  sensi­
tiv ity  o f  th is ro o t to  sm all changes o f  the coeffic ien ts, w e d if­
feren tia te  P n ( x k )  =  0 w ith  re sp ec t to  a j .
(d p n / d x ) ( x k ) ( d x k / d a j )  =  0 w h ich  is equ ivalen t to

W e ob ta in  x 3k

d x k

da,j dPn
d x

(4)

E quation  (4 ) has im p o rtan t consequences. It is desired  that 
sm all o r la rge  changes in  the coeffic ien ts p roduce  sm all o r large 
changes, respectively , in  the roo ts, and  v ice  versa. T hus w e 
shou ld  req u ire  th a t (d x k / d a j ) =  1. D u e  to  the num era to r x jk , 
w e see th a t x  /, shou ld  b e  c lose  to  values 1 .0  o r - 1 .0 ;  o therw ise, 
the effect o f  a  sm all coeffic ien t pertu rbation  has a la rger effect 
on roo ts w ith  large  abso lu te  values. T his exp lains w hy  roots 
w ith  large  abso lu te  values are  less stab le  than  o thers fo r the 
W ilk inson  po lynom ial (T able I). D u e  to the denom ina to r o f  (4), 
w e deduce  th a t the sensitiv ity  to  a  sm all coeffic ien t pertu rbation  
is a lso  d irec tly  dependen t on  the value  o f  the first derivative 
o f  the p o lynom ia l a t th e  ro o t location . T he W ilk in son ’s p o ly ­
nom ial has derivatives 19! 0!, -1 8 !  1!, 17! 2!, . . . ,  - 0 !  19! 
a t - 1 ,  - 2 ,  - 3 ,  . . . ,  - 2 0  respectively . T hese huge  variations in 
the first derivative d p n / d x  con tribu tes to  the in stab ility  o f  the 
roo ts w ith  resp ec t to  coeffic ien t pertu rbations. U sing  (4), w e 
p red ict, w ith  a  firs t o rder T aylor expansion , the pertu rbations 
o f  th e  roo ts o f  the W ilk inson  po lynom ial w hen  2 ~ 23 is added  
to  a io  =  210: T hese  values a re  in  good  accordance  w ith  the 
differences be tw een  the o rig inal roo ts, - 2 0 ,  . . . ,  - 1  and  the 
rea l pertu rbed  roo ts (T able I). Tables I and  T able II p rov ide  an 
experim en ta l va lida tion  o f  (4).

V. G r a d ie n t -O n e  F it t in g

T he in s ig h t developed  in  S ection  IV  in to  how  po lynom ials 
can  be  ill-conditioned , enables us to  de term ine  a  subset o f  w ell- 
cond itioned  po lynom ials. W hat is  a  w ell-cond itioned  p o lyno ­
m ial?  F o r th e  p ro b lem  a t hand , it  is a  p o lynom ia l fo r w h ich  the 
re la tionsh ip  betw een  its  roots and  its  coeffic ien ts is  such that 
sm all changes in  one induces sm all changes in  th e  o th er and  
la rger changes in d u ce  la rger changes. In  S ection  IV, it  w as a r­
gued  th a t a  1-D po lynom ial should  have ro o t values and  first 
derivative values a t th e  ro o t locations, a ll c lose  to  1.0 or -1 .0 . 
W e can  ex tend  th is resu lt to  2 -D  po lynom ia ls: a  set o f  p o lyno ­
m ials satisfy ing  these  constrain ts exactly  in  2-D  are the pow ers
of the unit circle: (x2 + y2)n -  1). Members of the set
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o f  po lynom ials “c lose” to these  po lynom ials in  the coeffic ien t 
space are  w ell-cond itioned . T he topo logy  o f  this se t rem ains to 
b e  stud ied  in  ou r fu ture w ork.

T he first requ irem en t fo r stab le  fitting  is to  apply  a data  set 
standard iza tion  to  fo rce  the data  po in ts to  b e  close to  th e  un it 
c irc le , and  thus ind irec tly  to  fo rce the zero  set o f  th e  p o ly n o ­
m ia l to  b e  as c lose  as p o ss ib le  to  the un it c ircle. T he  data  set 
standard iza tion  consists o f  cen te ring  the d ata-se t cen te r o f  m ass 
a t the o rig in  o f  the coo rd inate  system  and  then  scaling  it by  d i­
v id ing  th e  coord inates o f  each  po in t by  the average o f  the square 
roo ts o f  the  eigenvalues o f  the 2 x  2 m atrix  o f  second  o rder m o ­
m ents (no rm alized  by  th e  nu m b er o f  po in ts in  the  data  set). T his 
is a  E uclidean  invarian t m easu re  o f  the ob jec t size and  can  be  
though t o f  as the average  rad ius o f  the data  po in ts from  the ob ­
je c t  center. T hus, by  data  se t standard iza tion  w e a re  setting  this 
m easu re  o f  o b jec t size  to one.

T he second  requ irem en t is to  con tro l the value  o f  the first 
derivatives a long the zero  set, i.e, the g rad ien t o f  the 2-D  p o ly ­
nom ial

d U
d x  

O fn  

- d y  _

(5)

*v/„)2))

(6)

w here  Tj  and  Nj  are  the local tan g en t and  n o rm al a t (X j , y j ) 
and  \ i  is the re lative w eigh t on  th e  g rad ien t w ith  re sp ec t to  the 
f 2 term . B y  using  the vecto r n o ta tion  (1) in  (5), w e deduce  the 
vecto r fo rm  o f  the g rad ien t

8 Y

d x
d Y

pX 1

T he grad ien t vec to r a long th e  zero  set o f  the po lynom ial is a l­
w ays perpend icu la r to  the cu rve defined  b y  the zero  set. T hus, 
i f  w e can  com pu te  th e  loca l tangen t to  the cu rve  at each  p o in t o f  
the da ta  set, w e p ropose  to  constra in  th e  g rad ien t to  b e  p e rp en ­
d icu lar to  th e  lo ca l tangen t and  w ith  u n it no rm . T his w ill fo rce 
the zero  set o f  the  po lynom ia l to  respec t th e  loca l con tinu ity  o f 
the data set. T he  ca lcu la tion  o f  th e  tangen t to  the data  set at a 
p o in t does n o t p o se  a serious p rob lem . I f  the data set is o rdered  
as a curve, w e ca lcu la te  loca l tangents to  th e  data using  th e  lines 
go ing  th rough  consecu tive  da ta  po in ts. I f  the da ta  is n o t o rdered, 
a  fas t d is tance  tran sfo rm  [17], [23] can  be  u sed  to  genera te  level 
sets as in  3L [10] o r to  ind irec tly  ca lcu la te  tangen t d irections. 
W hen  w ork ing  w ith  rea l im ages, level sets m ay  a lso  b e  gen er­
ated  as described  in  [12]. Or, i f  the in p u t to  the fitting  a lgo rithm  
com es from  an  edge detector, edge  o rien ta tions can b e  u sed  as 
the tangen t d irections. T he  no rm al d irec tion  is the d irec tion  p e r­
p end icu la r to  th e  tangen t d irec tion  and  po in ting  tow ards the ou t­
side o f  the ob ject. In  th e  case  o f  open  curves w here  no  n o tion  o f 
in side/ou tside  is available, th e  sign o f  the no rm al d irec tion  can 
b e  chosen  arbitrarily . W e do  n o t app ly  any  sm ooth ing  in  com ­
pu ting  th e  tangents even in  the  p resence  o f  noise; indeed , it is the 
fitting  p rocess w h ich  takes care  o f  sm ooth ing  the fluc tuations in 
the tangen t d irec tion  a long  the cu rve given tha t there  are  enough  
po in ts on  the datase t (at lea s t a few  tim es the d im ensionality  o f 
the IP  coeffic ien t vector). T he p ro p o sed  fitting  techn ique is set 
as a least-squares p ro b lem  w ith  the fo llow ing  add itional co n ­
straints: L oca l tangen tia l an d  no rm al d irec tional derivatives o f 
the IP  m u s t b e  as c lose  as p o ss ib le  to  0 and  1, respectively . T hese  
constrain ts add  tw o term s to  (2) to  y ield

