
TESTING THE CONSEQUENCES OF SPECIFICATIONS IN MODAL Jl 

Ying Liu, John Aldwinckle, Graham Birtwistle, Ken Stevens, 
Department of Computer Science, University of Calgary, Canada. 

Abstract 

In a companion paper in these proceedings [6], we in
troduced the CCS notation and explained how to write 
specifications succinctly in CCS using the composition op
erator. In this paper we explain how one may associate 
a process logic with CCS and use it to resolve deadlock, 
safety, liveness, and fairness properties of specifications 
by static testing. 

1 Introduction 

Specifications tell us what a system should do - not how 
it does it. They are thus simpler and shorter than im
plementation descriptions. Since equivalent descriptions 
share exactly the same properties, it pays to investigate 
properties of a system by testing its specification rather 
than testing its implementation. 

In this paper we couple a process logic to CCS and 
show how to test for such properties as deadlock, safety, 
liveness and fairness. See [5, section 2, pages 177-387] for 
a very readable and full account. [1] gives the intuition 
and background to minimum and maximum fix points. 
[7] is an excellent account of process logics and CCS. Ms 
Liu's thesis [4] applies these techniques to asynchronous 
hardware. 

2 HML - Hennessy-Milner logic 

Labelled transition systems. The processes of CCS 
generate labeled transition systems of the form ( P, A, 
T) where 

• P is a non-empty set of agents 
• A is a set of input actions (a) and output actions 

(a) 
• T are the transition relations for each a (or a) E A. 

E.g. given the system which describes a two place buffer, 

Bo d~ put.Bl 

Bl d~ put.B2 

B2 d~ 
then 

P {Bo,Bl ,B2 } 

A {put, get} 

T {Bo 
put 
-+ B l , 

Bl 
put 
-+ B 2, 

Bl 
get 
'-+ Bo, 

B2 ~ Bd 
HML. The syntax of HML formulae is: 

A ::= T 1 -,A 1 A /\ A 1< a > A 1 [alA 

with interpretation: 

• T is the constant true formula 
• -,A is a negated formula 
• A /\ A is a conjunction 
• modalised terms: 

<a> A is read as "A holds after some a action" 
[a] A is read as "A holds after all a actions" 

We derive F, v, =>, =, ... from the basic operators. Notice 
that [ land <> are duals of each other since < a > A = 
-,[a]-,A - only one need be defined as a primitive. 

Since the formulae are parameterised by the action set, 
each transition system has its own associated HML. 
Satisfaction over HML. For a given fixed transition 
system, we now define when a process E E P satisfies the 
property A (written E F= A): 

1 E F= T 
2 E F= -,A 
3 E F= A/\B 
4 E F= <a> A 

5 E [a] A 

with interpretation 

VE 
iff E ~ A 

iff E F= A and E F= B 
iff 3 E' E P, a E A. 

E ~ E' and E' F= A 
iff 'v' E' E P, a E A. 
E ~ E' => E' F= A 

1. Every process in P satisfies property T 
2. A process has property -,A when it fails to have prop

erty A 
3. A process has property A /\ B when it has property 

A and it has property B 
4. A process satisfies <a> A if there exists one a action 

whose resulting process has property A 

CCECE/CCGEI '93 0-7803-1443-3/93 $3.00 © 1993 IEEE 

987 

57.3 



988 

5. A process satisfies [aJ A if after every performance of 
an a action all the resulting processes have property 
A 

Example: 2 place buffer 

1. Bo 1= <put> T the buffer can add an item in Bo 
2. Bo 1= ~«get> T) the buffer cannot remove an 

item from Bo 
3. B1 1= <get> T 1\ <put> T B1 can both remove 

and add an item 
4. B2 1= <get> T 1\ ~«put> T) B2 can remove an 

item, but can not add an item 

and more notation. We make HML more convenient 
to use by allowing the following notational extensions: 

H d~ all actions A 

[-k,l,mJ d;;j all actions except k,l,m in A 

<a,b,c> S d~ <a> S V <b> S V <c> S 

[a,b,cJ S d,;/ [a] S 1\ [b] S 1\ [c] S 
In particular 

E 1= [a] F 
E 1= <a> T 
E 1= [-] F 
E 1= <-> T 

E cannot do an a move 
E can do an a move 

E is deadlocked 
E is live 

E 1= <a> T 1\ [-a] F E can only do an a 

3 Recursive agents 

All interesting agents are recursive. Our buffer has the 
property that once in state B1 all we can do is either a 
put followed by a get, or a get followed by a put, and then 
we are back in state B1 again. I.e. we can keep on doing 
this forever. An obvious notation in which to express this 
infinite behaviour is: 

B1 = «get> <put> V <put> <get> )B1 

Such a fix point equation may have no solutions (e.g. X 
= ~ X) or several solutions. There will always be at least 
one solution provided that each fix point variable is within 
the scope of an even number of negations. From now on, 
we assume that all our modal formulae pass this simple 
syntactic test. 
Satisfaction via sets of states. We associate with a 
property the set of states satisfying it: 

