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A bstract

With the deconstruction technique, the geometric information of a torus 

can be encoded in a sequence of orbifolds. By studying the Matrix The

ory on these orbifolds as quiver mechanics, we present a formulation that 

(de)constructs the torus of generic shape on which Matrix Theory is “com- 

pactified”. The continuum limit of the quiver mechanics gives rise to a (1 + 2)- 

dimensional SYM. A hidden (fourth) dimension, that was introduced before 

in the Matrix Theory literature to argue for the electric-magnetic duality, can 

be easily identified in our formalism. We construct membrane wrapping states 

rigorously in terms of Dunford calculus in the context of matrix regularization. 

Unwanted degeneracy in the spectrum of the wrapping states is eliminated
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by using SL(2, Z)  symmetry and the relations to the FD-string bound states.

The dual IIB circle emerges in the continuum limit, constituting a critical 

evidence for IIB/M duality.

1  I n t r o d u c t i o n

The duality between type IIB string theory and M-theory, as an indispensable com

ponent of the string/M-theory web, a la Schwarz and Aspinwall [1, 2 , 3], has two 

characteristic features: First there is a generalized T-duality between IIB theory on 

a circle and M-theory one a two-torus. According to this duality, the winding modes 

of the fundamental/D-string bound states (FD-string) in the IIB spectrum are du

alized to Kaluza-Klein (KK) modes in M-theory. Secondly the non-perturbative 

S L (2, Z )  symmetry in IIB theory is geometrized to be the modular group of the 

two-torus in M-theory. The physical ideas behind this duality are elegant and beau

tiful, but how to formulate them in an explicit formalism and in a constructive way 

remains a challenge.

To our knowledge, up to now the only way available to formulate M-theory mi

croscopically is the BFSS Matrix Theory [4]. (For other attempts to formulate the 

notion of the so-dubbed “protean degrees of freedom” of M-theory, see the review

[5].) In this framework the statement for the non-perturbative IIB/M  duality is that 

Matrix Theory compactified on a two-torus, with the size of the torus shrinking to 

zero, is dual to IIB string theory in a flat background [6 , 7, 8]. However, it is highly 

non-trivial to see how this can come about. Matrix theory has nine transverse di

mensions; when two of them are compactified and shrink to vanishing size, only 

seven dimensions survive. One needs to have the eighth transverse dimension in 

IIB string theory emerging in this limit. This emergent dimension should have two 

crucial properties in conformity with the IIB/M  duality. First before decompactifi- 

cation the KK modes along it have to be associated with the membrane wrapping
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states on the torus in Matrix Theory. Secondly after decompactification it should 

be on the same footing as other transverse dimensions, sharing an eight dimensional 

rotational invariance.

Since the compactified Matrix Theory is formulated as a (1 +  2)-dimensional 

Super Yang-Mills theory (SYMi+2) on the dual torus, IIB/M (atrix) duality is ad

dressed in the language of SYM in refs. [6 , 7, 8]. On the one hand, the wrapping 

membranes are argued to correspond to configurations of the Yang-Mills fields, with 

nonvanishing (abelian) magnetic flux, which gives the wrapping number. On the 

other hand, the rotational symmetry between the decompactified emergent dimen

sion and other flat transverse ones in the IIB target space, is argued to be related to 

the (conjectured) electric-magnetic (EM) duality of the (1 +  3)-dimensional SYM, 

resulting from Matrix Theory compactified on a three-torus. Though these intuitive 

SYM arguments are compelling, an explicit construction of the wrapping membrane, 

as well as the definition of its wrapping number, is in demand in either the com

pactified Matrix Theory or in the dual (1 +  2)-dimensional SYM [9]. Certainly one 

would prefer a more direct approach without the detour into the EM-duality in the 

three-dimensional world-volume of SYM. Moreover, IIB/M (atrix) duality has been 

addressed only for the rectangular tori. No serious attempts have been made to 

formulate the notion of “dual torus” of generic shape.

To fill the gap, in our previous work in this series [10], we tried to generalize the 

definition of the wrapping number for a continuous map between two tori to matrix 

states wrapping on the compactified torus. We first adopted the deconstruction 

techniques [11] to approximate the compactified torus by a sequence of orbifolds, 

that encode the geometric information of a rectangular torus. This resulted in a 

quiver matrix quantum mechanics, whose continuum limit gives rise to SYMi+2. 

Then the wrapping matrix states were constructed explicitly in the quiver matrix 

mechanics framework in terms of fractional powers of the ’t Hooft clock and shift

3
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matrices. And it has been checked that this construction possesses all properties 

required by the IIB/M  duality. The present paper is sequential to the previous one, 

to study the case in which the compactified torus is of generic shape. Our motivation 

is to better understand how the generic geometry of the dual torus is encoded in the 

discrete setting of deconstruction (based on the orbifolding approach), and how a 

continuous geometry is restored on the SYM world-volume in the continuum limit. 

We shall refine the formalism for the fractional powers of matrices by employing a 

functional calculus of Dunford, to construct matrix membrane states with a well- 

defined topological wrapping number. Then, the generalized (torus-circle) T-duality 

is verified for generic moduli of the torus on a rigorous ground. As a bonus, we shall 

gain some insights into the S L (2, Z ) duality by identifying the FD-string in M- 

theory and eliminating the unwanted degeneracy in the membrane wrapping states 

in a satisfying fashion.

The outline of this paper is as follows. In Sec. 2, we describe in detail the Matrix 

Theory on C3/ Zf^  orbifold, which is our starting point, in the form of quiver matrix 

mechanics. In Sec. 3, we (de)construct in the large N  limit the toroidal world- 

volume geometry with generic moduli, with a (1 +  2)-dimensional SYM defined on 

it, which recovers Matrix Theory compactification on a dual torus. Moreover, we are 

able to identify the projection of the (1 +  3)-dimensional SYM involved in previous 

discussions in the literature on IIB/M (atrix) duality. Since the geometric informa

tion of the target torus is (re) constructed from the orbifold data, this results in a 

precise formulation of the duality between the target torus and the world-volume 

torus of SYM. In Sec. 4, we suggest a matrix construction of the membrane wrap

ping on the compactified torus, by using Dunford calculus. The IIB spectroscopy 

including the bound FD-string is analyzed, with the unwanted degeneracy of the 

wrapping states eliminated as expected. Moreover the S L (2, Z )  symmetry among 

the wrapping states is presented in the general setting. In Sec. 5, we dwell upon
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remarks, problems and a few perspectives. The relationship of this work to various 

approaches in the literature is discussed too.

2  Q u i v e r  M a t r i x  M e c h a n i c s  f r o m  M a t r i x  T h e o r y

o n  C ^ / Z h

In the IIB/M (atrix) duality, the dynamics on the M-Theory side is described by 

the Matrix Theory compactified on a two-torus. We (de)construct the two-torus in 

terms of the orbifold C3 /  which is defined in the following way Parameterize C3 

by three complex numbers za, a — 1,2,3; the actions of the discrete group Z jj  on 

C3 introduces two classes of equivalence relations

T 1 * 1 2  2 3 31: 2 ~  u Nz , z ~  lunZ , z  ~  2 ;

II: Z1 ~  Z2 ~  22, Z3 ~  CJjyZ3 (1)

where — el2i:!N .