dimension: 2 Xp

w here  p  =  \ { n  +  l ) ( n  +  2) is the n u m b er o f  coeffic ien ts o f 
a  b inary  p o lynom ia l o f  degree  n .  A nd  then  a fter substitu tion  in
(6), w e expand  e ara<i  as

e arad = A * Y ,  Y i Y j  A + ^  Y .  V V ,.V ,,V 'V V ; A

S SN

ST Gn

In  this equation , S  is th e  scatter m atrix  o f  the  m onom ials as 
in troduced  before , ,S\- and  S T  a re  th e  scatter m atrices o f  the 
d irec tional derivatives o f  m onom ials in  d irec tions perpend icu lar 
and  tangen t to  the da ta  set, respectively , and  G \  is the sum  o f 
the g rad ien ts o f  th e  m onom ials in  the no rm al d irection . T his 
m in im iza tion  is a lin ea r least-squares p ro b lem  and  the solu tion  
is then  fo rm ally  derived  as

+  S t ))  G ^ t. (7)

Let<S =  S + / i ( S N  +  S T ), a p  x p m a tr ix .  A m d G N  a re  vectors 
w ith  p  com ponents.

W e nam ed  th is a lgo rithm  g rad ien t-one  fitting . L ike  H erm ite  
in terpo la tion  [3], g r a d ie n t-o n e  f i t t in g  is  E u c lid e a n  in va r ia n t, see
[4] and  S ection  V I-C , respectively , b u t n o t  a ffin e  in va r ia n t. G ra­
d ien t-one  fitting  is a lso  sc a le  in v a r ia n t  since the data standard ­
iza tion  step  sets som e E uclidean  invariant m easu re  o f  the size 
o f  the shape to  one befo re  fitting . W e use  the scattering  radius 
o f  the data  po in ts as the shape size m easure; this m easure  is 
E uclidean  invariant. D ata  set standard iza tion  in troduces a n u ­
m erica l advantage b y  im proving  the cond ition  nu m b er o f  the 
sca tter m atrix  S  =  S  +  +  S T ) o f  th e  p ro b lem  (7). T he 
cond ition  n u m b er gives an idea o f  the num erica l stab ility  o f 
lin ea r a lgo rithm s such as th e  com puta tion  o f  the inverse o f  a 
m atrix  [5]. D a ta  s tandard iza tion  im proves the stab ility  o f  the 
fits; how ever, if  th e  s tandard iza tion  step  has to  b e  om itted , in 
o rder to  have  scale  invariance it is necessary  to  m od ify  (7) to

'n  +  S t ))  G n , w here  s  is the shape size
m easure.

T he  necessity  to  in troduce  in fo rm ation  abou t th e  first deriva­
tives w as firs t p o in ted  ou t in  [10] and  han d led  in  a  linear w ay 
w ith  the so -ca lled  3-levels (3L ) fitting  algorithm . T he idea o f 
the 3L fitting  is to  constra in  the p o lynom ia l to fit n o t on ly  the 
data  set bu t a lso  tw o level sets o f  the d is tance  tran sfo rm  o f  this 
da ta  set, thus p reven ting  the p resence  o f  singularities o f  f ( x ,  y )  
in  the v ic in ity  o f  the  data to  b e  fitted. T herefore, indirectly , 3L 
fitting  pu ts constrain ts on th e  g rad ien t o f  the fitted  IP. In  fact, it
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Fig. 3. Comparison of polynomial zero sets and polynomial graphs obtained 
by classical fitting (a) and (b) to gradient-one fitting (c) and (d).

can  b e  p roved  th a t the g rad ien t-one  a lgo rithm  is sim ilar to  the 
3L fitting  a lg o rith m  expanded  to  th e  first o rder w ith  resp ec t to 
the in ter-level d is tance  param eter.

In  com parison  to  the classica l least-squares fits [see F ig . 6(a) 
and  (d )], resu lts  ob ta ined  on  the sam e da ta  sets are  m uch  better 
as show n in F ig . 6 (b) and  (e). E specia lly , ob ta ined  fits a re  locally  
consisten t w ith  th e  con tinu ity  o f  th e  da ta  set. To gain  fu rth er in ­
sigh t in to  how  loca l consistency  is ach ieved  by  con tro lling  the 
g rad ien t across the da ta  set, w e exam ine F ig . 3 . F ig . 3 (d ) show s 
tha t the g rad ien t d irec tion  a long  the zero  se t ob ta ined  b y  g ra ­
d ien t-one  fitting  consisten tly  po in ts in to  the shape  w hereas in  
F ig . 3(b) it can  b e  seen th a t this d irec tion  sw itches betw een  in ­
w ards and  ou tw ards. T he zero  set from  so lu tion  o f  (3) is b roken  
in to  p ieces as can  b e  seen  in  F ig . 3(a) w hereas in  F ig . 3(c) the 
zero  se t is a  sm ooth  rep resen ta tion  o f  the data  curve. A lso  no tice  
tha t in  the v ic in ity  o f  the  data, the surface in  F ig . 3(b) is fla tter 
than  is the  surface in  F ig . 3(d) w h ich  m eans tha t w ith  sm all p e r­
tu rbations o f  the data, c lassica l fitting  is p rone  to  m uch  larger 
changes in  the zero  set. In  add ition  to  be tte r stab ility  o f  th e  zero 
set and  b e tte r shape rep resen ta tion  pow er, g rad ien t-one  fitting 
a lso  p rovides b e tte r in terpo la tion  p roperties w h ich  allow  IP ’s to 
b e  robust to  a  certa in  am oun t o f  m issing  da ta  along the curve. 
T he stab ility  o f  the zero  se t ach ieved  b y  the g rad ien t-one  fit­
ting  a lgo rithm  is an  im portan t im provem ent over c lassica l fit­
ting  techniques. I t can  b e  seen in  F ig . 2 (f) tha t the zero  sets o f  
the resu lting  fits a re  stab le  under local da ta  pertu rbations. E ven  
though  the pertu rbations in  F ig . 2 (e) are  m uch  la rger than  those 
in  F ig . 2 (a )-(d ), the changes in  the fitted  IP ’s are  m u ch  sm aller 
in  F ig . 2(f).

