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Electron states in random alloys with short-range order 
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(Received 3 August 1976) 

We present an accurate and economical iterative method of calculating the energy levels of a disordered or 
partly ordered random alloy. Results presented for one· and three·dimensional simple cubic lattices compare 
favorably with exact calculations. We also present the systematic effects of partial short·range order in three 
dimensions. A theory of the one· particle propagators is presented. and the theory of electrical conductivity is 
developed in the context of our new method. Our formulas satisfy the exact conservation laws. 

I. INTRODUCTION 

The study of electronic and vibrational spectra 
of disordered alloys is currently one of the prin
cipal concerns of solid- state physics,t stimulated 
by the outstanding successes of the coherent
potential approximation2

,3 (CPA), now ending its 
first decade. Although efforts to improve our 
understanding beyond the CPA have not all met 
with the same good fortune, there have been re
cent exceptions. Cluster methods4

•
5 have been 

devised which are accurate enough to reproduce 
the "peaky" structure of the density of states pew), 
which they sometimes do (notably in one dimen~ 
sion4

) with startling fidelity. We have been work
ing along such a cluster- type approach, and have 
found an extremely Simple method translating di
rectly into a computer algorithm. While unsuited 
to the theoretical study of Lifshitz6 tails, our 
method has permitted us to reproduce many of the 
other known results over the theoretically per
mitted range of energy,7 even near the energy max
ima and minima, and additionally, permitted to 
study of the effect of short- range order. Along with 
Lifshitz, we envisage tails in pew) at the energy 
maxima and minima as ariSing from accidental 
correlations in increasingly large clusters, of a 
size that for practical reasons we are not at pres
ent capable of handling; however, the simplicity 
of the present method may suggest a natural ex
tenSion to cover this.8 

The basic outline of our paper is as follows: 
In Sec. II we present a method for the calculation 
of the single-body Green's function in the presence 
of an arbitrary number of impurities. We then dis
cuss how our procedure can be implemented by the 
use of a convergence factor~. Section III is de
voted to an analysis of the meaning and uses of the 
complex self-energy ~ within the context of a dis
ordered medium. Results from our method are 
presented in Sec. IV, including the effects of short
range order. Beyond this in Sec. V we make 
further approximations that allow us to deter-
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mine CH(w). Section VI is concerned with the 
development of a transport theory compatible with 
G, along the lines of Baym and Kadanoff.9 

II. CLUSTER GREEN'S FUNCTION 

Let the Hamiltonian for the electrons within a 
single tight-binding band in a hypercubic lattice in 
D dimensions be 

H=L:Tijli)OI+L:vili)(il"T+V, (1) 
i, j i 

with T jj = (2D)"1 for i,j nearest neighbors and zero 
otherwise, I i) the Wannier state at the lattice 
point R i' and Vi the potential which takes on one 
of two values depending whether atom A or B oc
cupies the i site. We construct the resolvent oper
ator G(e) and its various matrix elements: 

G(z)" (e _ll)-l = [z _ (T+~) _ (V _ ~)]-l , (2) 

in which we reference the operators to a complex 
"optical potential" ~(z) merely as a device to 
enhance the convergence of subsequent expan
Sions, with z equal to the frequency w, extended 
to the complex plane. 

For those readers familiar with the CPA, it 
is important to note that our new departure con
sists prinCipally in dissociating the complex self
energy parameter ~(w) from the Site-diagonal 
averaged Green's function Gnn(w). Whereas in 
CPA, knowledge of the one implies the other, via 
the relationship 

Gnn (z)=(n I {z- [T+~CPA(z)]}-lln) , (3) 
CPA 

our experience indicates that it is better to treat 
~(w) merely as a convergence parameter, one to 
be chosen as an ad hoc aid in the calculations 
rather than by tedious and unnecessary self- con
sistency conditions. As by Eq. (2) the exact G",.(z) 
are all independent of ~(z), in any accurate ap
proximation to Gm,J.z) we have latitude in our choice 
of "E(z) , as discussed below, and we pick the sim
plest possible ~ (z) for which our calculated G is 
approximately stationary. 
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We next define a modified resolvent operator 
G (/) appropriate to the case in which one sets Vi 
=0, where we define VI=(i I (V- ~)i Ii) and, in
dicating the elimination of the localized fluctua
tion potential at this site by ( )~, we have 

