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We present a soluble model of electrons interacting with lattice vibrations which dis
plays metallic, superconducting, and insulating phases. We solve the thermodynamics 
of this model and discuss its properties. The metal-insulator phase transition is sec
ond order for sc and bec tight-binding bands. With sufficient deviation [(5-10)% for cou
pling constantg=0.1] from such band structure the transition becomes first order. 
Above this, the "collective insulator" ceases to exist. Our model might apply to certain 
transition-series metal oxides, such as VOz. 

We treat several aspects of a soluble model which exhibits an insulator-metal phase transition, po
laron effects, low mobility, and a tendency toward superconductivity. This model has several fea
tures of certain transition-series oxides such as Ti20 3 and V02 •

1
•
2 Unlike the Hubbard model,M the 

present model has no significant magnetic properties, so that it is only applicable to nonmagnetic ox
ides. 4

•
5 Based as it is on the electron-phonon interaction, we believe this model to apply when the ef

fective coupling parameter g= g2 Iii w exceeds the Coulomb parameter U by a sufficient amount so that 
qualitatively it is legitimate to ignore U. Otherwise, the Hubbard model is applicable and one obtains 
antiferromagnetic ordering in the ground state. 4

•
6 In the present model, the ground-state insulating 

phase is associated with finite crystallographic distortion, whereby the unit cell is doubled. The 
bands then split and what might have been mistaken for a metal with a half-filled band becomes an in
sulator. Moreover, the density of states near the band edges become anomalously large, resulting in 
surprising thermodynamic and transport properties. We shall later show that the details of the metal
insulator phase transition depend sensitively on band structure. At first, however, we assume a high-
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ly symmetric sc or bcc band structure. We start with 

H =~ Ekn k.m +U~C k + qt *C klC h'! *C k' + ql +llw~aq * a q +gN-1/2~(aq +a -q *) Ck +q, m *Ck m 

-1J.~nk.m' (1) 

The subscript m refers to the spin of the electron, the momentum subscripts k are understood to be
long to a set of N vectors in a three-dimensional Brillouin zone. The first term is the energy of 
Bloch-state electrons [Le., for tight binding in a simple-cubic structure Ek -(cosk" +cosky +cosk .. ) 
and nkm is the number operator]. The second term is the repulsive interaction between pairs of elec
trons on the same site, treated in a previous paper4

; in the balance of this work we set U = O. The 
phonons (creation and destruction operators a q * and a q ) are assumed to have an Einstein spectrum. 
In the fourth term, electrons are scattered from k to k+q by an appropriate phonon. We adjust parti
cle number by means of a chemical potential Jl.. 

With our neglect of the Coulomb repulsion terms this Hamiltonian might be expected to have a super
conducting ground state and a metallic high-temperature phase. But we shall show that in some crys
tal structures (sc or bcc with tight-binding band structures) a dominant phonon mode affects the lat
tice, causing a gap in the electronic density of states, and unusual insulating properties. Some super
conducting features will also be found. In sc and bcc lattices, the vector Q=(71/a)(±l,±l,±l), where 
a = lattice spacing, has the property that 2Q is a vector in the reciprocal lattice, and that Q itself 
splits the Brillouin zone into two subzones. Because E(k +Q) = -E (k), we can take E < 0 in the first 
zone and E > 0 in the second. For a half-filled band, the Fermi level lies at E = O. Thus, in crystals 
with the above mentioned symmetries the phonon mode Q plays a potentially important role and must 
be singled out. We write 

Ho = ~(Ek-lJ.)nkm +gN-1/2~C k + Q,m +C k,m(a Q +a_Q*) +hwaQ*aQ (2) 
km km 

(3) 

We study the insulating state inherent in Ho and compare it with the usual superconductor in which 
Ho and HI are treated by the techniques of the Bardeen-Cooper-Schrieffer (BCS) theory.7 We start by 
assuming a macroscopic lattice distortion, setting aQ = aQ* = _xN 1

/
2

, and determining the parameter x 
by minimizing the free energy. [Quantum fluctuations in this single phonon mode contribute only a 
fraction O( l/N) to the free energy and are ignored. J Writing H 0 in terms of the two half- zones it can 
be diagonalized exactly by a unitary transformation ck =Akbk +Bkbk + Q, where the b's are the new op
erators. We find 

