
TESTING THE CONSEQUENCES OF SPECIFICATIONS IN MODAL Jl

Ying Liu, John Aldwinckle, Graham Birtwistle, Ken Stevens,
Department of Computer Science, University of Calgary, Canada.

Abstract

In a companion paper in these proceedings [6], we in
troduced the CCS notation and explained how to write
specifications succinctly in CCS using the composition op
erator. In this paper we explain how one may associate
a process logic with CCS and use it to resolve deadlock,
safety, liveness, and fairness properties of specifications
by static testing.

1 Introduction

Specifications tell us what a system should do - not how
it does it. They are thus simpler and shorter than im
plementation descriptions. Since equivalent descriptions
share exactly the same properties, it pays to investigate
properties of a system by testing its specification rather
than testing its implementation.

In this paper we couple a process logic to CCS and
show how to test for such properties as deadlock, safety,
liveness and fairness. See [5, section 2, pages 177-387] for
a very readable and full account. [1] gives the intuition
and background to minimum and maximum fix points.
[7] is an excellent account of process logics and CCS. Ms
Liu's thesis [4] applies these techniques to asynchronous
hardware.

2 HML - Hennessy-Milner logic

Labelled transition systems. The processes of CCS
generate labeled transition systems of the form (P, A,
T) where

• P is a non-empty set of agents
• A is a set of input actions (a) and output actions

(a)
• T are the transition relations for each a (or a) E A.

E.g. given the system which describes a two place buffer,

Bo d~ put.Bl

Bl d~ put.B2

B2 d~
then

P {Bo,Bl ,B2 }

A {put, get}

T {Bo
put
-+ B l ,

Bl
put
-+ B 2,

Bl
get
'-+ Bo,

B2 ~ Bd
HML. The syntax of HML formulae is:

A ::= T 1 -,A 1 A /\ A 1< a > A 1 [alA

with interpretation:

• T is the constant true formula
• -,A is a negated formula
• A /\ A is a conjunction
• modalised terms:

<a> A is read as "A holds after some a action"
[a] A is read as "A holds after all a actions"

We derive F, v, =>, =, ... from the basic operators. Notice
that [land <> are duals of each other since < a > A =
-,[a]-,A - only one need be defined as a primitive.

Since the formulae are parameterised by the action set,
each transition system has its own associated HML.
Satisfaction over HML. For a given fixed transition
system, we now define when a process E E P satisfies the
property A (written E F= A):

1 E F= T
2 E F= -,A
3 E F= A/\B
4 E F= <a> A

5 E [a] A

with interpretation

VE
iff E ~ A

iff E F= A and E F= B
iff 3 E' E P, a E A.

E ~ E' and E' F= A
iff 'v' E' E P, a E A.
E ~ E' => E' F= A

1. Every process in P satisfies property T
2. A process has property -,A when it fails to have prop

erty A
3. A process has property A /\ B when it has property

A and it has property B
4. A process satisfies <a> A if there exists one a action

whose resulting process has property A

CCECE/CCGEI '93 0-7803-1443-3/93 $3.00 © 1993 IEEE

987

57.3

988

5. A process satisfies [aJ A if after every performance of
an a action all the resulting processes have property
A

Example: 2 place buffer

1. Bo 1= <put> T the buffer can add an item in Bo
2. Bo 1= ~«get> T) the buffer cannot remove an

item from Bo
3. B1 1= <get> T 1\ <put> T B1 can both remove

and add an item
4. B2 1= <get> T 1\ ~«put> T) B2 can remove an

item, but can not add an item

and more notation. We make HML more convenient
to use by allowing the following notational extensions:

