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ABSTRACT 

This paper introduces two recursive 
realizations of the Phase Transform (PHAT) 
processor for time delay estimation (TDE). using 
a simple one-pole lowpass filter and the least 
mean square (LMS) adaptive filter. respectively. 
It is shown that these adaptive methods are very 
effective in reducing the effect of interfering 
tonals. The performances of these methods are 
compared with those of other existing adaptive 
TDE algorithms via computer simulations. 

1. INTRODUCTION 

We consider the two-sensor time delay 
estimation (TDE) model given by 

x
1

(k) = s(k) + w1(k) + p(k) ~ (la) 
and x (k) = s(k-D) + wZ(k) + p(k-D) (lb) 
where ~ is the discrete time index. s(k) is the 
source signal. w1(k) and wZ(k) are additive 
noises at sensors-l and -Z. respectively. p(k) 
denotes interfering tonals which might be 
generated by a target as~a jamming signal to mask 
its movement. and D and D are delay parameters 
associated with the source signal and the 
interfering tonals. respectively. Also. it is 
assumed that the source signal s(k) and the 
additive noises w1(k) and wZ(k) are mutually 
uncorrelated random processes with zero mean. 

Most approaches for TDE have been shown to be 
related through the generalized crosscorrelation 
(GCC) methods which involve prefiltering the 
received signals and estimating the time delay as 
the time lag where the crosscorrelation function 
of the prefiltered signals is maximum [1). The 
relevant crosscorrelation functions are called 
the GCC functions [1) which can be expressed as 

j 8 (0 
Ri~) (m)=F- 11w(g) (Oe lZ }. Iml--M (Z) 

where F-
1
{.} def05es the inverse Fourier transform 

(1FT) of {.}. w g (f) is a weighting function in 
the frequency domain determined by the prefilters. 
and e Z(f) is the phase function of the cross power 
density spectrum (cross-PDS) of x 1(k) and xZ(k). 
That is. 
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where G1Z(f) is the cross-PDS of xl(k) and 
xZ(k). The frequency domain weighting functions 
of the GCC methods of interest in this paper. 
viz •• the basic crosscorrelation (BCC) processor 
[1). the Roth processor [Z). and the Phase 
transform (PHAT) processor [1). are summarized in 
(4a). (4b). and (4c). respectively. 

weB) (f) 

W(R)(f) 

w(P) (0 

IG1Z(01 ( 4a) 

I G1Z(0 I /GZZ(O 

IG1Z<0I/IG12 (01 = 1 

( 4b) 

( 4c) 

Recently. the BCC and the Roth processors 
have been realized recursively. using a single­
pole lowpass filter [3) and the LMS adaptive 
filter [4-7). respectively. 

From (Z) and (4a). the GCC function of the 
BCC method is given by 

R~~) (m)=F-l{GlZ(O}=ClZ(m). Iml<;;M 

where C1Z (m) = E{x 1(k)x Z(k+m)} 

and E{'} is the statistical expectation of 

(5a) 

(5b) 

{ . } . 
It has been shown [3) that the cross­

correlation function of xl(k) and xZ(k) can be 
estimated using a bank of one-pole lowpass 
filters as 

A A 

C1Z (m.k)=SC
1Z

(m.k-l) 

+ (l-S)x 1(k)xZ<k+m). Iml<;;M (6) 
A 

where CI2 (m.k) denotes an estimate of C
1Z

(m) 
at time Rand 0 < S < 1 controls the time 
constant of the lowpass filter approximated as [3) 

tA :;;; 1/(l-S) samples. (7) 

Taking the Fourier transform (FT) of 
with respect to m yields an estimate 
cross:PDS of x 1(k) :nd xZ(k) at time 

G1Z(f.k) = F {C 1Z (m.k)} 

where F{.} represents the FT of {.}. 