(4) 

The full resolvent (2) can be expressed in terms of 
the modification in (4) by the use of the operator 
identity (A _ B)-l =A"l +A-lB(A _ B)-l: 

G(z) = G(i)(z)+ G(i)(z)(V - ~)IG(Z). (5) 

Because the perturbation is diagonal inthe Wannier 
representation, the matrix elements are easily 
found: 

Gnm(z) = G~:,.>(z) + G~:)(z)~G::,.>(z)/(1- G::)(z) Vi) . 

(6) 
For the calculation of the density-of-states func
tion p(w)=(-l/7T)ImCnn(w+iE) only the configura
tionally averaged Green's function c"n(w + iE) is re
quired. For the one-particle propagators Cii 
the averaged Fourier transforms of all Gnm(W+iE) 
are needed. Equation (6) is now iterated. De
fine C(i,J)(Z) to be the modified resolvent oper
ators with the fluctuation potentials V at sites 
i and j removed. By a repetition of the above, 
we have 

G (i)(z) = G(i, j)(z) + G (i.'ily GO, j) 1(1 _ G(i, ily ) 
nm rr m TlJ j;m' J} j. 

(7) 

The matrix elements Gnm decay exponentially with 
distance Rnm; thus the expansions (6) and (7) are in 
a symbolic "parameter" 'Y defined as G~'j')Yj, 
which is "small" for small Vj and "exponentially 
small" at large YJ' The processes (6) and (7) are 
to be repeated any number of times, until the 
largest practical cluster size is achieved. tO Ter
mination, by truncation, of the series consists of 
approximating the most distant G's, Le., those 
with the largest number of superscripts, by their 
value in the average optical potential. Thus, if we 
stop at (7), the approximation consists in re
placing G~~ i)(z) by (n I [z - (T + ~))-ll m). The con
figurational averages over all the explicitly re
tained VI are then performed, and all C's obtained. 

III. CHOICE OF ~ 

We now come to our principal point of departure 
from other methods-<>ur choice of~. Our results 
would depend crucially upon ~ except for the fol
lowing observations. Since the behavior of the 
local cluster is the dominant characteristic of 
disordered systems, we expect results insensitive 
to the particular choice of ~ if the cluster size 
is sufficiently large. 

We require a simple functional form for ~ that 
allows for states out to the bands limits. This ex
cludes the use of ~CPA which is known to produce 
bands that are always too narrow. We restrict 
the range of possible ~'s by requiring that it obey 
dispersion relations, insuring that our approxi
mate G is analytic. Furthermore, a functional 
form is desired in which G is accurate in both the 
weak as well as strong scattering regimes. Be
cause of the local nature of highly disordered sys
tems, our choice becomes more critical for small 
potential differences where effects are more ex
tended. Our input is the Im~ which we take as one 
or more step functions, nonzero only within the 
theoretical band limits. Re~ is then determined 
from the following dispersion relation: 

) '(V) 1 f~d ~(X+iE) 
~(z = 2" + -_. X • 

27Tl _~ x-z 
(8) 

This is sufficient to make our approximation to 
G(z) satisfy causality. The density- of- states sum 
rule, J~~ dw p(w) = 1 is itself a beneficial con
sequence of the analyticity of our approximate 
G(z) and its resulting lIz dependence in the asymp
totic limit as we discuss elsewhere. ll We verified 
that in all cases studied, the sum rule on p(w) 

was satisfied numerically. If we choose the con
stant Im~ to be of magnitude of Im~CPA' then in 
the weak- scattering and low- concentration re
gimes G(z) will be quite similar to GCPA(z) so 
that accurate results can be expected in all re
gimes. 