H d~ all actions A

[-k,l,mJ d;;j all actions except k,l,m in A

<a,b,c> S d~ <a> S V S V <c> S

[a,b,cJ S d,;/ [a] S 1\ [b] S 1\ [c] S
In particular

E 1= [a] F
E 1= <a> T
E 1= [-] F
E 1= <-> T

E cannot do an a move
E can do an a move

E is deadlocked
E is live

E 1= <a> T 1\ [-a] F E can only do an a

3 Recursive agents

All interesting agents are recursive. Our buffer has the
property that once in state B1 all we can do is either a
put followed by a get, or a get followed by a put, and then
we are back in state B1 again. I.e. we can keep on doing
this forever. An obvious notation in which to express this
infinite behaviour is:

B1 = «get> <put> V <put> <get>)B1

Such a fix point equation may have no solutions (e.g. X
= ~ X) or several solutions. There will always be at least
one solution provided that each fix point variable is within
the scope of an even number of negations. From now on,
we assume that all our modal formulae pass this simple
syntactic test.
Satisfaction via sets of states. We associate with a
property the set of states satisfying it:

II A II
II T II
II F II

II ~A II
II A 1\ B II

d!..! set of all states satisfying A

true of all states = P

true of no state = 0

P -II A II
IIA II n II B II

II <a> A II d~ true iff it is possible to do an a
and move to a state enjoying A

II [aJ A II ~ true iff however we do an a
we move to a state enjoying A
TRUE if we cannot do an a

Example: 2 place buffer (cont)

Here are some satisfaction relations over the 2 place buffer
Property p Set of states with p

II T { Bo, B1, B2 }
II <->T {Bo,B1 ,B2 }

II <get> T { Bo, B1 }
II <put> T { B 1 , B2 }

II <get>TI\[-get]F { Bo }
II <get>TI\<-put>T { B1 }

II <put> T 1\ [-put] F { B2 }
II H F {}

II F { }
Min and max fix poin s. In general when we look for
the fix points of a formula several sets of states might be
solutions. And since there may be several solutions, key
questions to ask are: how do we find them? are there any
of special interest?

If we wish to find all the fix points, we could test all
the possible combinations from the empty set, the sets of
singletons, two states at a time, ... , all the way up to P.
It turns out that the fix points form a lattice and that
the "least" and "largest" of solutions are not only unique,
but they also have interesting physical interpretations and
fast algorithms.

The minimum (least) fixpoint includes only what is nec
essarily true. It expresses liveness: e.g. a must eventually
happen. It is found by iteration: we start from the empty
set of states and include what must be there.

The maximum (largest) fix point includes everything
except that which is necessarily false. It expresses safety:
e.g. a holds everywhere. It is found by iteration: start
with all possible states and pare out those found wanting.
Raw modal 1-1. Modal 1-1 extends HML with fix points:

A H M L I min(X.A) I max(X.A)
where X is a fix point variable. min and max are dual
operations - only one need be defined as a primitive.

Unfortunately properties written in raw modal 1-1 are
rather hard to read. As an example, a test for the absence
of deadlock is:

max(X. < - > T 1\ [-]X)

It expresses the set of states X which can themselves make
a move « - > T) and from which all moves ([-]) takes
us to a member of the set of states X which can ... Thus,
no member of this set of states is incapable of making a
move.

Since this is a relatively simple test, it doesn't take
much imagination to to realise that complicated proper
ties can be very hard to for humans to interpret. The
same game has been played for many years by temporal
logicians who have come up with a few basic operators
that may he composed. Amongst these are

AL WAY S needs all states on all paths as
witnesses

PAT H needs all states on a single path to
be witnesses

POSSIBLE needs only a single state on a single
path as a witness

EV ENTU ALLY needs a single witness on all paths

and modal I-' is powerful enough to express them all:
max(X.P /\ [-]X) ALWAYS
max(X.P/\ < - > X) PATH
min(X.P V [-]X) EV ENTU ALLY
min(X.PV < - > X) POSSI BLE

These operators are easier to understand, and we use them
rather than raw modal tJ.