The action of U (K )  Matrix Theory on this orbifold reads

s  =  j  d t T r { ^ - [ D u Y ‘f  +  ? f [ Y \ Y i f

+ ^ - [ A ,  z a][Dt, z af] +  4 r ( [ z “> z a't][za', z a'] +  [Z“, z a’][za\  z a'f])
/ t n  2

+ R n [ Y \ Z a] [ Y \ Z a+]

-|At[A, A] + ^At7i[r, A] + ^A*(7.[2“,A] + t [Z a\ m -  (2)
In Eq. (2), the eleven-dimensional planck length is taken to be unity, R n  is the 

radius of the compactified light-cone in the infinite momentum frame (IMF), t the 

world-line time; D t =  d /d t  +  i[A0l .] with A 0 the U{K) gauge connection in the 

temporal direction; both indices i and a run from 1 to 3 and a representation of the 

gamma matrices is given by

7 i =  —r 2 ® 73 <g> 73 <g) r 3 , 72  =  - T i  <g) 1 ® 73 (g> 7 3 ,

5
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73 =  -T 3 <8> 1 <8> r3 <8) r3 , 71 =  —e (8) r_ (8) 1 (8) r3,

72 =  i l  (8> r3 <8) r_ <8) r3 , 73 =  - i l  <8) 1 (8) 1 <8) t _ , (3)

in which r i )2)3 are conventional Pauli matrices and r_ =  {t\ — ir2)/2.

y* and Z a are the coordinates of K  D-particles; A their fermionic partner, which 

is an S O (9) Majorana spinor with 16 real components. According to the tensorial 

decomposition in Eq. (3), the components of the fermionic coordinate are denoted as 

AS0SlS2S3 for sc =  0,1, c =  0 , 1, 2 , 3, in which A is real for So and A0* =  A1 for the other 

sc. Because of the stringy nature of D-branes and the orbifold actions, all of these 

coordinates are lifted to be K N 2 x K N 2-matrices. Regarding the N 2 x N 2 indices 

from orbifolding, their transformation properties under the gauge symmetry of each 

variable can be directly read off from the quiver diagram in Fig. 1, in which only 

six unit cells are presented (prolongable in two directions to give N  x N  unit cells), 

and A is labelled only by Si,2,3; the orbifold conditions in Eqs. (1) are automatically 

incorporated in these transformation rules. Note that all of the variables can be 

interpreted to reside in the orbifolding group therefore, the terms “site” and 

“link” in Fig. 1 are understood in the circumstance of the discrete group Zjj,  which 

here can be viewed as an approximated (or discretized) world-volume. So, sites are 

labelled by the elements in Z jj  (pairs of integers (m, n), with m, n  modulo N ). In 

the jargons of quiver theory, here from the target space point of view, site variables 

are adjoint matters while link variables are bi-fundamental matters.

The orbifolded Matrix Theory in Eq. (2) provides the basic machinery to gener

ate, in the large N  limit, both the geometry of the SYM world-volume and that of 

the torus in the target space. The next two sections are devoted to show how the 

geometries emerge in the continuum limit.

6
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A000 ^010

#  : s i t e s  

: f e r m i o n i c  l i n k s  

: b o s o n i c  l i n k s

JNFigure 1: Quiver diagram for the Matrix Theory on C3/ Z j

3  C o n s t r u c t i o n  o f  G e o m e t r y  o f  D u a l  T o r i  a n d  S Y M  

i n  L a r g e  N  L i m i t

This section is dedicated to extract geometric information for compactified torus 

which is (de)-constructed with our orbifold setting.

3 . 1  T a r g e t  T o r o i d a l  G e o m e t r y  f r o m  O r b i f o l d i n g

To see how a toroidal geometry in target space arises from the orbifolds C3 /  Z 2N. we 

introduce the following parametrization of C3:

z 1 =

z 2 =  p 2e ^ 1+^ / V 2,

7
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z3 = p s e ^ + ^ / V ^ (4)
where all of p a run from 0 to 2tt. The orbifold conditions in Eqs. (1) now are 

expressed as

I:

II:

p 1, p 2 ~  p 2 +  2it/N ,  p 3 ~  p 3; 

p 1, p 2 ~  p 2, (/?3 ~  <£>3 +  2t:/N . (5)
Note that the angular parametrization of p 1 is not unique, but the above choice in 

Eq. (4) will be convenient for our purposes.

W ith the parametrization (4), the metric of the orbifold C3/ Z ^  is

d s 2 =  Y ' t i i p i  +  / ’i ' l l ) : ) . (6)
a— 1

in which $i =  p 1—p 2/ N —p 3/ N , =  c/91 =  (z?1-!-^3^ .  If we suppress the

variations of the radial coordinates and of p 1, taking pa to be nonnegative constants 

ca =: N f a, then the orbifold metric in Eq. (6) becomes

ds2 = 9af3dpadp13,
a ,(3=2

in which

( d a f t )
/  f t  +  f l

V

f t  

f l  +  / I

\

(7)

(8)
f l  J l  1" J3 )

Let us take a moment here to recall the condition(s) under which Eq. (7) gives 

rise to a legitimate Riemannian geometry, namely the metric ga/3 is positive definite. 

From linear algebra this requires that f  2 + f 2 > 0 and the determinant g =  det gap > 

0. Therefore, at most one of f a can vanish.

The metric described by Eq. (8) is just that of a flat torus. (From now on we 

will omit the adjective “flat” .) It is known that the geometry of a torus is specified 

by the complex structure modulus r  =  T\ +  and by its area. To extract them, 

we rewrite the metric in Eq. (8) in the conformally flat form:

d s 2 — e2uJ\ d p 2 +  r d p 3 12
( 9 )
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where e2uj =  f 2 +  / f . Then the modular parameter can be read off as

T =  + i y / g ) .  (10)

As for the area of the torus, it is the coordinate area, (27r)2, multiplied by g:

A t , = (27r)2Vfl =  (2tt) V / f / l  + / I / I  + / I / i2. (11)

Note that the global geometry of a two-torus can be described either by gap 

locally with the fixed coordinate domain (for a Euclidean worldsheet) or by the 

global characters of the area and the modular parameter. Thus one may use the 

local parametrization (/i- / 2, .fs) or the global one (a;, 71, 72), or even a mixed set 

to describe the geometry of the target torus. For example, the area 

A t 2 in Eq. (11) can also be calculated by embedding the torus as a parallelogram 

spanned by two vectors 27rew and 27rewr  in a complex plane, namely

A t  2 =  (27rea’)(27reu;T2). (12)

In summary, the geometry of the toroidal compactification of the target space is 

encoded in the limit N  —» 00, ca =  (pa) —> 00 with f a — ca/ N  fixed.

3 . 2  W o r l d  V o l u m e  T o r o i d a l  G e o m e t r y  f r o m  ( D e ) C o n s t r u c t i o n

In BFSS Matrix theory and, subsequently, in our quiver matrix mechanics model

(2), the target space coordinates are promoted to matrices. Though this increases 

technical complications to certain extent, we will see that the ideas on how a toroidal 

geometry emerges in the continuum limit (as a large-N  limit) still apply. Further

more, besides the geometry for the compactified torus in target space, we will see 

another toroidal geometry, dual to the former, emerging on the world volume that 

is (de)constructed in the same limit. This is another incarnation of the so-called 

target-space/world-volume duality that we realized before in [10, 12] in orbifolded 

Matrix theory.

9
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First let us try to implement the angular parametrization at the matrix level, and 

to see whether a discrete geometry can make sense when we assign non-vanishing 

vacuum expectation values (VEV) to the matrix counterpart of the variables pa.

As the solution to the orbifold conditions (1), the block decomposition of the 

bi-fundamental bosonic matrix variables Z a in Eq. (2) can be read off directly from 

the quiver diagram Fig. 1:

=  "  ( m ) n ) (Va)m n,m 'ti' i ( 1 3 )

in which

{y^2)mn,m'n' (^v)m ,)n'^n,n/)

(^3 )mn,mV &m,m/ (V5v) 71,71' (14)

and Vi := V:$. Here the clock and shift matrices Uj\t, Vn  of rank N  are defined by

Uj} = 1N, = 1N, VNUN =  ujn Un Vn , (15)

with I n  the unit matrix of rank-A. The block decomposition of other variables can 

be read off in the same way; for example,

^mn,m'n! =  V • (16)

At a fixed site (m ,n), za (as well as y l) is a K -h y -K  matrix. To (de)construct the 

toroidal geometry, after orbifolding we need to assign nonzero vacuum expectation 

value (VEV) to each za( m ,n ); namely we make the following decomposition

za = {za) + za, (17)

in which (za) are the VEV and za the fluctuations. We take

( ->  .  - ^ - 1 K (18)

1 0
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where

Sa := 27t/ N  (19)

f a will be understood as the same quantities that we have introduced in last sub

section, while Sc7  as the lattice constant for world volume coordinates later.