P aram eter |a has im portan t effects on the p roperties o f  the fits. 
I t con tro ls the re la tive  w eigh t o f  the  g rad ien t constra in t w ith  re ­
spect to  the a lgeb ra ic  d is tance  constrain t. T he effec t o f  the g ra ­
d ien t constra in t on th e  zero  se t o f  the fit is a  sm ooth ing  o f  the 
h igh  cu rvatu re  areas. F ig . 4  is an  exam ple  o f  sm ooth ing  o f  the 
zero  set w hen  |j, is increasing . In  a ll o u r experim en ts, )J, is fixed 
to  j  w h ich  gives satisfy ing  resu lts  as show n in F ig . 6(b) and  (e). 
T his value is a  good  tradeo ff be tw een  the accuracy  o f  the rep-

Fig. 4. (a) Sixth degree IP fits with the gradient-one algorithm for three 
different values |j.. (b) The average percentage standard deviation of the 
coefficients with respect to their average norm under colored noise (see 
Section VII-A) for increasing values of |j..

resen ta tion  and  the stab ility  o f  th e  fitted  param eters. H o w ever, 
b e tte r  s ta b ili ty  o f  th e  e s t im a te d  p o ly n o m ia l  c o e ffic ie n ts  c a n  be  
a c h ie v e d  w ith  e q u a l w e ig h ts  o n  th e  g ra d ie n t  a n d  d a ta  f i t  c o n ­
s tra in ts  a s  sh o w n  in  F ig . 4  b e c a u se  th e  re su ltin g  f i t s  w i ll  be  
“c lo s e r ” to th e  se t  o f  w e ll  b e h a v e d  p o ly n o m ia ls , th e  p o w e r s  o f  
th e  u n it  c irc le . In  a  m ore  genera l fram ew ork, |a can  b e  m ad e  a  
u ser-specified  function  along the  leng th  o f  the cu rve p rovid ing  
m ore  con tro l fo r in teractive cu rve rep resen ta tion  purposes. It 
shou ld  a lso  b e  p o in ted  o u t th a t in fo rm ation  abou t the h igher 
o rder derivatives such as cu rvatu re  can  be  inco rpo ra ted  in to  g ra ­
d ien t-one  fitting  to  p rov ide  add itiona l constrain ts.

V I. R id g e  Re g r e s s io n  F it t in g

A . U n s ta b le  S u b sp a c e s

A lthough , loca l stab ility  o f  the zero  set a round  th e  da ta  is ex ­
ce llen t w ith  g rad ien t-one  fitting , there  is still s ign ifican t ro o m  
fo r im provem en t in the stab ility  o f  the coeffic ien ts o f  the  p o ly ­
n om ia l and  th e  g lobal b ehav iou r o f  th e  po lynom ial. C oeffic ien t 
vectors in  certa in  subspaces o f  th e  coeffic ien t space m ay  p ro ­
duce  very  sim ilar zero  sets a round  the da ta  set. A s an exam ple, 
assum e th a t the da ta  is a  set o f  a ligned  po in ts a long x  — y  =  0, 
and  th a t w e are  try ing  to  fit a  fu ll conic. I f  w e do  the fit m any  
tim es sub jec t to  sm all pertu rbations o f  the data, w e can  observe 
tha t th e  resu lting  coeffic ien t vectors span a  3 -D  subspace  co n ­
tain ing  the solu tions x ( x  — y )  an d  y ( x  — y )  as w ell as x  — y .  T his 
is a  consequence  o f  th e  fac t th a t each  o f  these  th ree  solu tions and
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Fig. 5. Graphofanerrorfunctionoftwovariables;here V' isthe stablevariable 
while W  is relatively unstable. The unstable ridge is marked by a heavier line.

very  slow ly w ith  unstab le  W. T hus, th e  so lu tion  o f  L SE  w hich 
seeks th e  h ighes t p o in t on  the graph, m arked  LS in  th e  F ig . 5, 
m oves along th e  unstab le  r id g e  (heavy line  in  F ig . 5) w ith  the 
add ition  o f  sm all am ounts o f  no ise  to  the data. C onsequently , 
the variance  o f  the variab le  W  due  to  no ise  is m u ch  larger than 
th a t o f  V . W h a t w e desire  is th a t scalars m ultip ly ing  such e ig en ­
vectors b e  p u sh ed  to  zero  ra th e r than  up  to  unstab ily -cancelling  
infin ities. T his requ ires m od ify ing  L SE  as w e exp la in  next.

B. R id g e  R e g re s s io n  (R R )

A s sta ted  in  Section  V I-A , w e w ou ld  like variables th a t do n o t 
con tribu te  sign ifican tly  to  the fit to  b e  fo rced  to  a tta in  values as 
c lose  to  zero  as p oss ib le  w hile  o ther variables a re  effectively  u n ­
changed . S ince the so lu tion  has to  m ove a long  the ridge, the sta­
b iliza tion  o f  th e  least-square  is know n  as r id g e  re g ress io n  (R R )
[6], [24], T he m eth o d  o f  R R  m odifies S  so th a t it is c lo ser to 
w hat it w ou ld  b e  fo r da ta  in  w h ich  there  is n o  collinearity , that 
is, d a ta  in w h ich  a ll the exp lana to ry  variables are  uncorre la ted  
w ith  one another. T he  m o d ified  coeffic ien t vector, Arr is o b ­
ta ined  by

(8)

Fig. 6. (a) and (d): Classical Fitting Algorithm. (b) and (e): Gradient-one 
Fitting Algorithm. (c) and (f): RR Fitting Algorithm. Degree 6 and 8 are used 
for the airplane and pliers shapes, respectively. Notice that there are no extra 
components in (c) and (f).

a ll o f  the ir lin ea r com binations fit the  o rig inal da ta  set equally  
w ell. T he g lobal in stab ility  o f  po lynom ials is a lso  ev iden t in  the 
ex tra  p ieces o f  the  zero  se t tha t lie  aw ay from  the data  [see  F ig . 
6 (d) and  (e)]. Indeed , these  p ieces are  ex trem ely  sensitive to 
sm all pertu rbations in  th e  da ta  even though  the zero  set around  
the da ta  is stable.