4 Property testing in modal J-l

DEADLOCK means that a system may reach a state
in which it cannot make a move (is stuck). For any
system SYS, absence of deadlock may be expressed
as:

SYS F ALWAYS <-> T

read as "in every state (ALWAYS), it is possible to
make a move «-> T)", or by its dual

SYS F ...,(POSSIBLE H F)

read as "it is not true that there exists a path to a
state (POSSIBLE) in which every move is impossible
([-] F)".

FAIRNESS means that a system can not "spin" forever
without enabling some particular input or output ac
tion. For any system SYS, and for a particular action
a, this may be expressed as:

SYS F ALWAYS..., PATH..., <a> T

read as "from every state (ALWAYS) there does not
exist a path (..., PATH) to a state where action a is
never enabled (..., <a> T)" or by its dual

SYS F ALWAYS EVENTUALLY <a> T

which reads as "from every state (ALWAYS) for each
path (EVENTUALLY) there is a state in which a is
enabled «a> T)".

SAFETY tests to see that bad things cannot happen.
Safety tests must be tailored to the system at hand.
For the two place buffer, we may want to check that
it is never possible to output three times without
doing an input.

Bo F ALWAYS [get][get][get]F

read as "in every state (ALWAYS) it is not
possible to perform three consecutive get actions
([get] [get] [get] F) .

LIVENESS tests to see that good things may happen
(e.g. each request may be accepted)

For any system SYS, and a particular action
a, live ness of action a may be expressed as:

Bo F ALWAYS POSSIBLE <a> T

read as "from every state (ALWAYS) there exists a
path (POSSIBLE) to some state where action a is
enabled «a> T)".

Fairness can be seen as a stronger form of liveness.

5 CSM: Dill et. al's memory

In this section we put it all together using a recently
published example. [3], Dill et. al describe (but do not
specify) a FIFO storage management control system using
Petri nets.

wr

wa din

CSM

cr dout

Co e;:r

This CSM has to deal with two types of request:

1. WRITE which claims a storage location and then
puts data read from din into it

2. CLEAR which emits the "next" data item (when one
is available) on dout and then frees that location

The implementation they have in mind uses a circu
lar buffer as basic storage. The storage is guarded by
a controller which prevents din and dout occurring to
gether (mutual exclusion), and also refuses writes when
the buffer is full and refuses clears when the buffer is
empty.

This specification is given shape by considering W
(write) and C (clear) agents running in parallel.

W d;J wr.din.wa.W

E d;J cr.dout.ca.E

CSM d;J (W I E) \ {timing constraints}
We now define a counter which is used to keep track of the
number of used slots in the system. Every time a slot is
given out it counts up and every time a slot is returned it
counts down. Since we need to be able to test the state of
the counter before actual accesses are made, the counter
maintains a number of flags: f (full) and nf (notfull); and
e (empty) and ne (notempty).

Here we use a 3-counter - a counter of arbitrary size
is defined in the same manner, Notice that this counter
fails with a signal on err should we attempt to up a full
count or down an empty count.

C3 d;J down.C2 + up.err.O + f.C3 + ne.C3

C2 d;J down.C1 + up.C3 + nf,C2 + ne.C2

C1 d;J down.Co + up.C2 + nf,C1 + ne.C1

Co d;J down.err.O + up.C1 + nf.Co + e.Co
Our second approximation to the specification is:

W d!.l wr.nf.up.din.wa.W

E d;J cr.ne.dout.down.ca.E

Co as above

CSM (W I E I Co IS)
\ {down, up, f, nf, e, ne}

989

990

in which W tests the Hag nf to ensure a slot before claim
ing it with an up and reading in the data, and E tests the
Hag ne to ensure data is there before writing it out and
then returning the slot with a down.