The most direct way to look for an interpretation in terms of discrete geometry 

is to rewrite the following term in Eq. (2)

S YZ = -  I d tTr{\[Za,Y '} \2}, (20)

as the discretized kinetic term of Y l. Here we have absorbed R n  into a redefinition 

of the world-line time t' — R u t  and suppressed the superscript prime.

We will introduce the discretized derivatives by using the shift matrix. In this 

paper, the clock matrix is represented by Un  — diag(ujN,ujjf,. . .  , uĵ )  and the shift 

matrix by
7 0 1 0 . . .  0 

0 0 1 . . .  0

VN =

\

\

(21)

0 0 0 . . .  1 

1 0 0 . . .  0

Note that the representation of V/v in Eq. (21) is the hermitian conjugate of the 

representation used in ref. [10]. Now let /  be a diagonal matrix in the site indices: 

fmn,m'n' =  f ( m , n)Smrn'Snn'■ The action of the shift operator, Sa, by a unit along the 

a-th direction is given by

S J  =  V J V h  (22)

indeed we have explicitly

S i f ( m ,n )  = f ( m  — l , n  — 1),

S 2f ( m ,n )  = f { m +  1, n),

S 3f ( m , n )  =  / ( m , n  + 1). (23)

1 1
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Subsequently we define the discrete partial derivatives by

4 /  ■■= (S J  -  f ) / S a .  (24)

(So Sa serves as a (coordinate) lattice constant.) Because of the relation

4  =  - S ^ S t 14  -  S ^ d 3, (25)

da are not algebraically independent.

Since we will take the large N  limit eventually, we need to regularize the trace 

that appeared in Eqs. (2) and (20) by

T r {-} ->■ Sa2K{tr{.}}, (26)
m,n

in which k is a regularization constant to be specified later, and tr  the trace on 

the subspace supporting the gauge group U(K). Now with a little algebra, we can 

rewrite S y z  as

S YZ =  -  J  d t ^ 8 ( 7 2ntr{\8azaday% +  [za,y l] |2}. (27)

Below, we assume scalings that all of the variables including the fluctuations in 

Eq. (17) are of 0 (1 )  in the large N  limit except for (za) which behaves like 0 ( N ), 

provided the constants f a are independent of N .  This is the common circumstance 

for deconstruction in the present literature. Separating the fluctuation field za into 

hermitian and anti-hermitian part, sRza and iQza respectively, Eq. (27) can be fur

ther written as

S y z  = -  [  d t ^ S a 2 ̂ { { ^ ( d a y 1 + ^-[V2^sza , y 1}) + [^za , y l} + 5azadayl \2}. (28)
^ V ^ J a

To reveal the discrete geometry on the quiver diagram, let us switch off the 

fluctuations in Eq. (28), resulting in

S Y(z) = ~  f dtj_18a2t ^ t r { g 22(d2y 1)2 + g33(S2d3y1)2 +  2g23(d2y t)(S2d3yt)}. (29)

1 2
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Here the (contravariant) metric is defined by

( s 0'5) =

(  £ 2  i f 2 \
f f  +  / I  / ?

V A2 f l  +  t t )

with a, (3 =  2,3. It is amusing to notice that comparing with Eq. (8), we have

(30)

9al> = 9a0- (31)

As a corollary of either Eq. (30) or Eq. (31), we see that ga>3 is independent of 

N\ As a simplest application of the metric (30) in discrete geometry, we can assign 

an area to the elementary parallelogram, or plaque in the jargon of lattice gauge 

theory, spanned by two edges labelled by Z 2 and Z 3 in the quiver diagram in Fig. 1:

&t2
SAn  —

V g
(32)

where 8a2 is the coordinate area. Because of translation invariance, by counting the 

total number of the plaques we get a total area for the quiver diagram:

(2?r)2
A n  — N  • 8A m —N

\ [ 9
(33)

which is also independent of N.

In the continuum limit, i.e. in the large N  limit with f a fixed, we have

(34)

namely the quiver diagram (de)constructs a continuum torus T 2, with continuous 

coordinates a a (a  — 2,3) running from 0 to 2ir. So the metric in Eq. (30) on the 

discrete quiver diagram survives the large N  limit, and becomes the metric on the 

torus T 2.

Moreover, in the large N  limit,

d 2 —► 8 / d a 2, <93 —► 3 / d a " (35)

13
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and because of the linear relation in Eq. (25)

4  - d / d a 2 -  d /d a 3. (36)

Now it is easy to work out the large N  limit of Sy{z)'-

S y (z ) = ~  j  dtd2(jK tr{^ga/3dayldpy1} , (37)

where, as usual, d2a — da2da3. The same positive-definiteness condition analyzed 

below Eq. (8) should be imposed to ensure the positive-definiteness of ga/3. It is a 

constraint on VEV in Eq. (18), which gives rise to a normal Riemannian geometry 

to the toroidal membrane, T 2, (de)constructed with our quiver diagram.

To see that the toroidal geometry T 2 is dual to that of the compactified target 

torus T 2, we choose the regularization constant k in Eq. (26) to be k — l / ^ /g  — \fg, 

where g is the determinant of gap, the inverse of gafB in Eq. (30), such that d2a ■ k, 

becomes the invariant measure on the dual torus. Here we introduce the definition 

that two tori (T2, ((/?2, <̂3), gap) and (T2, (cr2, cr3),^a/j) are dual to each other, if and 

if all of the affine parameters have the same domain from 0 to 27r and Eq. (31) is 

satisfied. Consequently, the area of the dual torus is

(M
V 9

which coincides with Ajv in Eq. (33). Just as the case for A T 2 in Eq. (12), the result 

for A f 2 in Eq. (38) can also be obtained by rewriting the dual metric as

A f 2 — f  d2(jK —  ̂ , (38)
J  \  /  Q

ds — e | dcr +fdcr \ , (39)

in which e2̂  =  ( / 2 +  f l ) / g ,  and the dual modular parameter is identified to be

~ ~ , -  - / 1 + V 0
r  =  T i  +  z r 2 = --------- 9Q =  — ! ( 4 0 )e Z\lg T

Thus, Eq. (37) can be written as

S Y {z)  =  ~  J  d t d 2a ^ g a(5t r { ^ d a y ld p y 1}  , ( 4 1 )
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W ithout any additional pain we can safely claim that in Eq. (2),

SV-4 := j  d t T r { ^ Y \  Y^]2} N-^ ?  SY, = j  d t c P a ^ g t r ^ y 1, y’}2}. (42)

To summarize, the above terms are of the usual form of the action integral for 

fields on the world volume of a torus, with ga/3 as contravariant metric. Later we 

will see that in the continuum limit, all other terms in our quiver model contain 

the same metric. This feature indeed identifies ga>3 as the metric on the world 

volume (de)constructed by our orbifolds. In last subsection, we drew the quiver 

diagram in Fig. 1 as a square lattice; however, no notion of length was introduced 

at that stage. It was only after assigning non-zero VEV as in Eq. (18), the quiver 

diagram becomes a lattice with meaningful lattice constant, and in the large N  

limit becomes a continuum torus, T 2, with a flat metric. The relation (31) implies 

that the toroidal geometry of T 2 is dual to that of the compactified torus, T 2, in 

target space as we discussed in last subsection. In this way, our (de)construction 

procedure (orbifolding, assigning non-zero VEV and taking the continuum limit) 

exhibits the so-called target-space/worId-volume duality. In the literature, including 

our previous paper [10], this duality was shown only for regular tori; here we have 

shown the validity of this duality when the compactified target torus is of a generic 

(oblique) shape.