Before we proceed, the way in which we use 
Im~CPA must be more clearly outlined. In the 
accompanying Fig. 1 we display the two basic be
havior patterns of I Im~CPA I as observed by 
Velicky, Kirkpatrick, and Ehrenreich.12 It should 
be noted that, here also, Re~ and Im:0 are re
lated by the Eq. (8). ~ has to describe every-
thing in the CPA; it determines band gaps, peaks 
in the density of states, and the general overall 
scale. Most of these results (e.g., band gaps and 
complicated structure) are better obtained by our 
detailed calculations of the correlated scattering. 
We hypothesize that the most useful information 
from CPA is contained in the general overall mag
nitude of Im~cPA' Operationally, in Fig. l(a), we 
would ignore values of IIm:0cPA I from the region 
of its maximum as well as the extremeties of the 
band. In the former range of energies, we ex-
pect exceptional scattering because it is easiest 
for these states to make transitions due to band 
overlap, whereas at the band edges the spectrum 
will be least disturbed, according to the same con
siderations. Any value from the shaded region is 
then acceptable. In terms of particle lifetimes, we 
will obtain the large and small transition rates be-
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FIG. l. Real and imaginary parts of the complex self
energy in the CPA. The two sets of curves are indicative 
of the type of results that can be expected from this ap
proximation. (a) A situation where the alloy bands over
lap; (b) the case of split bands. Energy is in units of 
half-bandwidth. This is an adaption of a figure from 
Ref. 12. 

cause we almost solve the eigenvalue problem ex
actly for each configuration and this is clearly 
equivalent to a perturbation approach. As for 
concentration dependence in :ECPA ' we will obtain 
correct behavior simply because we weigh each 
configuration by its appropriate probability. Thus 
we are able to include both the dynamical and 
statistical aspects of the problem. 

In Fig. l(b), the same analYSis leads us to ignore 
the very large values of I Im~CPA I in both subbands. 
Here though, the magnitudes are considerably dif
ferent leading us to suspect that two different con
stants are needed. Further details of this case 
will be elucidated in the following examples. 

IV. ANALYSIS OF RESULTS 

We first consider the canonical one-dimensional 
tight-binding binary alloy for three different scat
tering strengths at a 50-50 concentration. Figure 
2 compares the results of one-, three-, and five
cluster calculations for p(w) when V1 =±0.5 with 
exact results. We see in this example the develop
ment of the peaky structure associated with special 
clusters of atoms as our cluster size increases. 
Proceeding to a larger scattering strength 
(Vi = ± 1. 0), we expect that the local configurations 
will playa more prominent role because of in
creased wave function localization. As shown in 
Fig. 3 we successfully reproduce most of the 
structural details of p(w) for a five cluster. To 
check the degree of insenSitivity in our five- cluster 
model we varied I Im:E I within the limits given by 
Im~cPA and found little change in the overall pat
tern as shown in Fig. 4. This indicates, numeri
cally that the resulting G is stationary and that ~ 
is optimum. 

The scattering strengths are now increased to 
Vi = ± 2.0, providing a critical evaluation of the 
methods capabilities (larger scattering strengths 

If) 
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FIG. 2. Comparison of one-, three-, and five-cluster 
calculations for pew) using I Im:!:trialI = 0.15, with Vi 
=±0.5, c=0.5. Background (histogram) is exact results 
of Ref. 4. Energy is in units of half-bandwidth. 
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FIG. 3. Comparison of one-, three-, and five-cluster 
calculations for p(w) in one dimension using IIm~triall 
=0.5, with Vi=±l.O and c=0.5. Background (histogram) 
is exact results of Ref. 4. Energy is in units of half
bandwidth. 