W e now  exam ine g loba l in stab ility  p rob lem s. S ,  defined  in
(7), is sym m etric  positive  since it  is a  sum  o f  sca tter m atrices, 
and  thus can  b e  w ritten  as S  =  IJ ' A IJ  w here  U  is a ro ta tion  in 
the coeffic ien t space. T he  elem en ts o f  A  and  the colum ns o f  U 
are  the eigenvalues an d  eigenvectors o f  S ,  respectively . I f  there  
is exac t co llinearity  in  the data, S  w ill b e  singu lar and  one  or 
m ore  eigenvalues w ill b e  0. A  m uch  m ore  com m on p ro b lem  is 
n ea r co llinearity  w here  som e eigenvalues are  very  sm all com ­
pared  to  o thers and  S  is nearly  singular w ith  a  very  large co n ­
d ition  num ber. L east-squares estim ation  p roduces th e  coeffi­
c ien t vec to r A  th a t g lobally  m in im izes the e rro r function  in  (6). 
E igenvectors o f  S  associa ted  w ith  th e  very  sm all eigenvalues 
do  n o t con tribu te  to  the p o lynom ia l sign ifican tly  a round  the 
dataset; thus such  vectors m u ltip lied  w ith  large scalars g e t added  
in to  the  so lu tion  in p u rsu it o f  sligh tly  b e tte r so lu tions. T his re ­
sults in  very  large  variances fo r coeffic ien ts in th e  subspaces 
spanned  b y  these  eigenvectors. In  F ig . 5 the g raph  o f  a  goodness 
o f  fit function  in  tw o variables is show n. N o tice  th a t th e  function  
drops o ff  steep ly  w ith  the stab le  variab le  V. b u t changes only

w here  D  is a positive defin ite  and  sym m etric  m atrix  an d  k  is 
the R R  param eter. A lthough  D  cou ld  in  p rinc ip le  b e  chosen  as 
any  positive  defin ite  m atrix , in th is p ap er w e re s tric t ourselves 
to  th e  sim ple  case  w here  D  is a d iagonal m atrix . T he add ition  
o f  a  d iagonal m atrix  D  to  the sca tter m atrix  S  has the  effec t o f 
add ing  a  b ias w hich  p roduces coeffic ien t vectors w ith  sm aller 
no rm s (sm aller 11 Arr 11). In  this sense, R R  is analogous to  w eigh t 
decay  regu la riza tion  u sed  in  tra in ing  neu ra l ne tw orks. E lem en ts 
o f  D  a re  functions o f  th e  sum  o f  squared  values o f  the m o n o ­
m ials (in  o ther w ords, D  is a function  o f  the m ain  d iagona l o f 
S ) .  A  specific  cho ice  fo r the  elem ents o f  D  th a t m eets the ro ta ­
tional invariance requ irem en ts and  w hich  has a  desired  lim iting  
behav io r is p roposed  and  exp la ined  in fu rther de ta il in  Section  
V I-C . N o tice  th a t as k  is increased , S  +  k D  approaches D .  and  
A  approaches the lim it Aumit =  ( / j , / k ) D ~ 1G N . W e exam ine 
the lim iting  b ehav io r o f  G \  in  Section  V I-D .

W h en  there  is collinearity , (8) b iases the so lu tion  c loser to 
G \ .  F o r the  exam ple  g iven in the beg inn ing  o f  th is section , 
G n  =  [0 n  —n  2 x ]  y j  -  x j  - 2 y j f .  T hus, if  the da ta  set 
is cen te red  a t the orig in , th e  so lu tion  o b ta ined  by  R R  is b iased  
tow ard  [0 1 - 1  0 0 0]*, i.e . th e  equation  o f  th e  line  x  — y  =  0 
w e are  search ing  for. I t can  easily  b e  show n [2 4 ] that

A rr  =  U A lPA . (9)

A  is a  d iagona l m atrix  o f  shrinkage factors and  U is as defined  
in  S ection  V I-A . In  o th er w ords, R R  m odifies the  least-squares 
estim ate  by  firs t ro ta ting  it to  ob ta in  uncorre la ted  com ponents, 
sh rink ing  each  com ponen t by  som e am oun t and  finally  resto ring  
the o rig inal coo rd inate  system  b y  ano ther ro tation . T he crucial 
p o in t is the am oun t o f  shrinkage app lied  to  each  com ponent. I f  
D  in  (8) w ere  chosen  to b e  th e  iden tity  m atrix , then  it  is show n 
in  [24] tha t

A,;
(10)
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Fig. 7. Sixth degree IP fits with the gradient-one algorithm and RR for 
increasing values of parameter

w here  k  is the R R  param eter and  A, are  the  eigenvalues o f  <S, i.e., 
the  d iagonal com ponen ts o f  A. T he  shrinkage fac to r Si m u lti­
p lies the / (h e igenvalue o f  <S_ 1  w h ich  is , thus the /th  e ig en ­
vecto r is shrunk  by  a  fac to r o f  Si in the solu tion . S ince th e  e ig en ­
vectors re la ted  to  the very  sm all e igenvalues o f  S  a re  unstab le , 
w e w ould  lik e  to  sh rink  th em  w h ile  leav ing  o th er e igenvectors 
largely  unaffected . W ith  (8), th is is accom plished  as show n by 
(10). C onsider a  sim ple case  sim ilar to  the one dep ic ted  in  F ig . 5 
w here  there  are  tw o variables one  o f  w h ich  is sign ifican tly  less 
stab le  than  the other. T his w ou ld  resu lt in  an ill-cond itioned  m a ­
trix  S  w ith  e igenvalues, e .g ., Ai =  1 and  A2 =  10 4 , and  6’ 1 
having  eigenvalues 1 and  10 4 w hich  are  the rec ip rocals o f  A,i and  
A.2, respectively . I f  w e se lec t k  =  10 - 3  w e ob ta in  the shrinkage 
factors 8 i = 0 .999  an d  82 = 0 .0909 . T hus, the eigenvalues o f  
(S  +  k l ) “ 1 w ill be  1 x  0 .999  =  0 .999  an d  104 x  0 .0909  =  909. 
N o tice  th a t the  stab le  e igenvecto r co rrespond ing  to  the larger 
eigenvalue o f  S  (equ ivalen tly  the sm aller o f  <S_ 1 ) rem ains re l­
a tively  unchanged  w hereas th e  cond ition  n u m b er is im proved  
from  (1 0 4/1 )  =  104 to  (9 0 9 /0 .9 9 9 ) ps 909, an  approx im ate ly  
11-fold im provem ent. W e address th e  question  o f  choosing  the 
value o f  k  in  S ection  V I-E .

F ig . 6 (c) and  (f) show s fits o f  degrees 6 and  8 o b ta ined  by 
R R . C om paring  these  resu lts w ith  the resu lts fro m  standard  g ra ­
d ien t-one  fitting  show n in  F ig . 6 (b) and  (e), w e observe  tw o im ­
p o rtan t p roperties o f  R R : 1) the ex tra  p ieces o f  the zero  set in 
the fit to  the p liers shape is gone  and  bo th  fits a re  b o unded  and
2 ) the sm ooth ing  in troduced  a round  the da ta  se t is neg lig ib le . 
T hese p roperties fo llow  from  th e  fac t th a t stab le  d im ensions are  
le f t largely  unaffec ted  by  R R  w hile  unstab le  ones are  sh runk  to 
insign ifican t values.