3 . 3  1 +  2 - D i m e n s i o n a l  S u p e r  Y a n g - M i l l s  a n d  t h e  D e t o u r  i n t o  

F o u r  D i m e n s i o n s

We devote this subsection to a complete discussion of the continuum limit of our 

orbifolded quiver matrix mechanics. On the one hand, we will show that all terms 

in the continuum action contain one and same metric ga^ , justifying the emergence 

of the world volume geometry in (de)construction through orbifolding. On the 

other hand, we will show that in this continuum limit, the quiver matrix mechanics

15
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approaches to 1 +  2-dimensional SYM on T 2. Previously to argue for the S-duality 

and rotational invariance in Matrix Theory compactified on a torus, a connection 

between 1 +  2 and 1 +  3 dimensional SYM was proposed in refs. [6 , 7]. In this 

subsection we will see that indeed this detour into four dimensions is something 

very natural in the present approach.

In [10] we have studied the case with / i  =  0, leading to a regular torus. To 

consider torus of more general shape, here we study another simplified case, corre

sponding to a triangular lattice, with

h  = h  = h  = L. (43)

In accordance with the parametrization (4) and the VEV in Eqs. (18) and (43), we 

parameterize fluctuations in Eq. (17) by

51 =  (cj)1 +  zL((/4 -  A 2 -  A 3) ) / V 2 ,

z 2 — (cf)2 +  iL((f)i +  A ) ) / v /2 ,

z 3 — ((f)3 +  iL(^>x +  A ) ) /v /2. (44)

All the new variables here, with the site indices (m, n) omitted, are A"-by-A" matrices. 

In the following we will discuss the dynamics of these fluctuations.

3.3.1 D isc re te  G e o m e try  a n d  E q u ila te ra l  (T ria n g u la r)  L a ttic e

W ith the symmetric VEV (43), the quiver diagram in Fig. 1 becomes a equilateral 

triangular lattice, shown in Fig. 2, in which re-label the fermionic coordinates

A w . 3  =  r « . 8 ^ i + 2 ( J ^ ) f o r  S l  + * 2  +  5 3  =  0 , 1 ,

A. . . , « = r , . « , / t +i)+2(t!tiM is+i) for +  s2 +  s3 =  2,3 (45) 

with sc +  1 (with c =  1, 2 ,3) defined modulo 2 .

16
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^000 ^010

Figure 2: Two-dimensional Equilateral Lattice from (De)Construction 

In fact, with the VEV (43), the metric in Eq. (30) becomes

(.9 a‘3) =  L ‘

whose inverse is

3 L2

to l )

1 1 to

to - 1

- 1 to

(46)

(47)

From either the definition of the discrete partial derivatives in Eq. (24) or the large 

N  limit of the measure on Z jj  in Eq. (34), we learn that the role of the coordinate 

lattice constant in both two directions on Z fj  is played by 8a, so that the total 

coordinate length of each cycles in either discrete or continuum cases is just 27r. 

Now we compute the proper length of the unit vectors ea, denoted as ||ea||, in three 

directions in Fig. 2 labelled by za, with e\ =  8a ■ (—1,—1)T, e% =  8a ■ (1,0)T, 

e3 = 8a ■ (0 ,1)T. The result is

2£cr2
kail = (ea,ea) = <?a/?e“e _

3 L2
(48)

17
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for all a =  1, 2, 3 (no summation on a). Therefore the lattice is equilateral, with the 

area A f 2 =  (27r)2/ \ /3 L 2 from Eq. (38).

A linear transformation

/

\ a  /

L
7 2

y / S  1 

0 2 \  w  )

( w i \

\  w

1

V q l

2 - 1  

0 \/3 a  /

transforms the dual metric into the standard form

(49)

ds2 =  (dw1)2 +  (dw2)2,,2\2 (50)

with the measure d2cr/V3L2 =  d2w. We can calculate the area A f 2 in the w- 

frame. In fact, T 2 in cr-frame spanned by two basis vectors E 2 := 2tt • (1,0)T, 

2ir • (0 ,1)T; by the second formula in Eq. (49), in w-frame,

Eo — 2tt • (1, 0) , E% —
V 3 L  v ’ '  ’ * V 3 L  

The value of A f 2 follows hence because of Eq. (50).

2 2
(51)

3.3 .2  F o u r D im en sio n s

Now it is the time to revisit S y z  hi Eq. (28). Recall the term Sazadayl is of order 

0 ( 1 /N ) ,  it is not difficult to deduce the continuum limit of Syz]

S y z  = ~  f  dtd2a - ^ ^ t r { L 2{Day l +  y1])2 -  [</>a, y1]2} (52)

where the index a runs from 1 to 3, and D a =  da +  i[Aa, .] for a  =  2, 3. Recall the 

fact that

D\ +  D 2 +  D% — 0; (53)

we get

S y z  — ~  I dtd a
1 1

\/3 L 2 2
tr{gal,Day'Di,y' -  3 L2[^ , y f  -  [0 \ y f  }. (54)

18
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Eq. (54) is of a standard form in SYM after a rescaling of (f/v  More amusing is 

the assertion that the continuum action Eq. (52) can be obtained from dimension 

reduction from SYM in one more dimension! Our key observation here is that the 

role of </>']_ in Eqs. (44) and (52) is very similar to a gauge connection, whose direction 

can be parameterized virtually by a coordinate a 1. This implies that S y z  in Eq. (52) 

can be regarded as a 1 +  3-dimensional theory subject to the dimensional reduction 

constraint

d /d a 1 = 0. (55)

This motivates us to introduce a three-dimensional Euclidean space (x1, x 2, x 3), in 

the sense of a covering space, such that

£

d

d x 1
d

d x2
d

d x3

=  v-
d d

d a 1 d a 2 
d d

~  V d ^  +  d ^  
d d 

=  +

d

Ifo*’

(56)
d a 1 d a 3

with two constants £, 77, and ^  =  r/Ai with A \  the gauge connection in the a 1- 

direction. Since covariant derivatives transform in the same way as ordinary deriva

tives, from Eq. (56) we can solve the coordinate transformation

( 1a 1 77

a 2 =  r 1 - 1

^ 3 J V - 1

x

\  X  /

(57)

Now we suppose the terms [</>a, y1]2 in Eq. (52) are intact in dimensional reduc

tion, and the metric in the :r-frame is the standard Euclidean metric. Then we have 

to modify the regularization of the trace in Eq. (26) and interpret the measure in 

Eq. (52) in the following way

d2aTr 11 =11 d a 2 d ° 3 \ d°1'fW°=/  /  /  A ■ (58)

19
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where we have written the multiple integral explicitly, and is the proper length of 

the one-dimensional space swept by a 1 and Ga is the determinant of the covariant 

metric in the three-dimensional cr-frame. Keeping Eq. (58) in mind and naming the 

covariant derivatives in x-frame as V,( for i =  1,2, 3, the first terms in Eq. (52) must 

be of the standard form V j y lV j y \  from which £ is fixed to be 1/L.

Consequently, we can write the covariant metric in cr-frame as

\

2 1 

1 2

(59)

whose restriction to the lower-right 2-by-2 block is identical to ga/3 in Eq. (46); 

similarly for the contravariant metric

\
^  u u

11(7 _
aa' ~  3L 2

rj*

o

V

(60)

/

2 - 1  

0 - 1 2

Note that ?] is a free parameter at this stage because only (\)\ is “visible” after 

dimensional reduction. To make Eqs. (56) and (57) nonsingular, we only require rj 

nonvanishing. In fact, T] controls the scale of the basis vector in cr1-direction, whose 

magnitude is not relevant in the present context. For later convenience we rescale 

a 1 —» a 1 /y/SLrj such that G h  —► 1 and that the domain of a 1 changes to (0, ac'); 

now i] is entirely absorbed.