II A II 
II T II 
II F II 

II ~A II 
II A 1\ B II 

d!..! set of all states satisfying A 

true of all states = P 

true of no state = 0 

P -II A II 
IIA II n II B II 

II <a> A II d~ true iff it is possible to do an a 
and move to a state enjoying A 

II [aJ A II ~ true iff however we do an a 
we move to a state enjoying A 
TRUE if we cannot do an a 

Example: 2 place buffer (cont) 

Here are some satisfaction relations over the 2 place buffer 
Property p Set of states with p 

II T { Bo, B1, B2 } 
II <->T {Bo,B1 ,B2 } 

II <get> T { Bo, B1 } 
II <put> T { B 1 , B2 } 

II <get>TI\[-get]F { Bo } 
II <get>TI\<-put>T { B1 } 

II <put> T 1\ [-put] F { B2 } 
II H F {} 

II F { } 
Min and max fix poin s. In general when we look for 
the fix points of a formula several sets of states might be 
solutions. And since there may be several solutions, key 
questions to ask are: how do we find them? are there any 
of special interest? 

If we wish to find all the fix points, we could test all 
the possible combinations from the empty set, the sets of 
singletons, two states at a time, ... , all the way up to P. 
It turns out that the fix points form a lattice and that 
the "least" and "largest" of solutions are not only unique, 
but they also have interesting physical interpretations and 
fast algorithms. 

The minimum (least) fixpoint includes only what is nec
essarily true. It expresses liveness: e.g. a must eventually 
happen. It is found by iteration: we start from the empty 
set of states and include what must be there. 

The maximum (largest) fix point includes everything 
except that which is necessarily false. It expresses safety: 
e.g. a holds everywhere. It is found by iteration: start 
with all possible states and pare out those found wanting. 
Raw modal 1-1. Modal 1-1 extends HML with fix points: 

A H M L I min(X.A) I max(X.A) 
where X is a fix point variable. min and max are dual 
operations - only one need be defined as a primitive. 

Unfortunately properties written in raw modal 1-1 are 
rather hard to read. As an example, a test for the absence 
of deadlock is: 

max(X. < - > T 1\ [-]X) 

It expresses the set of states X which can themselves make 
a move « - > T) and from which all moves ([ -]) takes 
us to a member of the set of states X which can ... Thus, 
no member of this set of states is incapable of making a 
move. 

Since this is a relatively simple test, it doesn't take 
much imagination to to realise that complicated proper
ties can be very hard to for humans to interpret. The 
same game has been played for many years by temporal 
logicians who have come up with a few basic operators 
that may he composed. Amongst these are 

AL WAY S needs all states on all paths as 
witnesses 

PAT H needs all states on a single path to 
be witnesses 

POSSIBLE needs only a single state on a single 
path as a witness 

EV ENTU ALLY needs a single witness on all paths 



and modal I-' is powerful enough to express them all: 
max(X.P /\ [-]X) ALWAYS 
max(X.P/\ < - > X) PATH 
min(X.P V [-]X) EV ENTU ALLY 
min(X.PV < - > X) POSSI BLE 

These operators are easier to understand, and we use them 
rather than raw modal tJ. 

4 Property testing in modal J-l 

DEADLOCK means that a system may reach a state 
in which it cannot make a move (is stuck). For any 
system SYS, absence of deadlock may be expressed 
as: 

SYS F ALWAYS <-> T 

read as "in every state (ALWAYS), it is possible to 
make a move «-> T)", or by its dual 

SYS F ...,(POSSIBLE H F) 

read as "it is not true that there exists a path to a 
state (POSSIBLE) in which every move is impossible 
([-] F)". 

FAIRNESS means that a system can not "spin" forever 
without enabling some particular input or output ac
tion. For any system SYS, and for a particular action 
a, this may be expressed as: 

SYS F ALWAYS..., PATH..., <a> T 

read as "from every state (ALWAYS) there does not 
exist a path (..., PATH) to a state where action a is 
never enabled (..., <a> T)" or by its dual 

SYS F ALWAYS EVENTUALLY <a> T 

which reads as "from every state (ALWAYS) for each 
path (EVENTUALLY) there is a state in which a is 
enabled «a> T)". 

SAFETY tests to see that bad things cannot happen. 
Safety tests must be tailored to the system at hand. 
For the two place buffer, we may want to check that 
it is never possible to output three times without 
doing an input. 

Bo F ALWAYS [get][get][get]F 

read as "in every state (ALWAYS) it is not 
possible to perform three consecutive get actions 
([get] [get] [get] F) . 

LIVENESS tests to see that good things may happen 
(e.g. each request may be accepted) 

For any system SYS, and a particular action 
a, live ness of action a may be expressed as: 

Bo F ALWAYS POSSIBLE <a> T 

read as "from every state (ALWAYS) there exists a 
path (POSSIBLE) to some state where action a is 
enabled «a> T)". 