T he effec t o f  increasing  th e  param eter k  fro m  0 to h igher 
values is show n in  F ig . 7. N o tice  th a t the unbounded  p ieces that 
a re  c lose  to  the da ta  in  fitting  w ith  n o  R R , k  =  0, start to  m ove 
aw ay w ith  increasing  k .  A ctually , these p ieces to ta lly  d isappear 
and  th e  p o lynom ia l zero  set becom es bounded . R eca ll th a t in 
S ec tion  V I-A  it  w as p o in ted  ou t th a t unboundedness and  ex tra  
p ieces o f  the zero  se t w ere  sym ptom s o f  th e  in stab ility  in  fitting. 
T hus, R R  achieves the goal o f  getting  rid  o f  these  effects, a  qua l­
ita tive im provem en t in fitting. In  S ec tion  V II w e p resen t results

o f  experim en ts th a t show  the quan tita tive  im provem en t in sta­
b ility  ob ta ined  by  R R  w hich  w e believe  is strongly  lin k ed  to  the 
qualita tive im provem ents sum m arized  above. W e also  p rove  in 
S ec tion  V I-D  th a t a  fit to  da ta  fo r a  c losed  shape is guaran teed  
to  converge to  a  b o unded  IP  curve as k  goes to  infinity.

C. R o ta tio n a l  In v a r ia n c e  o f  R R

T he question  o f  th e  invariance o f  the fitting  a lgo rithm  to  E u ­
clidean  transfo rm ations o f  th e  data  is im portan t to  in su re  re ­
peatab ility  o f  the  resu lts . In  th is section , w e show  th a t the G ra­
d ien t-one  fitting  is ro ta tion  and  transla tion  invarian t and  th a t the 
m atrix  D  m u s t b e  o f  a  special fo rm  to keep  the ro ta tiona l invari­
ance p roperty  in RR.

W h en  a  E uclidean  transfo rm ation  is app lied  to  th e  da ta  set, 
vecto r Y  o f  m onom ials is tran sfo rm ed  as Y '  =  V ( t9, t . . .  t„ )Y .
w here  th e  p  x  p  m a trix  V is a function  o f  on ly  0, the app lied  
ro ta tion  angle, an d  ( t x , t y ) ,  th e  app lied  transla tion . T he zero  set 
o f  th e  p o lynom ia l is defined  by  A * Y  =  0. A fte r substitu tion
Y  =  I ' - 1  Y ' . the  tran sfo rm ed  coeffic ien ts are  A! =  ( I ' ' ) - 1 -!. 
A' resu lting  from  fitting  to  E uclidean  transfo rm ed  da ta  is A' =  
(S / + / j , ( S /N + S !r ) ) ~ 1G /N , from  (7). W e now  show  this is exactly  
(Vt )~1A. Substitu ting  fo r A  from  (7)

N  +  S t ) ) ~ 1V ~ 1V G n  

i V f +  V  S T V t ) ) ~ 1V G  ]\t

b u t from  S ection  III, S  is Y Y t , and  thus transform s as S '  =  
V S V 1. S im ilarly , the m atrices con ta in ing  the in fo rm ation  on 
the norm als and  tangents tran sfo rm  as: S ’T  =  V S j - V 1. S'N  =  
V S N V f using  the fac t tha t no rm als are  E uclidean  covariant. 
G n  transform s like Y  thus G'N  =  V G N . T his leads to  A '  =  
( S '  +  +  S't ) ) ~ 1G'n  as w as to b e  show n. C onsequently , 
G rad ien t-one  fitting is E uc lidean  invariant. N o tice  tha t the E u ­
c lidean  p roperties o f  V (6 , t x , t y ) is u sed  on ly  fo r th e  com pu ta­
tion  o f  th e  no rm al com ponents. T his leads to  a  poss ib le  ex ten ­
sion to  affine invarian t fitting  i f  a  m eth o d  to  robustly  com pute 
affm e invarian t no rm als is developed.

I f  w e app ly  th e  sam e substitu tions to  (8), w e ob ta in  [V - 1  ( S '+  
/J ,(S ’N  +  S'T ))  ( V * ) - 1 +  k D ^ A ' ^ ,  =  V ~ 1G ,n . R R  fitting  w ill 
be  E uc lidean  invarian t i lM ' =  ( S ' -
w hich  is exactly  (8) in  the tran sfo rm ed  reference  system . F rom  
the equations in  the p reced ing  parag raph , w e see th a t this re ­
qu irem en t is satisfied  i f  V D V '  =  D .  T his m eans th a t the in ­
variance o f  the a lgo rithm  to  E uc lidean  transfo rm ations d ictates 
the structu re  o f  th e  m atrix  D .  I t is know n [21] that, i f  th e  E u ­
clidean  tran sfo rm ation  is red u ced  to  a  pu re  ro tation , V  can  be  
d ecom posed  as V  =  i J - 1̂ / 2)R B 1/ 2 w here  B  is the d iagonal 
m atrix  o f  b inom ia l coefficients

(11)

and  l i  is a b lo ck  d iagonal ro ta tion  m atrix . R o ta tion  b lock  
R k  is associa ted  w ith  the /cth form , fo r each  k .  See [21] for 
details . U pon  substitu tion  o f  V  in  V D V 1 =  D .  w e have 
B - 1l 2R B 1l 2D B 1l 2R t B ~ 1l 2 =  D  w h ich  sim plifies to  
R B D R '  =  B D  u nder the asum ption  tha t D  is d iagonal. I t is 
suffic ien t fo r satisfy ing  th e  p rev ious equation  tha t D  is b lo ck  by
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b lock , the inverse o f  B .  T herefore, a  D  su ffic ien t fo r ro ta tion  
invariance is

i+ j (12)

w here  n , +J is a  free  p aram eter fo r the i +  .yth b lock . In  p ro b ­
lem s w here  invariance is no t o f  concern , P rincipal C om ponent 
M ethods [7] w hich  do  n o t p rov ide  any  freedom  in  the cho ice  o f 
.D, can  be  u sed  alternatively. S ince invariance is a  m ajo r co n ­
cern  fo r us, w e choose  to  w ork  in  the m ore  genera l fram ew ork  
o f  R R .