From Eq. (56), one can easily infer that viewed in x-frame, a 2 runs along 

the (—1, 2 ,—Indirection, a 3 in the (—1, — 1, 2)-direction, while a 1 in the (1,1,1)- 

direction. The geometric significance of the dimensional reduction condition d /d a 1 = 

0 is nothing but the requirement the directional derivative in the (1,1, Indirection 

in x-frame should vanish, i.e. to restrict the theory to the sector invariant under 

translations in (1,1, l)-direction. (Of course, on (cr2, cr3)-plane, we need to impose 

periodic boundary conditions to make it into the torus T 2.)

20
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As a final remark in this sub-subsection, we see that k' provides the room for 

the electric-magnetic duality argument in [7] to convince 0(8) rotational symmetry 

in IIB string theory. We know that the Matrix Theory compactified on a three

dimensional torus is equivalent to 1 +  3-dimensional SYM. In fact, there exist two 

different limits from this 1 +  3-dimensional SYM to IIB string theory, in which d  

are treated differently. The first is in the sense of Sethi and Susskind in [7], that the 

k! is tuned to be proportional to the overall size of T 2. Then in the second one, the 

cr1-direction is taken as a KK circle, equivalently to decompactify the dual circle in 

the target space, and the original 1 +  2-dimensional theory is in the KK limit; in this 

case, there appears an additional wave function normalization such that effectively 

k! — 1 (the dimensional reduction condition (55) is equivalent to the prescription to 

keep only the zero-modes along the KK-circle).

3.3 .3  S Y M  in  th e  C o n tin u u m  L im it

W ith the above preparations, now it is straightforward to derive the continuum limit 

of the quiver matrix mechanics (2) and show that the full action is none other than 

a 1 +  2-dimensional SYM with 16 supercharges. We will bring the power of the KK 

dimensional reduction of 1 +  3-dimensional SYM into full play, with k! taken to be 

unity.

I. S ca lar

Collect Eqs. (42), (54) and the kinetic term of Y l (the first term) in Eq. (2).

S y  =  /  d t^ ^ t r ^ \ ^ Dty^ 2 ~  y f  +  ^ [y \  yJ}2} (61)

where the index A  runs from 1 to 4 and </>4 := \fZLdp'x\ or in a mixed fashion, with 

three-dimensional measure and four-dimensional Lagrangian:

S y  = J d t^ t r ^ D<yV ~  W ) 2) +  (62)

II . Y ang-M ills
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For the bosonic bi-fundamental variables Z a, we rewrite the relevant terms in 

Eq. (2)

S z  = J d t T r { \ [ D „ Z a}\2 - ^ ( \ [ Z a, Z ^ } \ 2 + \[Za, Z a'}\2)}. (63)

Introduce [Za1 Z â ] V^PaiaVa such that P ,̂a =  Paai and

Pa'a = Sa'ZaSaZa’' -  z ° V  = 5ada,zaS aza'1 +  5azadaz â  + [za, z a'i]. (64) 

Then [Za, Z a’] =: Qaa'VaVa' such that Qa'a = - Q aa' and

Qaa' =  z aSaz a' -  Za' s a,za =  5azadaza' -  8(jza'da/za + [za, za']. (65)

Also [A , Z a] =: SoaVa with

Soa = za -  i5(jzadaA 0 +  i[Aq, za\. (66)

The action S z  in Eq. (63) is recast into

S z  = J d t ^ 2 5 ( 7 2Ktr{\S0a\2 - ^ ( \ P a,a\2 + \Qa>a\2)}. (67)

Now we separate the VEV and the fluctuation as in Eq. (17), impose the VEV

(43) which, at large N , is the moduli condition in the language of quantum field 

theory, and substitute the parametrization of fluctuation in Eq. (44); remember the 

remark below Eq. (56) and definition of V* above Eq. (59), with subscripts a and 

a' in the sense of the directions in the quiver diagram replaced by j  and j '  in three

dimensional Euclidean space or three-torus, what follows in the continuum limit

Pj’j = + + (68)

Q i f  =  ^ ( ( V ^ ' - V ^ )  +  i ( - F f t - - # * , ^ ' ] ) ) ,  (69)

Soj = + (7°)
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in which the gauge field strength Fry , F0j are defined conventionally and each op

erator in Eqs. (68), (69) and (70) is sorted in the form F  =  3RF +  i^sF so that 

|F |2 =  (JR.F)2 +  (GF)2. Then similar to Eq. (62), Eq. (67) can be put into

S z  =  J d t ^ t r { \ F i  -  i f *  +  \ m r f  -  ( v , r f )  +  J r , r ' f }  p d

where we recover the a, a' indices for scalar fields. Eq. (71) should be understood 

with the help of the dimensional reduction condition (55); however we are not both

ered with deducing a similar expression like Eq. (61), since the goal here is just to 

check the 1 +  2-dimensional SYM in the continuum limit. It is easy to see that 

Eq. (62) plus Eq. (71) are simply a dimensional reduction of the 4-dimensional 

Yang-Mills theory subjected to Eq. (55).

III. Ferm ions

Once again, we try to deduce the continuum limit for fermions from

S F = J  d t T r { - l- ^ [ D t, A] +  i A H i n  A] +  A] +  ^ [ Z ' \  A])} (72)

in the four-dimensional point of view.

This time, we do it in the fastest way. From our experience with SY and Sz,  

we know that the effects of Va in Eqs. (45) are washed out in the large N  limit 

except the terms containing the VEV of Z a. We only emphasize that we can take 

the VEV’s to be nonnegative in Eq. (18) because their phases can be absorbed into 

the redefinition of the fermionic coordinates. Accordingly, we can write down the 

continuum limit of Sp directly
72 -i

SF = J d t - ^ - t r { - i \ fDtX +  A V J+3[Vj, A] +  A^[y®, A] +  At72a+2[(/>0, A]} (73)

where 72a+2 =  7a +  tJ , 72j+3 =  Klj  ~ l ] ) -

In summary, we have shown that the continuum limit of the quiver matrix me

chanics in Eq. (2) is a d = 1+2 SYM: Eqs. (62), (71) plus Eq. (73) constitute precisely 

the action of the d — 1 +  3 SYM with 16 supercharges dimensionally reduced by
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Eq. (55). This outcome in the continuum limit justifies our creed to approximate a 

compactification in Matrix Theory via a sequence of orbifolds, demonstrating that 

we are on the right track for IIB/M  duality.

4  W r a p p i n g  M a t r i x  M e m b r a n e  a n d  S L ( 2 , Z )  D u 

a l i t y

It is generally believed that in M-theory framework, IIB string theory can be de

scribed by M-theory compactified on a torus. In [9], Schwarz suggested that in 

such a theory there exist solitonic states, describing M2-branes wrapping on the 

target torus, which correspond to the doubly charged (gi, (^-strings (or bound FD 

strings) in IIB theory; and it is very tempting to identify the S L (2, Z ) duality in 

IIB string theory with the geometric S L (2, Z)  invariance for a torus. He already 

noted a serious problem in this identification, i.e. the degeneracy of wrapping mem

brane states would be generally greater than that of (gi, g2) strings, unless there is 

a way to identify the degenerate wrapping membrane states which he assumed is 

true. However, the explicit description of these solitonic wrapping membranes and 

the details of how the elimination of their degeneracy happens are still in demand 

in the literature.