Ak 2 = ~ +~I Ek I (Eiz 2 +~2) -112 and Biz 2 =~_~I Ek I (E/ + ~2) -1/2, 

where ~;: 2gx, and B 1z~0 for Eiz ~ 0, whereas Ak is always positive. Ho now has the form 

Ho= ~ [-(E2+~2)l/2-Jl.*]bkm*b/zm+ ~ [(E2+~2)1/2-1J.*]bkm*bkm+N~2/4g, 
E<O £>0 

(4) 

(5) 

in which g = g2 /Tiw and IJ. * ;: (1J.2 + ~ 2) 1/2 for a more than half- filled band and = - (Jl. 2 + ~ 2) 1/2 for a less than 

half-filled band, with IJ.* = IJ. = 0 for a precisely half-filled band. Settingf(x) = (1 +expt3x) -1, we con
struct the free energy F for H 0' 

F =N ~2 /(4g)-2/t3 ~ In{f( _ Jl.*-(E 2 + ~2)1/2)f( -IJ.* + (E2 + ~2)1/2)} 
E >0 

(6) 

and solve for ~2 by minimizing F with respect to ~2. Replacing summations by integrations over the 
density of states of the appropriate band structure, the equation for the insulating gap can be written 

1 = 2g LW

w 
p( E)dE( E2 + ~2) -1I2{f( IJ. *-( E2 + ~2) 112) -f( IJ. * + (E2 + ~2F/2)}, (7) 

where 2w = bandwidth. From F we also derive the electron density it: 

it = f:
w 

p(E)dE{f( IJ.*-( E2 + ~2)1/2)+f(M* + (E2 + ~2F/2)}. (8) 

In the important example of a half-filled band, it = 1, Jl. = IJ.* = O. We evaluate these expressions for 
it= 1 using a square density of states (p= 1/2w) , an approximation which we have found, by comparison 
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with exact computer calculations, to be very accurate for the parameters of interest to us in the sc 
structure. 8 Labeling the insulator parameters by I, we find 

6.1 =w/sinh(w/2g), kTI =0.576.1 , 

and the change in ground-state energy (fiF at T = 0) 

(9) 

(10) 

and TI is the nominal metal-insulator critical temperature. 
An alternative calculation is to set x = 0 and use the BCS solution for the superconductor (labelled 

H S ") : 

nw -2N(nw)2/2w 
6.s sinh(w/g)' kTs =0.576.s , flEs = exp(2w/g)-I· (11) 

In Fig. 1 we plot I fiE s / fiE 1 I and T s /T 1 against g for various values of hw. When both these ratios 
are less than unity there is no superconductivity for a half-filled band. We observe that for a coupling 
constant and phonon energy substantially less than the bandwidth there is no superconductivity, the 
insulator is preferred, and thus x "* O. 

Next we query, what is the maximum deviation from a half-filled band for which we still have a non
vanishing x in the ground state? Clearly there is a critical density nc beyond which the ground state 
is a metal or superconductor, but not an insulator. We plot Inc -11 as a function of g in Fig. 2(a), as 
well as 6.1 vs n for g = 0.1, Fig. 2(b). This figure shows that for this choice of g, the insulating phase 
ceases to exist when the deviation from a half-filled band exceeds 5 %. We now assume that n is within 
this range, but not precisely equal to 1, so that the ground state is that of a degenerate semiconduc
tor. We shall now calculate the super conducting properties of such a semiconductor. It is necessary 
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FIG. 1. Ratio of ground-state energy for a half-filled 
band at 16Es /6E]I, solid line; and critical temperatures 
Ts/T], dashed line, for two values of 1M, over a range 
of g 0 The superconducting phase cannot exist when 
these ratios are both less than unity, so the insulating 
phase is clearly preferred in weak coupling (small g) . 
All energies are in units of 2w = 1. 
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FIG. 2. (a) The insulating phase disappears at a 
density nc if we deviate too much from a half-filled 
band. This plot shows the dependence of nc ong. 
(b) The insulating gap t:.] at T = 0 as a function of elec
tron concentration away from a half-filled band. t:.j 
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to apply to H 1 the canonical transformation which diagonalized H ° [Eq. (5)], yielding 

H 1 =gN -1/2 'B (a A +a -A *)'B{bk + Am *bkm(A k + AAk +Bk + Q + AB/<+ Q) 
A km 

10 AUGUST 1970 

+ bk + Am *b k + Qm(A k + AB k +Bk + Q + AAk + Q)} +nw'B a q *a q • (12) 