are in a sense too easy because wave function lo
calization makes a cluster calculation more plaus
ible). Using the exact scattering off all configura
tions of five atoms, the highly discrete spectrum 
is well reproduced, as seen in Fig. 5(a). In
creasing the cluster size to seven atoms, keeping 
the convergence factor the same as in Fig. 5(a), 
improves our agreement with the exact results as 
shown in Fig. 5(b). In Fig. 6 we display the re
sults of again varying I ImL I within the limits dic
tated by ImL cPA ; the major details are again seen 
to remain stationary. We have found empirically 
that if IImL I is too small, the resultant denSity of 
states is too "peaky" and as such, representative 
of a molecular cluster, instead of the solid state. 
If I ImL I is too large, then the central site pre
dominates, as is correct only in the extreme 
"atomic" limit when potential fluctuations greatly 
exceed the bandwidth. One can see this from Fig. 
6 since the sharper curve is associated with the 
lowest value of I ImL I and vice versa. 

In three dimensions the obvious cluster size is 
seven sites. Figure 7 compares our calculation 
with the Monte-Carlo-type numerical results of 
Alben et al. 13 A constant ImL gave poor results 
in this case, but the CPA calculations immediately 
showed us why: ImLcPA was more than one order 

of magnitude smaller in the majority subband than 
in the minority subband. Consequently we changed 
ImL to the step function shown in the figure, vary
ing the parameters (magnitudes of the steps) again 
guided by CPA. The results now agreed well with 
the exact computations and were insensitive to the 
precise value of our parameters as is evidenced 
by Fig. 8 in which a three- step function was used. 

To illustrate entirely new applications, consider 
effects of short-range order on this same alloy. 
With 0' the Cowley short- range order parameter-
C A and C B = 1 - C A the relative concentrations and 
P AB the probability of finding atom A at a given 
site when a B atom occupies a specified neighbor
ing site-we have PAA=CA+CBO', P BA =c B(l- 0'), 
P AB =cA(l- 0'), and PBB=CB+CAO'. In Ref. 13, 
0' = O. For C A = 0.1, 0' can vary from -0.11 to 
+1.0; negative 0' is associated with enhanced 
tendency of A atoms to be surrounded by B's (Le., 
"antiferromagnetism"), positive 0' indicates en
hancement in the probability of either species being 
surrounded by atoms of its own kind (Le., "ferro
magnetism"). Using the same convergence pa
rameters as in our calculation at 0' = 0, in Fig. 9 
we find distinctive features in the minority subband 

iii d,--------------------------------------, 
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FIG. 4. Curves give p(w) for three different values of 
:!:trlal for a five-cluster calculation of a one-dimensional 
alloy with Vi = ±1.0 and c = 0.5. The sharpest peaks are 
associated with lowest value of IIm~trlall, 0.4. other 
values are 0.5 and 0.6. Energy is in units of half-band
width. 
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FIG. 5. (a) Density of states for a (50- 50)% concentration one-dimensional alloy with VA = 2.0, V B=-2.0. Histogram 
is exact calculations from Ref. 4. The full band is obtained by reflecting the portion shown through the origin. These 
results were computed from 1m!: = - 0 .80 and Re!: obtained from 1m!: by Eq. (8), including the exact scattering from all 
configurations of a central atom and its four nearest neighbors. (b) Extension of the above results to a cluster of seven 
atoms using the same !:(w). This result is comparable in accuracy and wealth of detail to the best self-consistent cal
culation to date, Ref. 4. Energy is in units of half-bandwidth. 

denSity of states that we interpret in terms of mi
nority-atom clustering: the single peak of a 
= - 0.07 registers the unlikelihood of finding two 
A atoms as nearest neighbors, and the double 
peaks of a = 0.7 represent the tendency of the same 
atoms to form pairs, triplets, etc. However, due 
to the sparseness of A atoms, triplets and higher
order clusters are statistically inSignificant for 
these values of a. 