Our last step is to ensure that data inputs and out
puts are mutually exclusive. All we need add is an extra
semaphore:

W d;J wr.nf.gS.up.din.pS. wa. W

E d;J cr.ne.gS.dout.down.pS.ca.E

Co
d;! as above

S d;! gS.pS.S

CSM d;J (W I E I Co I S)
\ {down, up, f,nf, e, ne,gS,pS}

Dill et. al state the desirability of testing the speci
fication for mutual exclusion on data input and output
and ensuring that data cannot be input when SM is full
and output when SM is empty. The Concurrency Work
Bench (CWB) [2] has a fully automatic model checker,
which makes these and other more searching questions
trivial to ask:

• Is it always possible to make some move? i.e. no
deadlock.

CSM F ALWAYS <->T

• No bus data contention, i.e. it is never possible to
both input and output.

CSM F ALWAYS ...,«<din>T
/\ <dout>T)

• we can neither overflow nor underflow the stack.

CSM F ...,(POSSIBLE <err>T)

• is" din" a live transition?

CSM F ALWAYS POSSIBLE <din>T

• is the system "fair" on din?

CSM F ALWAYS EVENTUALLY <din>T

• is the input protocol respected? i.e. no din without
a wr; no wa without a din; no wa without a wr

CSM F CYCLE wr din
/\ CYCLE din tVa
/\ CYCLE wr tVa

where we introduce a new operator called CYCLE:

CYCLE a b d;J
max(X.tb]F /\ [-a]X /\
[a](max(Y. [a]F /\ [-b]Y /\ [b]X»)

This describes the set of states X where no b action
is possible, and any action other than a will take
us back into this set of states, and an a action will
take us to a set of states Y where, no a action is
possible, and any action other than a b will take us
back into this set of states, and a b action will take us
back into the set of states X where ... In essence, it
ensures that action a always preceeds action b which
always preceeds action a which ...

6

• is the output protocol respected? i.e. no dout with
out a cr; no CO without a dout; and no ca without a
cr.

CSM F CYCLEcrdout
/\ CYCLE dout ca
/\ CYCLE cr ca

Conclusions

If specifications for circuits are written in a formal speci
fication language such as CCS, it is possible to automat
ically and mechanically check properties of the specifica
tion using the modal IJ-logic. These methods are comple
mentary, as CCS uses an operational description of circuit
behaviour, while the ModallJ logic describes properties of
specifications independently from their implementation.

For details of how to specify complex systems in CCS
see the companion paper in these proceedings [6].

7 Acknowledgements

This research is supported by Equipment and Operat
ing Grants from CMC and NSERC, studentships from
Hewlett Packard (KS) and The Alberta Microelectronic
Centre (YL), and AGT/SEED (JA).

References

[1] J. Aldwinckle, R. Nagarajan, and G. Birtwistle. An
introduction to Modal Logic and its Applications
on the Concurrency Workbench. Technical Report,
Computer Science Department, University of Calgary,
1991.

[2] Rance Cleaveland, Joachim Parrow, and Bernhard
Steffen. The concurrency workbench: A semantics
based tool for the verification fo concurrent systems.
A C M Transactions on Programming Languages and
Systems, 15(1),1993.

[3] D. Dill, S. Nowick, and C. Sproull. Specification and
automatic verification of self-timed queues. Formal
Methods in Systems Design, 1(1):30-60, 1992.

[4] Y. Liu. Reasoning about asynchronous designs in
CCS. MSc Thesis, Department of Electrical and Com
puter Engineering, University of Calgary, 1992.

[5] Z. Manna and A. Pnueli. The Temporal Logic of Re
active Systems: specification. Springer-Verlag, New
York, 1992.

[6] K. Stevens, J. Aldwinckle, G. Birtwistle, and Y. Lin.
Designing parallel specifications in CCS. In Proceed
ings of Canadian Conference on Electrical and Com
puter Engineering, Vancouver, 1993.

[7] C. Stirling. Modal and Temporal Logics for Processes.
Tech Report ECS-LFCS-92-221, Laboratory for the
Foundations of Computer Science, Computer Science,
University of Edinburgh, 1992.