Since our quiver matrix mechanics (de)constructs M-theory compactified on a 

torus, with a toroidal geometry for the dynamical membrane (see Subsections 3.1 and 

3.2), it provides a natural platform for dealing with the above mentioned problems 

involving wrapping membranes on target torus in IIB/M (atrix) theory. In a previous 

work [12] we have resolved these problems for the case when the compactified target 

torus is a regular one. In this section we generalize the discussions for an oblique 

torus with a generic complex modular parameter r.
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4 .1  W r a p p i n g  a  M e m b r a n e  o n  O r b i f o ld

How to define the states with a definite wrapping number for wrapping matrix 

membranes?

For a continuous membrane of toroidal topology, we use a pair of real coordinates 

(q,p), with the equivalence q ~  q +  27r, p ~  p +  27r. The continuous wrapping map 

from the membrane to the target T 2 satisfies the periodic boundary conditions

cp2(q +  2tt,p) = p 2 (q,p) +  27rm2 , p 2 (q,p +  2w) = (p2 (q,p) +  27rn2, 

cp3(q +  27r, p) =  (p3(q, p) + 2ttiji3 , ip3(q, p + 2tt) = (p3(q, p) +  27rn3, (74)

for four arbitrary integers ?7?2, n 2, m 3, n3. The solution, up to homotopy and large 

diffeomorphisms, is of the form

( p 2 {q7p) ^

\  p 3{<l p )

with the wrapping map matrix

=  W (m , n )

\ p }
(75)

(76)W (m ,n )  := (rn ,n) ,m:=  (?772 , m 3 ) T , n  : =  ( n 2 , n 3 ) T .

Subsequently the pull-back geometry from T 2 to the membrane is

ds2 — e2uJ \dq +  r*dp\2. (77)

= ew|m2 +  m3r |,  with the pull-back mod-here the pull-back conformal factor is e 

ular parameter to be
n 3r  +  n 2

77?.3 T +  771.2
(78)

(t is the modular parameter of T 2.) So the induced measure is

dqdp ■ e2w* r| =  dqdp ■ e2uj ■ £s({n3r  +  n 2)(m3f  +  ttt2)) =  dqdp ■ w ■ y/g, (79)

or simply d2(p =  wdqdp, with w =  detW  the wrapping number. 1
1Some au thors gave alike construction in different circum stances; for example, in [13], Bars 

considered the  connections between discrete area preserving diffeomorphisms, reduced Yang-Mills 

and strings.
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The wrapping map (75) is fully characterized by the induced structure (78) and 

(79). We know that, in the form of gauge-fixed metric (9), a torus possesses an 

SL{2 ,Z )  symmetry containing all large diffeomorphisms:

CLT + b 
CT +  Cl

where C  is an S L ( 2 ,Z )  matrix

c  ■ (80)

c  =

V

a —b 

—c d
(81)

Because det C — 1, none of d2̂ .  ^/g and the wrapping number w is changed under 

this SL(2, Z).

4 .2  M a t r i x  S t a t e s  o f  W r a p p i n g  M e m b r a n e  a n d  F r a c t i o n a l  

P o w e r s

The investigation in the previous subsection is carried out solely for the continuous 

torus. By (de)constructing a torus with a sequence of orbifolds, the wrapping map 

in Eqs. (74) change to be the following form

z 1 (q +  2tt , p) = e-iMm2+m^)/Nz i ̂  ? z xf a p  + 27r) =  e- ^ 2+n3)/N z i fa  p) ? 

z \ q  +  2 ir,p) = j 2™ 2/Nz 2 fa p )  , z2fa  p +  2tt) =  ei27Tn2/N z 2 fap),  

z3(q +  2tr,p) = ei2nm3/Nz 3 f a p ) , z3f a p  +  2tt) =  j 2™3/N z 3 fap) .  (82)

Below, introducing m 1 =  — m 2 — to3, n 1 =  — n 2 — n3. solution to Eqs. (82) can be 

simply written as

zafap)  = ei(*maq+nap)/N f a(q,p) (83)

where f a(q,p) are periodic functions in q and p.

The membrane in Matrix Theory is “quantized” by the prescription first to cut 

off all the components with the frequency higher than certain K  in the Fourier
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series of any world-volume function and then to substitute the two algebraic basis 

functions eiq, eip with the clock and shift matrices Uk  and Vk - Keeping track of the 

tensorial structure in the orbifolding, we are motivated to promote Eq. (83) to the 

Matrix Ansatz:

Z a(UK, VK) = l f £ INv £ INF a(UK, VK) ® Va (84)

with F a polynomials in Uk  and Vk - 2

To make sense of Eq. (84), we define the fractional powers of clock and shift 

matrices Uk , Vk  with “nice” properties, a key technicality in this work. For math

ematical rigor, we apply the Dunford functional calculus [14] to matrices with finite 

rank K  by defining

u aK/c =  (85)
r

VK/d =  2 ^  /  C ^ C  -  V ^ - ' d C  (86)

where a, 6, c and d are arbitrary integers. From Eq. (15), it is easy to show that the 

spectrum of Uk  contains all of the K -th roots of unity, cvJK for j  =  0 ,1 , . . . ,  K  — 1. 

To single out this spectrum, the contour T by definition consists K  disjoint small 

circles, each encircling an eigenvalue u JK, say |C— \ =  e for some small e > 0 . A cut 

on ("-plane, running from the origin to the infinity, is drawn to sort out an analytic 

branch of the function ( â c. The cut can not have any intersections with the contour 

r ,  say passing between two neighboring circles. The same rules on the contour and 

cut should be applied for the definition of V' as well. Note that, as Eq. (15), the 

definition in Eqs. (85) and (86) is independent of specific matrix representation for 

Uk  and Vk -
2 We are not bothered w ith com m ensurability of N  w ith  respect to  m a and na , because eventually 

N  is taken  to  infinity while keeping m a and na finite. See ref. [13] also.
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The following properties are generic results from the Dunford calculus [15].

j t (i / c jtq! I c! j ra /c+ a ' /c '  -rrb/d xrb,/ d / t rb/d-\-bf/ d! / o r7 \
U K  * U K  =  U K  > VK  * VK  =  VK  > \P  ( )

[7“/ ct =  ( U xk T Ic , v £ M  =  ( V l ) b/d, (88)

( [ 7 “/ c ) « ' / c '  =  ; l y W f / d ’ =  V » ' / M  ( 8 9 )

For example, Eq. (87) follows by manipulating Cauchy’s integral formula and adopt

ing the resolvent identity

(C' -  C)_1[(C -  U k ) - 1 -  (C -  U k ) - 1} = (C -  u K) - l (C -  U k ) - 1 (90)

(and a similar formula for Vk )- A direct consequence of Eqs. (88) and (89) is

UaK C] = UKa,Ci V bJ d] = V ^ b,\  (91)

namely U^[c and V ^ d are unitary.

Because of the first two formulas in Eq. (15), one has

(c - u k ) - 1 =  ( c A' - i r 1 E c A' - i y r \  (9 2 )
j = 1 3=1

and therefore,

1  K  r  / - a / c + K - j  1  K  r  C b /d + K - j

u t  =  E  /  c, v r  =  E  /  m
j = ip  ^ J = ip

W ith the help of these equations, we have the following theorem:

T heorem  1

V bJ d ■ u t  = u>fcdUaK/c • V bJ d. (94)

The proof of this theorem is presented in Appendix A.

This theorem is the central result of this subsection. It is a very nice property of 

the fractional powers we have defined. Comparing Eq. (94) with the commutation 

relation Vk Uk  — wk Uk Vr , we see that the complex factor ujâ cd in the former
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is just a fractional power of luk in the latter. This property is highly non-trivial, 

because here we are dealing with the commutation relations of the fractional power 

of two noncommuting operators. 3

After these preparations, now we can proceed with our Matrix Ansatz (84) for 

the wrapping states of a matrix membrane, which is a proper, noncommutative gen

eralization of the ordinary wrapping map (83). Our discussion below on membrane 

physics will heavily rely on the commutation relation (94).