T here  are  n  + 1  param eters, correspond ing  to  the n  + 1  blocks 
and  form s. W e a re  free  to  se t these  param eters in  a  E uclidean  
invariant way. T he  sim plest app roach  w ou ld  b e  to set a ll to  1. 
U sing  th e  b in o m ia l coeffic ien ts once  m ore, w e se t each  o f  these 
param eters to  the invariantly  w e igh ted  sum  o f  the d iagonal e le ­
m ents o f  S  assoc ia ted  w ith  th e  i  +  j t h  form . In  o ther w ords,

pi> oX ^ + .
(r  +  Q!

r i l l E

N ¥ ) •

V 2 ( x l y-i ) d x  d y

Fig. 8. Left: sixth degree polynomial fits with the gradient-one algorithm and 
RR for increasing values of parameter k  ( k  =  0, k  =  0.0001, 0.001, 0.01, 
0.05, 0.5, 2.0, and 32, respectively). We can observe that the fitted zero set is 
becoming smoother and converging to a point.

CXi+jiljl
i ( i -  l ) x l V  +  j ( j  ~  l ) x l y 3 2 d x  d y

w here  V 2g  is the L ap lac ian  o f  function  g  an d  the doub le  in tegral 
applies in  the data  shape’s in terio r.U sing  (1), and  in troducing  
the m onom ia l vecto r Y '  =  ( x  ' y  th e  zero  set o f  A /, , , , , ,  is

lim it a i j x  %y  J =  0.

the w eigh ted  to ta l scattering  o f  the term s in  i  +  j t h  degree  form . 
T his cho ice  o f  n , +J is E uclidean  invariant. T he m otivation  for 
this cho ice  com es fro m  the fac t tha t R R  is equ ivalen t to  adding  
independen t ran d o m  no ise  on  the m atrix  o f  m onom ials. W hen  
w e com pu te  S =  M M * , the expected  changes on  the o ff d iag ­
onal term s are  0  because  o f  the independence  o f  the no ise  added  
to  each  m onom ial. H ow ever, the variances, o f  the  no ises added  
to  th e  m onom ials, add  on to  the m ain  d iagona l o f  S  exactly  as 
in  R R . So our cho ice  o f  a i + j  is equ ivalen t to  adding  indepen ­
d en t no ise  to  each  m onom ia l w ith  variance p ropo rtiona l to  a  E u ­
c lidean  invarian t function  o f  the scattering  o f  a ll the m onom ials 
in  its form . T his is very  c lose ly  re la ted  to  w e ig h t  d e c a y  reg u ­
la riza tion  u sed  to overcom e p rob lem s o f  o v e r fi t tin g  in  iterative 
op tim ization  schem es [2]. W e have found  th a t th is cho ice  brings 
sign ifican t im provem ents in  pow er o f  shape rep resen ta tion  over 
sim ply  setting  n , +J =  1 fo r a ll i , j .

D . B o u n d e d n e s s  P ro p e r tie s  a n d  L im it in g  B e h a v io r  o f R R

T he lim it o f  the so lu tion  o f  (8) as k goes to  in fin ity  is Aumit =  
D ^ 1G n , up to  a  scale factor. I t turns o u t th a t the po lynom ial 
specified  b y  Aumit has im portan t p roperties. Indeed , w hen  the 
data  shape is c lo sed  and  the degree  o f  the fitted  po lynom ial is 
even, the IP  curve converges to the curve g iven by  A ln!l ,, w hich  
is alw ays bounded , as show n in F ig . 8 . T he p ro o f that follow s 
is b ased  on  th e  d ivergence theo rem  fo r c lo sed  2-D  curves. To 
begin , u sing  (12), com ponents ciij o f  vec to r A /, , , , , ,  can  b e  ap ­
p rox im ated  as an  in teg ra l a long  a  contour, C, w hen  th e  da ta  
shape is c lo sed  an d  the sam pling  o f  the cu rve is no t too  coarse

To p rove th a t the zero  se t o f  this p o lynom ia l is alw ays bounded , 
it  is enough  to show  that the lead ing  fo rm  o f  this po lynom ial is 
alw ays stric tly  positive. B y  using  the  tw o  prev ious equations w e 
find

^2 a i j x 'l y '3

'2

T hen, w e derive that

— { x x ') •/ y  d x  d y

y ,  a ^ x  l y  3

■ y  2) (x x ' +  y y ' ) n  2 d x

T herefore, b y  app ly ing  th e  d ivergence theo rem  and  using the 
vecto r iden tity  V  • V/y =  V 2/y it becom es

is alw ays positive  fo r even degrees. A s an  im portan t conse­
quence  o f  this p roof, it  is alw ays p o ss ib le  to  find  som e k  >  0 
such that the fitted  p o lynom ia l (to a c lo sed  shape) has bounded  
level sets, as desired.

E. C h o o s in g  th e  R R  P a ra m e te r

T he b ias o f  an  estim ato r is the d is tance  betw een  the true  value 
o f  the  param eter be ing  estim ated , A , r/I, . and  th e  expected  
value o f  th e  estim ator, A r r . T he  v a r ia n c e  o f  an  estim ato r 
is its expected  square dev ia tion  fro m  its expec ted  value, 
||A r r  -  A r r ||2 . k  con tro ls the  b ia s -v a r ia n c e  tradeoff. U sually ,
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Fig. 9. Fits for fourth, sixth, and eighth degrees with shapes of different 
complexities. No extra components are close to data sets. The RR parameter 
was chosen manually for each shape in this example.

the variance is sign ifican tly  red u ced  b y  delibera te ly  in troducing  
a  sm all am oun t o f  b ias so th a t th e  n e t effec t is a  reduc tion  in 
to ta l m e a n  sq u a r e d  e rro r  w h ich  is defined  as H a s 2 +  v a r ia n c e .  
In troducing  b ias is equ ivalen t to  restric ting  the range o f  fu n c ­
tions fo r w h ich  a  m o d e l can  account. T ypically  this is ach ieved  
by  rem oving  degrees o f  freedom . C on tra ry  to  o th er approaches 
such as p r in c ip a l  c o m p o n e n t  m e th o d s  [7], [15], R R  does no t 
exp lic itly  rem ove degrees o f  freedom  bu t instead  sm ooth ly  
reduces the variab ility  o f  param eters. T his m akes th e  m odel 
less sensitive to sm all pertu rbations. Selec tion  o f  the param eter 
k  in  p rac tice  can  b e  done  in  one o f  tw o w ays depend ing  on 
w hat th e  resu lting  fit w ill be  u sed  fo r the  fo llow ing .

1) C h o o s in g  k  f o r  S h a p e  M o d e lin g :  H ere  th e  m ain  goal o f  
fitting  is to  ob ta in  a  good  rep resen ta tion  o f  the shape w ithou t 
too  m uch  sm ooth ing , w ith  b o unded  zero  sets and  w ithou t ex ­
traneous p ieces in th e  zero  set. In  F ig . 8, it can  b e  seen that 
increasing  k  resu lts  in  firs t sm ooth ing  h igh  cu rvatu re  parts o f  
the shape and  then  convergence to  a  b o u n d ed  shape th a t does 
no t v isually  rep resen t the data. So the a im  h ere  is to choose the 
sm allest p oss ib le  va lue  o f  k  tha t gets r id  o f  unstab le  artifacts like 
unboundedness (see F ig . 9 fo r exam ples w here  k  w as chosen  in 
this m anner). T his can  b e  done iteratively  since fitting  fo r m o d ­
eling  can  usually  be  done  off-line. P aram eter k  can  be  increased  
from  0 to  la rg er values un til sign ifican t am oun ts o f  e rro r start 
to  b e  in troduced  in to  the fit. P o lynom ia l in terpo la ted  m easure  
(PIM ) [11] can  b e  u sed  to  track  this e rro r as a  d ifference  in the 
po lynom ial a t k  =  0 an d  a t th e  value o f  k  u nder consideration .