C1Z(m.k) 
of the, 
k. That is, 

(8) 

Comparing (5a). (6) and (8) we can see that 
(6) realizes the BCC processor in a recursive 
way. (6) has been used to implement the BCC 
method [3) and this approach has been referred to 
as ABCTDE (adaptive basic crosscorrelation for 
TDE) algorithm. 
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From (2) and (4b), the 
Roth processor is given by 

GCC function of the 

G (f) 
R(R) (m) = F- 1 {_1_2_} 

12 G22 (f) , Iml "M. (9) 

It is known that R~~)(m) represents the impulse 
response function, fi 12 (m), of the optimum 
(Wiener) filter which best approximates x 1(k) as 
a weighted sum of x2(k-m) for Iml (M. The LMS 
adaptive filter algorithm [8] has been used to 
update the optimum filter coefficients recursively 
[4-7]. The algorithm may be summarized as 

h12(m,k+1)=h12(m,k)+~e(k)x2(k-m), Iml(M 

where 
e(k) 

M 
x

1
(k) - ~ h 12 (m,k)x 2(k-m). 

m=-M 

OOa) 

(lOb) 

In (lOa), ~ controls the convergence rate and 
stability of the adaptive filter. The time 
constant of the LMS adaptive filter can be 
approximated as [8] 

- 2 
TL = 1/~02 (11) 

where 0
2 

is the variance of x2(k). We cau see 
from (9) and (lOa) that taking the FT of h 12 (m,k) 
yields an estimate of G12(f)/G22(f) at time k. 
That is, 

, t. 
H12 (f ,k) = F{h

12
(m,k)}, Iml ( M 02a) 

--------G12 (f,k)/G22 (f,k) (12b) 

From (9), (12a) and (12b) we can see that 
the response function of the LMS adaptive filter 
is an estimate of the GCC function of the Roth 
processor. This approach has been referred to as 
the LMSTDE (LMS for TDE) algorithm [4-7]. 

2. ADAPTIVE REALIZATIONS OF PHAT 

From (2) and (4c) the Gee function of the 
PHAT is given by 

Rg)(m) F-1{G12(f)/IGI2(f)I}, Iml(M 

-1 j 812(f) 
F {e}. (3) 

In many passive sonar signal processing 
problems, the received signals often include 
strong tonals (see (1». Computing the cross­
correlation function of x 1(k) and x2(k) in (la) 
and (lb), we have 

C12 (m) = C (m-D) + C (m-D) (14) 
ss pp 

where C (rn) and C (m) are the autocorrelation 
functio~~ of s(k) ~Ed p(k), respectively. When 
tonals are present in the received signals the 
crosscorrelation function C12 (m) might give 
its peak at incorrect places to yield erratic 
delay estimates since the cross correlation 
functions of periodic signals are also periodic. 

The PHAT is an ad hoc method to reduce the 
effect of strong tonals by uniformly weighting 
the phase function in (3) in the entire frequency 
band [11. Two adaptive implementations of the 
PHAT processor are presented next. 

Introducing a time index k in (13) yields 
the time-varying GCC function for pHAT as 

(P) -1 G12 (f,k) -1 j8 12 (f,k) 
R12 (m,k)= F {IG (f,k)I}=F {e } 

12 (5) 

Using (8) and (12b) we can estimate R(P)(m,k) 
using the one-pole lowpass filter in ~~) and the 
LMS adaptive filter algorithm in (lOa) and (lOb) 
as follows: 

and 
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The approaches in (16a) and (16b) will be 
referred to as the APHAT-1 (Adaptive PHAT-1) and 
APHAT-2, respectively, when the time d~lay 
estimate is given by the argument m ~ D(k) where 
the relevent time-varying Gee functions 
'(PI) '(P2) 
R12 (m,k) and R12 (m,k) are maximUlil. 

Now, consider the case of G12(f) = 0 in some 
frequency band (i.e., bandlimited source 
signal). The phase function in (3) is undefined 
in this band and the estimates of the phase in 
(16a) and (16b) are erratic and may result in 
erroneous time delay estimates. Even though the 
APHAT algorithms, like the conventional PHAT, 
have the above problem, it will be shown via 
computer simulations that they are very effective 
when the source signal has broad bandwidth and 
when the received signals contain strong 
interfering tonals. 

3. EXPERIMENTAL RESULTS 

In this Section, we will compare the APHAT 
algorithms with the ABCTDE and LMSTDE algorithms 
through computer simulations. 