We eliminate the phonons to obtain the effective electron-electron interaction, as in the work of Bar
deen and Pines9

: 

, 2
nw ""~ ~ S A(k) f '" S (k') Hs =-g N2L..J~ (E E )2 (1iW)2 LI -A , 

A k m k + A - k - k'm 

(13) 

where Ell = ±( € k 2 + A 12) 1/2 are the energies found in H 0' and 

SA (k) = b k + Am * b k m(A k + A A k + B k + Q + A B k + Q) + b k + Am * b k + Qm(A k + A B II + B k + Q + A A k + Q)' (14) 

Substituting for A and B and retaining only the BCS reduced interaction, we find an effective Hamilton
ianHs: 

H -H 2 2 nw "\"' b"'t*b_k't*b,,lb_,d (1 ~) 
s - 0+ g N f;f (E",-E,Y-(nw)2 + E"E k , • 

When W » b., » /.L > nw, we find for the parameter of the superconducting semiconductor 

nWjJ./AI 
As(T=O)= . h( /2-A )' kT s =0.57A s (T=0). sm wjJ. g I 

(15) 

(16) 

The factor jJ./ AI from the insulator decreases the effective 1iw but greatly enhances the exponential 
factors, so that T s could be unusually high. 

We have also studied the order of the metal-insulator thermodynamic phase transition in our model. 
(Experimentally it is first order in most materials which exhibit this phenomenon, with the gap jump
ing from zero to a finite value at T I, with a jump in conductivity of as much as six orders of magni
tude. However in exceptional cases, such as Ti20 3, it appears to be second order .)1,5 As it stands the 
transition in our model is second order, with AI going smoothly to zero at T I • We have however 
studied many additional mechanisms and have found that the following all preserve the second-order 
transition, even though they have nontrivial effects on AI, TI , etc.: (1) pressure and strain (e.g., the 
strain dependence of g, nw, w, with one exception-II below), (2) nonvanishing Coulomb repulsion U, 
and (3) deviation from precisely half-filled band. We have also found that the following mechanisms 
do change the transition to first order: (1) deviation of the band structure from perfect tight-binding 
sc or bcc, and (II) strain, provided g~w. This second presupposes an unphysically large coupling 
constant and we have not pursued it further, even though it is commonly believed, and has been of tenS 
stated, that the discontinuities are due to strain. Our model does not bear this out, and suggests that 
mechanism 1 -Le., the effect of next-nearest-neighbor overlap on the band structure -is sufficient to 
explain the experimental facts. We shall assume the following simplified band structure: 

€(k) = € SC(k) +A6€(k), (17) 

where 

6€(k +Q) = +6€(k) and (6€(k»k = 0, (18) 

where ()" stands for an average taken over a surface € SC(k) = const. For a half-filled band /.L = /.L * = 0 
once more, and replacing (7) we have 

1 = 2g J:
w 

p( E)dE( €2 + A2) -1/2{(J( A6€ _( €2 + A2) 1I2»k -(J( A6€ +( €2 + A2) 1/2»k}' (19) 

If the function A6f(k) is replaced by a step function ±A the angular averages can be performed ex
actly and numerical evaluation of (19) for g=O.l yields a discontinuous phase transition for A in the 
range 0.05 < /A/2w / < 0.1. 

For smaller A the transition is second order. When A increases T I decreases, until for I A/2w I 
~ 0.1 the insulating phase ceases to exist even at T = O. These effects are expected to depend on the 
magnitude of g. The effects of band structure on AI(T) are shown in Fig. 3. 
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FIG. 3. Temperature dependence of the gap .D..[ for 
sc band structure (dotted curve) and for 6% deviation 
from sc (It/2w =0.06, solid curve). At less than 5% 
deviation the .D..[ curve becomes second order again, 
whereas at or above 10% T[-D and the insulating phase 
disappears. This calculation is for g = 0.1 x 2w. The 
temperature is plotted in units of kT=2w x10- 2• 

We conclude that the observed effects of pres
sure and strain on T I are explained by the strain 
dependence of the band structure (i.e., the "mix" 
of next-nearest-neighbor to nearest-neighbor 
overlap depends sensitively on lattice parameter) 
rather than by the effects of strain on the abso
lute or relative magnitudes of g, liw, bandwidth, 
or U. 
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