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Knowing only the zero-field magnetization (e.g., Yang's result) of the Ising model in any number of 
dimensions, one can construct a lower bound on m(h), the magnetization in finite field. Knowledge of u, 
the internal energy per bond, enables a more efficient lower bound to be constructed. Both are applica­
tions of the Griffiths inequality, as recently generalized by Kelly and Sherman, and should prove useful 
in the lattice gas problem where it is essential to know m(h). 

We present nontrivial lower bounds on the mag­
netization in finite magnetic field Im(h)1 of the Ising 
model. An "upper upper" bound is Im(h)1 = 1. 
Subsequently we hope to derive an improved upper 
bound which, together with the present result, should 
help constrain the true m(h) fairly well. 

Consider an isotropic M x N lattice, with a spin 
at every site and periodic boundary conditions, and a 
Hamiltonian 

In the limit MN -* 00 followed by h' -* 0, Griffiths 
has shown that m is positive and obeys 

lim lim m(h') ~ my, (6) 
h'-+O Jj{N-+oo 

where my is the (positive) magnetization calculated by 
Yang.3 Similarly, the limit: 

lim lim lu(h')1 = lui (7) 
h'-+O 2V[N-+00 

H(h) = -J ~ aia} - h :2 ai . 
is the zero-field short-range correlation function-i.e., 

(1) the absolute value of the internal energy per bond. 
un i 

The partition function Z(M, N, It, (3) is: 

Z(M, N, h, (3) == Tr {e-PH } 

= Z(M, N, h', p)(eP(h-h')J:ifJi)h" (2) 

where < )h' indicates "thermodynamic average w.r.t. 
H(h')." Expanding: 

/ MN \ 
(eP(h-h')J:i<1i )h' = cosh1l1

•
v P(h - h')\ IT (1 + a.;f); , 

1 h' 

(3) 

in which t == tanh f3(h - h'). 
We factor the product into pairs and apply the 

generalized Griffiths inequalityl due to Kelly and 
Sherman.2 

/1I1N \ 
\ IT (1 + ail)/ 

1 h' 

iM," 
~ II ([1 + t(ai + ai +1) + t2aiai+l])h" (4) 

1 

By translational invariance, all factors are equal, and 
the rhs of (4) is 

(1 + 2tm(h') + t2 lu(h,)/)!MN. (5) 
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Thus, 

Z(M, N, h, (3) ~ Z(M, N, 0, P)(coshMN Ph) 

X (1 + 2tmy + t2Iu/)hlN. (8) 

On the lhs, we have 

Z(M, N, h,P) == exp [ MNf3 ih dh"m(h")]Z(M, N, O,P). 

(9) 

Because m(h") is a nondecreasing function of its 
argument, 

hm(h) ~ ihdh"m(h"), 

Combine (10) and (8) to obtain 

m(h) ~ (hf3)-l{log cosh f3h 

(10) 

+ i log (1 + 2tmy + t 2 Iu/)}. (11) 

We illustrate this result in Fig. 1, plotting the rhs of 
(11) for one temperature above Tc (curve A), one at 
To (B),and two below Tc (C and D). 

A lower bound, which is somewhat less efficient 
above Tc but almost as good as (11) below it, can be 
obtained with far less numerical work; according to 
Refs. (1) and (2), lui 2 m}, therefore using this on 
the rhs of (11) we find 

m(h) 2 (f3h)-l log (cosh f3h + my sinh f3h). (12) 

Above or at To, my = 0, and the resultant lower 
bound is shown as the dotted curve in Fig. 1. Below 

3 C. N. Yang. Phys. Rev. 85, 808 (1952). 
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Tc , the lower bound (12) rapidly approaches (11) and 
would be indistinguishable from curves C and D at the 
temperatures we have chosen, on the scale of our 
graph. 

It is hoped that the present results might be useful 

FIG. I. Lower bounds to the mag­
netization at finite field m(h) plotted 
vs x = tan Ph at various temperatures. 
For A, TIT. = 1.83; for B, T = T.; 
for C, TIT. = 0.927; and for D, TIT. = 
0.61; all using inequality (11). Dotted 
curve is inequality (I2) at all T ~ T •• 

in lattice gas theory as well as in magnetism. It should 
be noted that they are not at all restricted to two 
dimensions; once a variational estimate of m in zero 
field is known for three dimensions, it can be used 
forthwith in Eq. (12). 