The next step to define those matrix states is to specify the matrix functions 

F a(UK,VK) in Eq. (84). In this work, we will restrict ourselves to the center-of- 

mass motion, suppressing the oscillation modes. Therefore, F a are just complex 

numbers. As for the values for m a, na, we take Schwarz’ Ansatz

n2 = qi, n3 =  q2 (95)

whose reason will be explored in full length in Subsection 4.4.1. Because of Eq. (91), 

motion in the radial directions and in the unorbifolded angular direction are sup

pressed, exactly the same as from Eq. (6) to Eq. (7). In accordance with subsection 

3.1, if we further require

|F a| =  {za) (96)

with (za) are the VEV given in Eq.(18), then the Matrix Ansatz (84) describes a 

matrix membrane wrapping on T 2, as dictated in Eq. (95). In other words, contrary 

to Eq. (17), the factor F aU^ N̂y n a/N jn Eq. (84) provides a polar decomposition of 

the bi-fundamental variable Z a. Here |F a| may be interpreted as the distance from 

the membrane to the orbifold singularity (as center-of-mass degrees of freedom), 

while the unitary matrix U^ N̂ describes how the constituent DO-branes of

the membrane are wrapped in the orbifolded angular direction of Z a.

3See [16] for the fractional powers of operators along a line other th an  the Dunford calculus.
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4 .3  D y n a m i c s  o f  W r a p p i n g  M e m b r a n e s

After defining a class of wrapping membrane states with Eqs. (84), (95) and (96), we 

discuss their physics in this subsection. Since the wrapping states involves pulling

the geometry constructed in subsection. 3.1 via the wrapping states.

4.3.1 C lassical M otions

As part of the BFSS conjecture [4], membranes in Matrix Theory are considered 

to be a composite of DO branes. Therefore, the action (2) of our quiver matrix 

mechanics, as an orbifolded Matrix Theory, legitimately describes the dynamics of 

the matrix membrane degrees of freedom for the states given by Eq. (84). Generically 

the center-of-mass degrees of freedom F a are time dependent. The classical motion 

for F a(t) in Eq. (84) is determined by the equation of motion (EOM) derived from 

the action (2):

in which we have recovered R n  explicitly. For convenience, we write Z a{UK,V x )

the geometry of T 2 back to the membrane in subsection 4.1, the membrane probes

Z a +  — ([Zh, [Zb\  Z a]\ +  [Zb\  [Z\ Z a]\) =  0 (97)

shortly as Z a hereafter without confusion. Eq. (97) is satisfied if

F a{t) =  (za)e~iuJat (98)

with

(99)

Moreover, the solution (98) also solves an additional constraint

[Za,Z at] +  [Zaf, Z a] = 0 (100)

that descends from the gauge fixing of the membrane world-volume diffeomorphism 

(see for example [17]).
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4.3.2 W rap p in g  S p ec tru m

First let us calculate the energy density on a wrapping membrane:

H = ? f { \ [ Z \ Z ^  +  \ [ Z \ Z X } -  (101)

Taking into account Eqs. (84) and (98), one has

H  =  +  +  ^ 2 / D l 1 -  cos (102)

Instead of Eq. (26) in the context of the SYM limit, for wrapping membrane states 

the trace of I k n 2 is regularized to be (27t)2K.  Recalling the toroidal metric (8), in 

either the large N  or the large K  limit, the wrapping energy approaches to

M 2Pw = TrH = ^  (103)

where

Mw =  TM2wA T 2 (104)

with Tm2 =  l/(27r)2 the dimensionless membrane tension, A T2 the area of T 2 given 

by Eq. (11), and the light-cone momentum

P + = K / R n . (105)

Eqs. (103), (104) and (105) match perfectly with the M-theory picture. The light- 

cone energy Pw is of the nonrelativistic form in Eq. (103), with light-cone mass P +; 

the transverse (wrapping) mass Mw is factorized exactly into the correct membrane 

tension, wrapping number and the area of the torus in target space. As a finite 

energy state, the light-cone energy scales like 0 ( 1 / K ), as predicted by BFSS [4],

4.3.3 S tab ility  of C onfigu ra tion

From Eq. (99), the configuration in Eq. (98) is static if and only if there is no 

wrapping (provided w N.)  This is not a surprise that a wrapped static membrane
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cannot stay stably on an orbifold because, the closer the membrane to the orbifold 

singularity, the less the tension energy costs in Eq. (104). (In other words, the only 

stable static wrapping configuration is the one in which all D-particles stay right at 

the origin.)

Consequently, a wrapping membrane away from the origin has to rotate to 

achieve a stationary state. The rotation with the angular velocity cja contributes a 

nonzero kinetic energy:

K w = T r \Z a\2 =  Pw. (106)
r i i i

Another observation is

=  i ? n - s i n ( - = , ) E / , 2/2]1/2. (107)
7T ' K N 2 ' h ,b^a

The interpretation of Eq. (107) is simple: due to the fuzziness introduced by finite 

N , the wrapping membrane generally rotates also in the un-orbifolded direction tp1.

4.3.4 C enter-of-M ass M o m en ta

Eq. (84) is not the most general solution to the equations of motion (97) and (100). 

At least one can add a term linear in time:

Z a =  - J ^ - ( N e - iuJatU f /NV K /N +  ^ k at) <g) Va , (108)

where real coefficients ka are to be determined. Now the total (light-cone) energy 

of the configuration (108)at finite N  and K  is

{ /a2r - 1 E  f ^ / ^ e - ' ^ u f /NV ^ Nn  + Pw. (109)

To evaluate Eq. (109), we need to know tr{Uma/NV na/N} /K .  From Eq. (93) and 

the definition of the contours T, T' and the branch cuts, we get

tr  ̂ K K_ $ j j m a/ N y n a/ N |  _  _ J _ ^ 2 e i27rjma/ K N ^ ^ 2  e i2 n j 'n a/ K N ^

K  K  j = i  j ' = i

^ i 2 i r m a / K N  ^gi27r?na /TV __ ^ i 2 'K n a / K N  ^ i 2 i r n a / N  __  -j^

^e i2irma /  K  N  — 1 )  f f ( ^ e i2Tma/ K N  — 1 )

32

, ( 1 1 0 )



UU 
IR 

A
uthor 

M
anuscript 

UU 
IR 

A
uthor 

M
anuscript

U n i v e r s i t y  o f  U t a h  I n s t i t u t i o n a l  R e p o s i t o r y
A u th o r M anuscrip t

So in the large-X and large-AT limit (continuous membrane and continuous torus 

limits), with R n  =  K ,

Hmem = + m d  ( i n )

where pa — ka — w[J2 /2]1//2. From the point of view of T 2, we require p 1 —
b^a

—p2 —p3; therefore ka can not be independent. And we also require that the canonical 

momenta pa =  gapP^ are quantized to take integer values /2, h', accordingly,

Hmem = \ ( g al3l„k + Ml) .  (112)

4 .4  I I B / M ( a t r i x )  D u a l i t y  f r o m  W r a p p i n g  M e m b r a n e s

Now we are in a position to verify the IIB/M (atrix) duality by studying the spectrum 

and symmetry of matrix membrane states.

4.4.1 E lim in a tio n  of U nw an ted  D egeneracy

Generically different wrapping map matrices may have the same wrapping number. 

Since the energy of wrapping states is proportional to w, we seem to encounter 

a possible enormous degeneracy for a given w. Even the S L(2 ,Z )  equivalence in 

Eq. (80) is not able to resolve all the degeneracy. On the other hand, if one wants 

to make the correspondence between wrapping membrane states and the doubly- 

charged (<71,(72) string states, in accordance with IIB string theory, the wrapping 

membranes with a given wrapping number w should be non-degenerate [9]. To 

eliminate the degeneracy of wrapping membranes, Schwarz incorporates the Kaluza- 

Klein direction in to picture for the (<71, q2) strings [9].