2 )  C h o o s in g  k  f o r  R e c o g n itio n :  H ere  the m ain  goal is to 
m in im ize  th e  to ta l m ean  squared  e rro r o f  estim ato r A r r . Such 
an op tim al value o f  k  is em p irica lly  show n to  ex is t and  is found  
in  S ection  V II. C hoosing  the op tim al va lue  o f  k  analy tica lly  re ­
m ains to  b e  done in our fu tu re  w ork . O p tim al values o f  k  cou ld  
d iffer fo r d iffe ren t da ta  sets. In  [20], it is show n tha t k  can  be 
com pu ted  fro m  a  da ta  independen t th resho ld  t ,  on  th e  cond ition  
nu m b er o f  S  +  k D .  T he  op tim al value o f  I  w ill b e  da ta  inde­
pendent.

V II. E x p e r im e n t s

A . P e r tu rb a tio n  M o d e ls

B efo re  w e p resen t experim en ta l resu lts , it is im portan t to 
c larify  how  the pertu rb ed  da ta  sets in these  experim ents w ere

(a)

(c ) (d )

Fig. 10. Comparison of noisy data simulation using white noise (a) and (b) 
with standard deviations 0.05 and 0.1, respectively, and colored noise (c) and 
(d) with standard deviations 0.05 and 0.1, respectively.

generated . M o st researchers in the  fie ld  o f  com puter v ision  
use  ran d o m  w hite  no ise  (the no ise  added  to  each  p o in t in the 
data  is independen t o f  o thers) in the ir experim en ts on  shape 
recogn ition , and  thus m o s t a lgorithm s are  op tim ized  to hand le  
this type  o f  noise . W hite  no ise  w hen  u sed  w ith  very  sm all 
standard  dev iations is go o d  fo r sim ulating  quan tiza tion  errors; 
how ever, it is n o t a  good  m odel fo r generating  defo rm ed  copies 
o f  a  shape as m ig h t b e  sketched  by  a  hum an  o r as m ig h t appear 
after segm en tation  from  an im age o f  an  o b jec t taken  under 
sligh tly  d ifferen t v iew ing  conditions. W e w ou ld  like  to  b e  ab le  
to  m odel these  varia tions o f  shape since ou r m otivation  is to  use 
IP  fitting  fo r indexing in to  im age databases b y  query  b y  sketch  
and  query  b y  exam ple. F ig . 10(a) and  (b) show s the  silhouette  
o f  a  fish  and  w hite  no ise  w ith  standard  deviations 0.05 an d  0.1, 
respectively . I t is c lea r tha t these  shapes canno t rep resen t the 
shape variations w e desire. T he so lu tion  w e p ropose  is sim ply  
to  use  co lo red  no ise  in stead  o f  w h ite  noise . F irst, genera te  a  
w h ite  no ise  sequence  equal in leng th  to  th e  nu m b er o f  data  
po in ts. T hen  convolve this sequence  w ith  an  averag ing  w indow  
o f  leng th  0 .15  tim es the num ber o f  da ta  po in ts. T his sequence 
is added  in  the d irec tion  p e rpend icu la r to  th e  data  a t each  point. 
F ig . 10(c) and  (d) w as o b ta ined  w ith  th is m ethod . C om paring  
these  w ith  F ig . 10(a) and  (b), it  appears th a t co lo red  no ise  
m odels rep resen t m ean ing fu l shape d is to rtions w hereas w hite 
no ise  can  on ly  rep resen t quan tiza tion  errors. T he connection  
betw een  d is to rtions in shapes sketched  by  hum ans and  app ro ­
p ria te  co lo red  no ise  m odels w ill b e  investigated  in  fu tu re  w ork. 
A lso , th e  arb itra ry  cho ice o f  setting  the leng th  o f  the averaging 
w indow  to b e  0 .15 tim es the leng th  o f  the  da ta  sequence  can  be  
changed  to  ob ta in  d ifferen t effects in  the d is to rtion  produced . 
A no ther type  o f  pertu rba tion  u sed  in  o u r experim en ts is m issing  
data  w here  a  ran d o m  p o in t on  the g iven shape is p icked  and  a  
nu m b er o f  consecu tive  po in ts are  rem oved . R em oving  intervals 
in troduces m u ch  stronger pertu rbations then  rem oving  an  equal 
nu m b er o f  random ly  spaced  po in ts.

B. O b je c t  R e c o g n it io n  E x p e r im e n ts

V arious ob jec t recogn ition  experim ents w ere  p e rfo rm ed  to 
verify  tha t R R  im proves o b jec t recogn ition  perfo rm ance. A  set 
o f  27 objects (Fig. 11) includ ing  rea l-w orld  objects and  a rtifi­
c ia l free -fo rm  shapes rang ing  fro m  sim ple  to  com plex  w as used  
fo r a ll o f  the experim ents ou tlined  in  th is section . It is im portan t 
to  n o te  tha t som e ob jects have very  sim ilar shapes such as the
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Fig. 11. Objects used in the experiments.

figh ter a ircrafts, eels, and  fishes. T his m akes o b jec t recogn ition  
fo r this se t o f  objects a  non triv ia l task.

R ecogn ition  perfo rm ance  w as tes ted  u nder various pertu rb a ­
tion  m odels w hich  a re  com binations o f  co lo red  noise, m issing  
d a ta  and  ro ta tion  as exp la ined  in  S ection  V II-A . G iven  a  p e r­
tu rbation  m odel, 1000 sam ples (pertu rbed  shapes) are  gen er­
a ted  from  each  b ase  shape. E ach  sam ple is fit w ith  an  IP  using 
the m ethods ou tlined  in the prev ious sections, thus p roducing  
a  sam ple in  coeffic ien t-vecto r space fo r each  p e rtu rbed  shape. 
T hen, a  recen tly  developed  com plete  se t o f  invariants [18] is 
com pu ted  fo r each  coeffic ien t-vecto r sam ple. O ne o f  the m ost 
im portan t advantages fo r recogn ition  using th is specific  se t o f 
invariants is tha t each  invariant is e ither a  linear o r quadra tic  
function  o f  the coeffic ien ts o r an  ang le  d eterm ined  b y  a  p a ir  o f 
com ponents o f  th e  coefficien t-vector. T his leads us to  believe 
th a t they  shou ld  ou t-perfo rm  h igh ly  n o n linear a lgebra ic  invari­
ants in robustness. F inally , a  m ean  and  fu ll covariance m atrix  
in  the invarian t space is lea rned  fo r each  object. T est sets (100 
sam ples o f  each  ob ject) a re  genera ted  in  the sam e m anner inde­
penden tly  o f  the tra in ing  set.