v. ELECfRON PROPAGATION 

So far we have developed a method for calculating 
the site-diagonal configuration averaged Green's 
function. We have not indicated, how we would cal
culate the non- site- diagonal propagators. One al
ternative is to develop a cluster method for the 

latter, similar to the method we used for the for
mer. Another, Simpler though less accurate, al
ternative will be employed. We first define a new 
self-energy A*(z) by the equation 

(9) 

This relationship is numerically inverted to obtain 
A * as a function of the exact or numerically calcu
lated Gil' From the calculation of A*(w) we obtain 
A*(z) in the entire complex plane as 

(10) 

If further values of G1m(z) were calculated numer-
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FIG. 6. Curves give p(w) for three different values of 
~trlal for a five-cluster calculation of a one-dimensional 
alloy with V i =±2.0 and c=0.5. The sharpest peaks are 
associated with lowest value of IIm!:triali = 0.4, other 
values are 0.8 and 1.0. Energy is in units of half-band
width. 

ically, then we would determine A * (k, z) from 

.!.. " e ik. (_RI-Rm) 
Glm(Z) = L..., 

Nit z-A*(k,z)-Ei 
(11) 

and 

The analysis is facilitated by going over to a lo
calized representation in which we would specify 
the number of elements Atm(z) that we have deter
mined numerically. For example, if we have 
available G I. I(Z), G 1.1+1 (z), and G I. 1+2(Z), then we 
would be able to obtain 

At,m(z) = 151.mA~(z) + 15'+I.mA t(Z) + oi+2.mA~(z) , 

by solving the three equations simultaneously. In 
the case at hand, we will use a site-diagonal self
energy since all we have at our disposal are the 
computed GI/(z), We will still use 

~~-------------r----------. 
I 
I 
I 
I 
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I 
I 
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-2.00 -1.00 0.00 1.00 2.00 3.00 
ENERGY 

FIG. 7. Comparison of seven-cluster calculations of 
p(w) (dashed line) using a two-step iImrtrlali (long 
dashed line), with numerical work of Alben et a1. (Ref. 
13) (solid line) who solved the Schrodinger equation for 
an 8000-atom three-dimensional tight-binding solid. The 
potentials are V i =±0.75 with impurity concentration of 
0.1. Small horizontal arrows indicate the height to which 
their peaks rise. Energy is in units of half-bandwidth. 

8 
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FIG. 8. Comparison of seven-cluster calculation of 
p(w) (dashed line) using a three-step IIm~trlali (long 
dashed line) with results of Alben et a1. (Ref. 13) (solid 
line). Vi = ±0.75 and c = 0.1 for this three-dimensional 
tight-binding alloy. The sharp peak in Fig. 7 at w=0.86 
is absent because of the coarser energy scale used. 
Arrow indicates the height to which their peak rises. 
Energy is in units of half-bandwidth. 
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FIG. 9. Density of states for V A=0.75, V B=0.75 in a 
three-dimensional simple cubic lattice with concentration 
CA=O.1. Cowley short-range order parameter 0' is 
-0.07, 0.3, and 0.7, respectively. IIm~1 is the same as 
in Fig. 7 (dot-dash line) and Re~ is obtained therefrom 
by use of Eq. (8). Energy is in units of half-bandwidth. 

hence (12) 

Gj[F [z - A*(z) - Ej[tl , 

as the definition of the off-diagonal elements. The 
propagators decay rapidly with distance R 1m so 
both the one-, two-, or three-point curve-fitting 
procedures will probably give reasonably equiva
lent results. Now, all the information contained 
in our previous numerical work is stored in A*(z), 
the complex proper self- energy part. It is of in
terest to compare ImA* with ImLcPA in order to 
see how they differ. This is done in Fig. 10 for 
the one-dimensional alloy of Figs. 5 and 6. 

In summary we have presented a relatively sim
ple method for calculating the eigenvalue spectrum 
of a disordered system, one that avoids all the 
computational pitfalls of self- consistent methods. 
This quasi- invariant theory is not only highly ac
curate, but also allows the bounds on the frequency 
spectrum to be naturally determined by the corre
lated scattering of a local group. We now discuss 
transport and develop a formalism that allows our 
numerical output to be used in approximations that 
conserve particle number and energy. 