According to the generalized T-duality that we briefed in Sec. 1, (<71, </2)-string 

winding I times on the IIB theory circle is dual to KK mode (lq\, lq2) on T 2 in M- 

theory, with <71, q2 coprime. Schwarz’ ansatz says that one cycle of the membrane, 

say, in ^-direction, must posit in the KK direction and winds only once, namely
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Bl =  {qi,Q2)T ='■ Q- Accordingly,

w =  m 2q2 — ir^q i . (113)

We claim the following theorems:

T h eo rem  2 For any pair of coprime integers (qi, q2), there exists a pair of integers 

(m2,ra3) such that Eq.(llS) is satisfied with w — 1.

This theorem is an elementary result in Number Theory; it has an (obviously) 

equivalent presentation:

T h eo rem  3 For any integer w and any pair of coprime integers (qi, q2), there exists 

a pair of integers (m2,m 3) such that Eq.(llS) is satisfied.

The following theorem asserts the uniqueness of the considerations:

T h eo rem  4 I f  there exists another pair (m/2,m /3) satisfying Eq. (113), then there 

exists an S L(2 ,Z )  transformation on the membrane coordinates (q,p) that relates 

these two wrapping maps.

We present a proof to Theorem 4 here. Because both (m2, ?7?3) and (m/2, ?7?/3) satisfy 

Eq. (113), (m/2 — 7Ji2)q2 =  (?7?/3 —m 3)qi. Subsequently, there exists an integer b such 

that m '2 — m 2 +  bqi, ra/3 =  ra3 +  bq2. Then, as usual r n f _ (m/2, ra/3)T,

W (ttV, q) — W  (m, q) (114)

Q.E.D.

Using these theorems, the original characterization of a wrapping map is traded 

into three parts, (gi, (^-charge, wrapping number w and an S L (2, Z)  family labelled 

by b. Thus the wrapping states with given w is non-degenerate up to the geometric 

SL(2, Z )  symmetry on the membrane.
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4.4.2 I IB /M  D uality

To see how the generalized T-duality [9] works, on the one hand w is the wrapping 

number of a membrane over T 2 in M-theory; on the other hand the wrapping mass 

(104) can be reinterpreted as a KK momentum as suggested by IIB/M  duality, 

namely

Mw = w / R B, R B = l /y /g  (115)

where the newly constructed IIB circle SB has radius R B. SB becomes decompact- 

ified when the size of T 2, measured with ^fg, shrinks to zero; hence, the wrapping 

contribution to the spectrum (112) becomes a continuous kinetic energy. To com

plete the generalized T-duality, besides Eq. (95), we add the following known con

straint on the center-of-mass momenta of the membrane, coming from the argument 

of the stability of the FD-string bound states, that

k  = h i  , k  = lQ2 - (116)

The counterpart of the “nine-eleven flip” in IIA/M duality is the identification 

of the modular parameter r  of T 2 and the IIB coupling x  +  where x  is the 

Ramond-Ramond scalar and </> the dilaton in IIB string theory. In accordance with 

this identification, the metric of T 2 can be expressed in IIB terms as

/  i \
(117)1 X

\  X X2 +  e~24>

Therefore, the parametrization f a is just the moduli of an RR-scalar, dilaton and 

an overall radion [18].

Since both the determinant g and the wrapping number are invariant under 

SL{2,Z)  transformation of T 2, so is the wrapping mass (104). Moreover, (<71,(72) 

transform covariantly under SL(2 ,Z) ,  so the kinetic energy (112) is also invariant, 

as well as the total energy Hmem.
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5  C o n c l u s i o n s  a n d  D i s c u s s i o n s

The logic underlying this paper can be summarized as follows. First the geometry 

setting is the orbifold C3/ Zfj ,  in which a discretized torus is “embedded” even at 

finite N.  On the one hand, the collective motion of D-particles in the angular 

directions on this orbifold may develop a (regularized) wrapping membrane, which 

are described by fractional powers of the clock and shift matrices. Our quiver matrix 

mechanics governs the dynamics of the wrapping configurations. The wrapping 

modes develop a Kaluza-Klein tower, giving rise to the generalized T-duality and 

IIB/M (atrix) duality. On the other hand, by deconstruction of D-particle states, 

the dual torus emerges in target space and 1 +  2-dimensional SYM emerges in the 

large N  limit. This deconstruction procedure also reveals a (hidden) underlying

1 +  3-dimensional SYM, which plays a vital role in the literature of IIB/M (atrix) 

Theory duality.

Our analysis of IIB/M  duality concentrates mainly on the spectroscopy, leaving 

for the future research of the deduction of an effective theory from SYM as well as the 

relation between Yang-Mills coupling and IIB coupling. A spectroscopic discussion 

of wrapping membrane is also given in [19], where T 3 x A ^ - i  is taken to be the base 

space. We only note that to get the correct chirality of IIB fermions from the Matrix 

Theory is highly nontrivial. The deconstruction technique has been widely employed 

in string community, for examples see [20, 21]; more comprehensive discussion on 

compactification in various dimensions, especially on M5-brane, can be found in 

[8 , 22] (see also [23] and [24] for intersectional M5-brane). As we noted before, the 

main technical difficulty that we have overcome is to construct the matrix membrane 

states wrapping on the orbifold. Our formalism of fractional powers of clock and 

shift matrices has a natural connection with fractional membrane, of which early 

intuition can be traced to [25].

We have applied our approach to both IIA/M and IIB/M  dualities. While IIA/M
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duality is now a somewhat common exercise4, the success of our quiver matrix me

chanics approach in demonstrating IIB/M  duality shows its powerfulness in dealing 

with non-perturbative aspects of string theory, in contrast to the inaptitute of com

pactified Matrix Theory to incorporate the wrapping matrix membrane states.
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A  P r o o f  o f  T h e o r e m  1

We have to show the following lemma first.

L em m a 1 For arbitrary integer j ,

( 4 -UK)a/c =  (118)

a similar statement holds for V ^ d too.

In fact,

-1 K  r ( j  / - \ a / c / -K —j'
R.H.S. of Eq. (118) =  —  £  jf  ( k C)k  _ C U ^ d C

j ' = i  r

In the last line, we used the fact that (oj]k)k  =  1. Changing the variable from (  to

(jjzK(  just shifts cyclically the circles constituting the symmetric contour F, without
4For the latest discussions, see [26, 27].
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the integral unchanged. Recall the definition in Eq. (93), and the L.H.S. of Eq. (118) 

follows.

Then the proof of Eq. (94) becomes straightforward. By substituting Eq. (93),

1 K  r  c b / d + K - j  I K  r  f a / c + K - j '
L.H.S. of Eq. (94) =  (120)

J =  l r , s  J - l r  ^

Because of the commutation relation in Eq. (15), V^_1£7̂ _1 =

Accordingly, the R.H.S of Eq. (120) is

1 K  r d b / d + K - j  i K  r f a / c + K - j '

5 - E / E  ( m
j = i T, s j - i p  ^

By definition (93), [...] in Eq. (121) is just (ujji^ 1 Uk)cl̂ c- Due to Lemma 1, (ujji^ 1 Uk)cl̂ c 

J i ~ 1)a/cUaJ c. Then, the R.H.S of Eq. (121) is

. 1 K  c b / d + K —j

° 2 w i  ^  V k Y (122)3 = l j v  ^

Again by definition in Eq. (93), Eq. (122) gives rise to U^/c(u<̂cVK)b̂ d■ Finally, 

using Lemma 1 again, the R.H.S. of Eq. (94) follows. Q.E.D.
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