Fairness can be seen as a stronger form of liveness. 

5 CSM: Dill et. al's memory 

In this section we put it all together using a recently 
published example. [3], Dill et. al describe (but do not 
specify) a FIFO storage management control system using 
Petri nets. 

wr 

wa din 

CSM 

cr dout 

Co e;:r 

This CSM has to deal with two types of request: 

1. WRITE which claims a storage location and then 
puts data read from din into it 

2. CLEAR which emits the "next" data item (when one 
is available) on dout and then frees that location 

The implementation they have in mind uses a circu
lar buffer as basic storage. The storage is guarded by 
a controller which prevents din and dout occurring to
gether (mutual exclusion), and also refuses writes when 
the buffer is full and refuses clears when the buffer is 
empty. 

This specification is given shape by considering W 
(write) and C (clear) agents running in parallel. 

W d;J wr.din.wa.W 

E d;J cr.dout.ca.E 

CSM d;J (W I E) \ {timing constraints} 
We now define a counter which is used to keep track of the 
number of used slots in the system. Every time a slot is 
given out it counts up and every time a slot is returned it 
counts down. Since we need to be able to test the state of 
the counter before actual accesses are made, the counter 
maintains a number of flags: f (full) and nf (notfull); and 
e (empty) and ne (notempty). 

Here we use a 3-counter - a counter of arbitrary size 
is defined in the same manner, Notice that this counter 
fails with a signal on err should we attempt to up a full 
count or down an empty count. 

C3 d;J down.C2 + up.err.O + f.C3 + ne.C3 

C2 d;J down.C1 + up.C3 + nf,C2 + ne.C2 

C1 d;J down.Co + up.C2 + nf,C1 + ne.C1 

Co d;J down.err.O + up.C1 + nf.Co + e.Co 
Our second approximation to the specification is: 

W d!.l wr.nf.up.din.wa.W 

E d;J cr.ne.dout.down.ca.E 

Co as above 

CSM (W I E I Co IS) 
\ {down, up, f, nf, e, ne} 
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in which W tests the Hag nf to ensure a slot before claim
ing it with an up and reading in the data, and E tests the 
Hag ne to ensure data is there before writing it out and 
then returning the slot with a down. 

Our last step is to ensure that data inputs and out
puts are mutually exclusive. All we need add is an extra 
semaphore: 

W d;J wr.nf.gS.up.din.pS. wa. W 

E d;J cr.ne.gS.dout.down.pS.ca.E 

Co 
d;! as above 

S d;! gS.pS.S 

CSM d;J (W I E I Co I S) 
\ {down, up, f,nf, e, ne,gS,pS} 

Dill et. al state the desirability of testing the speci
fication for mutual exclusion on data input and output 
and ensuring that data cannot be input when SM is full 
and output when SM is empty. The Concurrency Work 
Bench (CWB) [2] has a fully automatic model checker, 
which makes these and other more searching questions 
trivial to ask: 

• Is it always possible to make some move? i.e. no 
deadlock. 

CSM F ALWAYS <->T 

• No bus data contention, i.e. it is never possible to 
both input and output. 

CSM F ALWAYS ...,«<din>T 
/\ <dout>T) 

• we can neither overflow nor underflow the stack. 

CSM F ...,(POSSIBLE <err>T) 

• is" din" a live transition? 

CSM F ALWAYS POSSIBLE <din>T 

• is the system "fair" on din? 

CSM F ALWAYS EVENTUALLY <din>T 

• is the input protocol respected? i.e. no din without 
a wr; no wa without a din; no wa without a wr 

CSM F CYCLE wr din 
/\ CYCLE din tVa 
/\ CYCLE wr tVa 

where we introduce a new operator called CYCLE: 

CYCLE a b d;J 
max(X.tb]F /\ [-a]X /\ 
[a](max(Y. [a]F /\ [-b]Y /\ [b]X») 

This describes the set of states X where no b action 
is possible, and any action other than a will take 
us back into this set of states, and an a action will 
take us to a set of states Y where, no a action is 
possible, and any action other than a b will take us 
back into this set of states, and a b action will take us 
back into the set of states X where ... In essence, it 
ensures that action a always preceeds action b which 
always preceeds action a which ... 

6 

• is the output protocol respected? i.e. no dout with
out a cr; no CO without a dout; and no ca without a 
cr. 

CSM F CYCLEcrdout 
/\ CYCLE dout ca 
/\ CYCLE cr ca 

Conclusions 

If specifications for circuits are written in a formal speci
fication language such as CCS, it is possible to automat
ically and mechanically check properties of the specifica
tion using the modal IJ-logic. These methods are comple
mentary, as CCS uses an operational description of circuit 
behaviour, while the ModallJ logic describes properties of 
specifications independently from their implementation. 

For details of how to specify complex systems in CCS 
see the companion paper in these proceedings [6]. 
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