VI. TRANSPORT IN DISORDERED SYSTEMS 

The linear response of the current to the electric 
field defines the conductivity, which we take to be 
the same along the three principal directions in 
our simple cubic structure. Following Velickyl4 

we have in our single-particle model 

rr I~ (O!(>")) 0-(0) =~ d>.. - -- «6(>" - H)Pl 6(>" - H)pt» , m _~ a>.. 

(13) 

where e, the electric charge, is unity and! is the 
fermi function. The bracketed term is short hand 
for 

:= L «a 16(>" - H)Pl 6(>" - H)P11 a». (14) 

PI is the momentum operator along an arbitrarily 
chosen principal axis and ( ) denotes configura
tion averaging. Examination of Eq. (14) reveals 
that we require the two-particle correlation func
tion 

(G~mjl(Z 1 ,Z2) = « i I (Zl - H)-llj)(m I (Z2 - H)-liZ» . 

(15) 

We can relate (G 2
) to G by the equation 
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FIG. 10. Solid line is IImA*(w) I for the one-dimen
sional alloy of Figs. 5 and 6 in the five-cluster approxi
mation while the dashed line is the corresponding 
IIm~CPA(w)l. Energy is in units of half-bandwidth. 
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+ 1: Gik(ZI) Go,(z2)2kr,po(G;mJr(Zp Z2» ' (16) 
kP 
or 

which defines the index structure of the vertex 
function. This equation is exact for the exact G 
and we will use it to define (G 2

) when we have an 
approximate single-particle Green's function. We 
can place restrictions on possible vertex functions 
by requiring the conservation of charge and ener
gy in the presence of a long-wavelength distur
bance. This leads to the introduction of a new 
operator 

(17) 

It is easy to show that K must satisfy the following 
Ward-type identity: 

But 

so that 

In (G 2
) , we let m = j and sum over all j with ZI =Z2: 

(18) 

which implies a connection between the one-body 
operator G and the two-body Green's function (G 2). 

Also, one can show with the above condition that 
the linear response of the particle number and en
ergy to a long-wavelength disturbance is zero, thus 
ensuring the appropriate conservation laws. If we 
use an approximate G, then we must construct a 
K that maintains Eq. (18) and this allows us to re
late G to the vertex function in the following way: 
We let Z2-Z1' then Eq. (18) becomes 

) dGII(ZI) 
Ki/(ZPZl =- d . 

ZI 
(19) 

The configuration averaged resolvent can be writ
ten 

GH(Z 1) = (i I [z 1 - T - A6'p(Z 1)]-1 Ii) , 

which leads to the equation 

(20) 

(21) 

(22) 

1:(G~jj/(Zi'ZI»= 1: G/j(ZI)Gj/(ZI)+ 1: Gik(ZJG./(ZI)2 kr,PO(ZI,ZI) 1: (G;JJr(zl,zl»' (23) 
j j k. j 

rp 

Once we recognize 

we find that the vertex must satisfy the equation 

';;' ( ) _ 1 dAt. (ZI) (24) 
-kr,po ZI,ZI - N dG

pT
(zl) . 

We note that not only must this relationship hold 
for the exact vertex function and self-energy but 
also in any approximation in which it is desired 
that the two-particle correlation function satisfy 
the Ward identity, Eq. (18). This means that once 
an approximation is made to A *, we can deter
mine transport functions that allow the conserva
tion laws to be obeyed. We could make further 
approximations to (G 2

) but we would then have no 

guarantee of conserving charge, energy, etc. The 
Ward identity is useful to generate a unique com
patible vertex function only when the frequencies 
are the same. For the case at hand, Ato(z 1) 
= 0k.A*(ZI) is a function of the site-diagonal aver
aged Green's function so the vertex is 