The model used for generating the received 
signals x 1(k) and x2(k) was the same as in (la) 
and (lb).The source signal for cases 1 and 3 was 
Gaussian white signal, while, 
for case 2, the source signal was obtained by 
passing the above signal sampled at 2 Hz through a 
6th order Butterworth lowpass filter with the 
cutoff frequency of 0.2 Hz. For,all the 
simulations, 61 coefficients of C

12
(m,k) and 

h 12 (m,k) were estimated (i.e., M = 30) and 64 
po~nt DFT's of these sequences were taken after 
applying a 61 point hamming window to each of 
thew and padding,zeroes to the windowed versions 
of Ct2 (m,k) and h 12 (m,k), to obtain G12 (f,k) 
and H]2(f,k), respectively. The other parameters 
for tfie simulations are summarized in Table 1. 
The estimated GCC functions at k = 8000 for cases 
1 and 2 are displayed in Figs. 1 and 2, 
respectively, where the delay parameters of 
interest are constant (i.e., D(k) = 4 samples). 
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The estimated delay function for case 3 is 
presented in Fig. 3, where the delay function of 
the source signal linearly increases from -8 to 8 
in 8000 samples as indicated by a dotted line, 
and the delay parameter was computed every 20 
samples, starting from k = 80 and ending at k = 

8000. For this case, the delay function of the 
tonals linearly decreased from 4 to -4 in 8000 
samples. 

The estimated GCC functions in Fig. 1 
demonstrate that the APHAT-l and -2 perform as 
well as the ABCTDE and LMSTDE algorithms, when 
the source signal has broad bandwidth. However, 
since the source signal for case 2 is narrow 
bandlimited, the APHAT algorithm emphasizes the 
frequency band where only spectral estimation 
errors exists, to yield noisy GCC function 
estimates as shown in Figs. 2(c) and (d). 

The results from cases 1 and 2 suggest that 
the APHAT-l and -2 are efficient methods to 
estimate time delays for source signals with broad 
bandwidth, but may fail to estimate correct delay 
parameters for narrow bandlimited source signals. 
Case 3 concerns the problem of estimating time­
varying delay functions, which correspond to 
moving sources or receivers 14-7,91, when the 
source signals are corrupted by interfering 
tonals, also with different time-varying delay 
parameters. 

From the estimated delay functions in Fig. 
3, we observe that the ABCTDE method estimates 
the delal function relevant to the interfering 
tonals (D(k», while the LMSTDE, APHAT-l and 
APHAT-2 algorithms track the correct delay 
parameter. Also, the results show that APHAT-l 
and APHAT-2 perform superiorly to the LMSTDE 
algorithm. 

4. CONCLUSIONS 

Two adaptive realizations of the PRAT 
processor for TDE are introduced. The two 
methods have been referred to as the APRAT-l and 
APHAT-2 when a simple one-pole lowpass filter and 
the LMS adaptive filter, respectively, are used 
to realize the PHAT recursively. In general, the 
APHAT-l is preferred to the APHAT-2 because of 
its computational simplicity. However, in some 
applications, the APHAT-2 might be a better 
choice since the LMS adaptive filter provides 
useful additional information [8]. 
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pCk)t SNRtt " ,~ 

CASE i3 \l 

0 1(20 0.9999 lxlO-4 

2 0 0.9998 lxlO-4 

3 3Pl (k)+2P 2(k) 0.998 2.36xlO 

PlCk) sin (0.46 , 0.5 n) and P2(k) sin 
(0.12 , 0.5 1T). 

-4 

tt Signal to additive white noise ratio. 

* The source signals were so scaled as to have 
the same time constant for each processor. 

Table 1. Summary of the parameters used 
for the simulations. 
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(a) ABCTDE 

(e) APHAT-l 1~·=:lf~lm 
-30 o 30 -30 0 30 

h12 (m, 8000) R;~2) (m, 8000) 

(l)) LMSTDE 
Cd) APHAT-2 

-30 

Figure 1. Estimated GCC functions for Case 1. 
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(b) LY.STDE ~~~~~J\V':=~ 1m 

(d) APHAT-2 
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Figure 2. Estimated GCC functions for Case 2. 

(a) ABCTDE (c) APHAT-l 0.0 WW1----..,.,.,..:::=-------j 
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80 8000 
"... 

8.0 D(k) 

(b) L1iSTDE 
(d) APHAT-2 0.01-----,..,....r:..r..-=--t---i 

Figure 3. Estimated time varying delay functions for Case 3. 
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