A verage recogn ition  rates fo r th e  27 objects a re  p lo tted  
aga in s t the logarithm  o f  the R R  p aram eter k  in  F ig . 12. 
R ecogn ition  rates ob ta ined  w ith o u t using  R R  are  show n w ith  
the h o rizon ta l lines. In  F ig . 12(a) fourth  degree  po lynom ials 
w ere  u sed  w ith  a  p e rtu rba tion  m odel o f  10%  co lo red  no ise  
and  ran d o m  ro ta tions com bined . O p tim al cho ice  o f  the R R  
param eter prov ides approx im ate ly  3 %  increase over the already  
h igh  recogn ition  ra te  o f  96 .5% . N o te  th a t there is an  op tim al 
value o f  k ;  th is is expected  since k  con tro ls the b ia s -v a r ia n c e  
trad eo ff in  invarian t space and  som e value  o f  k  has to  m in im ize  
b ia s 2 +  v a r ia n c e .  T he  fo llow ing  experim ents verify  this fact 
w ith  the fu rther im portan t im p lica tion  th a t fo r this set o f  objects, 
b es t recogn ition  perfo rm ance  is ob ta ined  using  approx im ate ly  
k  =  1 0 ~ 3 regard less o f  th e  degree  o f  the p o lynom ia l o r the 
pertu rbation  m odel being  used . O ne question  to  b e  investigated  
is i f  this op tim al va lue  o f  k  w ill g enera lize  to  la rger sets o f  
objects.

T he  experim ents p resen ted  in  F ig . 12(b) use  a  stronger p e rtu r­
ba tion  m odel com bin ing  10% co lo red  noise , 10% m issing  da ta  
and  ran d o m  ro ta tions. B o th  fou rth  and  six th  degree po lynom ials 
w ere  tested . F o r degree 4, op tim al cho ice  o f  k  p rov ides 7%  im ­
provem en t in  recogn ition  ach iev ing  approx im ate ly  97% . F o r d e ­
g ree  6, a  m u ch  m ore  substan tia l 16% im provem ent is ob ta ined  
ra ising  the  b e s t recogn ition  perfo rm ance  to  approx im ate ly  99% . 
T hese  top  ra tes a re  im pressive w hen  one  looks a t som e typ ica l 
p e rtu rbed  sam ples genera ted  in  this experim ent, F ig . 13. N o te

Fig. 12. One thousand perturbations of each object are used as the training set. 
Another 100 independent perturbations of each object are used as the test set. 
Perturbation models are (a) 10% colored noise +  rotation, (b) 10% colored noise 
+  10% missing data +  rotation, and (c) 10% colored noise +  20% missing data 
+ rotation.

Fig. 13.
data.

A few shapes perturbed with 10% colored noise and 10% missing

th a t ran d o m  ro ta tions are  om itted  in  F ig . 13 fo r easy  com par­
ison  w ith  th e  o rig inal shape. U sing  six th  degree  IP ’s prov ides 
on ly  a  2%  advantage in  recogn ition  over using  using  fourth  d e ­
gree; m oreover fo r som e nonop tim al values o f  k  and  w ith  no 
R R  it ac tua lly  does w orse. T here  are  tw o im portan t deductions 
here . 1) S ince six th  degree  IP ’s have  m ore  coeffic ien ts (degrees 
o f  freedom ) they  a re  m ore  p rone  to  prob lem s o f  unstab le  sub­
spaces then  fourth  degree  IP ’s, especia lly  fo r sim pler shapes tha t
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m ig h t n o t requ ire  a  six th  degree po lynom ial. S ince this is exactly  
the p ro b lem  R R  sets ou t to  solve, the observation  m ade  above 
is to ta lly  expected . 2) I t m ig h t seem  tem pting  to  res tric t ob ject 
recogn ition  to  the use  o f  fourth  degree IP ’s; how ever, as w ill be  
m ade  c lea r in  the n ex t exam ple there  are  m u ch  m ore  substan tia l 
gains to  b e  m ad e  w ith  the use o f  h ig h er degrees in  som e cases. 
W e now  use  even a  stronger m odel o f  pertu rbation , by  keeping  
the 10% co lo red  no ise  and  ro ta tion  and  doub ling  the am oun t o f  
m issing  data  to  20% . R obustness to  m issing  da ta  c rucia lly  d e ­
pends on  a  good  rep resen ta tion . F ig . 12(c) confirm s th is sta te­
m ent; fourth  degree  IP ’s y ie ld  a  top  recogn ition  ra te  o f  approx- 
iam tely  88% , six th  degree  IP ’s are  ab le  to  im prove this ra te  to  
approx im ate ly  94% . H aving  estab lished  tha t using h igh  degree 
IP ’s is necessary  in certa in  p rob lem s, it  is a lso  very  im portan t to 
once  m ore  rea lize  th e  crucia l ro le  p layed  b y  R R  in  the success 
o f  h igh  degree IP ’s; using the op tim al value o f  k  p rov ided  a gain  
o f  over 35%  com pared  to  n o  R R , w ith  six th  degree IP ’s in  this 
exam ple.

V III. C o n c l u sio n s

In  the con tinu ing  quest fo r achieving m ax im u m  stab ility  in 
the rep resen ta tion  o f  cu rve da ta  by  a lgebra ic  curves (i.e., the  
zero  sets o f  po lynom ials in  x  and  y )  and  in  the stab ility  o f  the 
po lynom ial coeffic ien ts, th is pap er m akes tw o im portan t co n tri­
butions. T he  first is an understand ing  o f  th e  ro le  o f  da ta  no rm al­
iza tion  and  p o lynom ia l g rad ien t-constra in t in  im proving  rep re ­
sen tation  an d  coeffic ien t stability. T his a lso  sheds lig h t on  w hy 
the 3L fitting  a lgo rithm  [10] is so m uch  m ore  stab le  than  p re ­
vious fitting  algo rithm s. T he  second  con tribu tion  is th e  use  o f  
ro ta tion -invarian t R R , in the fitting , fo r im proving  the stab ility  
o f  bo th  th e  rep resen ta tion  and  the coeffic ien ts even further. R R  
drives those  po rtions o f  the po lynom ia l zero-set, th a t are  n o t ap ­
prop ria te  to the cu rve data, far from  the  data. I t a lso  shrinks to 
near-zero  those  po lynom ia l coefficients n o t im portan t fo r rep re ­
senting  the cu rve  data. T he rem ain ing  coeffic ien ts are  stab le  and  
resu lt in  increased  stab ility  w hen  u sed  fo r pose-invarian t ob ject 
recogn ition  o r o b jec t p o se  estim ation .
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