For ZI *Z2' we make the approximation 

:SkT, po(z l' Z 2) = Okq0rp:S (Z l' Z2) . (26) 

This is certainly consistent with the Ward identity, 
and furthermore, it allows us to show that contri
butions to the conductivity from the vertex correc
tions then vanish. The two-particle correlation 
function is now 
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(C~mJI(Z l' Z2» = GiJ(Z I)Gml(Z2)+ L Glk(ZI)Gkl (Z2)2:(Z l' Z2) L (C;'mJr(Z l' Z2» . (27) 
k r 

To find the conductivity we need «6(A1 - H)P I6(A2 - H)P2» or 

112 (AI ,A2 ) = L P~m«m 16(A2 - H) Il»P~i«i 16(A1 - H) Ij» , (28) 
iJlm 

which requires 

L P~mP~i(C~mJI(Al' A2» = L P~mP~IGiJ(Al)Gml(A2) + L L P~IGik(Al)Gkl(A2)2: (Ai' A2) L (C;mJr(A1, A2»P}m' (29) 
IJlm iJlm IJlm k r 

The second term breaks up into 

L P~iGik(Al)Gkl(A2) L: 2: (AI ,A2)(C;mJr(A1, A2»P}m =AB . (30) 
ilk jmr 

Let us transform the Wannier sum in A to a Bloch sum. Then since (klp2 Ik')=mV2 (k)6ki" and G is diag
onal in the Bloch representation, 

_ _ dE£ 1 1 
A=m L V2 (k)Cit(A1 )Cit(A2 )=m L -ak A A*(A+). A ( +) 

i i 2 1 - 1 - Et A2 - * A2 - E£ 
(31) 

The propagators are even under inversion (k - - k) but the velocity V2 = aE/ak2 is odd, giving us zero, and 
all vertex corrections now vanish. In this case, the fortunate cancellation of vertex corrections comes 
about as a consequence of the approximation of the proper self-energy by a site-diagonal quantity, Eq. (12). 

VII. ZERO·TEMPERATURE de CONDUCTIVITY 

We are now in a position to evaluate a(O). Because the vertex corrections vanish, 

I12(A, A) = LP}m«m 16(A- H) Il»P~i«i 16(A- H) Ij»=m 2 L V1 (k)V2(k)«kI6(A- H) 1k»)2. (32) 
IJlm k 

With the definition 

«kI6(A- H) Ik»= (-1/11') ImGii(A+), 

we get for f=2[a(w)=au (w)], 

a(O) =~ f~ dA (- ilf(A») 
11' _~ aA 

x L V t (k)2[ImGki(A +)]2 , (33) 
i 

where we have included a factor of 2 for the two 
possible spin orientations. At T =0, -a/(A)/aA 
= 6(A - Il), with Il the chemical potential, and the 
conductivity per atom is 

(34) 

or 

(35) 
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FIG. 11. Then dc conductivity (dashed line) of a three
dimensional alloy with VI=±O.75 and c=O.l. Density of 
states taken from Fig. 7 is shown in the solid line. Ener
gy is in units of half-bandwidth. 
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This natural separation, only possible for a proper 
self-energy independent of K, isolates the lifetime 
and energy shifts of the single-particle excitations 
from that part of the conductivity which pertains 
to the particular lattice under study. We will con
centrate on a three-dimensional simple cubic lat
tice with 

EE= t(coskx + cosk,+ cosk z)· 

Then, 

VI (k)2 = ~ sin2kx = t(l- cos2k x) • 

We have calculated the dc conductivity for our 
three-dimensional alloy in order to illustrate our 
formal results. Generally, there are two ways in 
which the dc conductivity can vanish. If the den
sity of states at the Fermi level is zero then so is 
0-(0). In addition, we can have a finite p( IJ.), but a 
zero mobility because of wave-function localization. 
Equation (36) only admits a zero in 0-(0) if p(lJ.) is 
zero so we cannot take the latter possibility into 
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