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A b strac t— In  re c e n t y ea rs , co m p u ta tio n a l b io log ists have  show n 
th ro u g h  sim u la tio n  th a t  sm all n e u ra l  n e tw o rk s  w ith  fixed co n ­
n ectiv ity  a re  cap a b le  o f p ro d u c in g  m u ltip le  o u tp u t  rh y th m s  in 
resp o n se  to  tra n s ie n t  in p u ts . I t  is believed  th a t  su ch  n e tw o rk s  m ay  
p lay  a  key  ro le  in  c e r ta in  b io log ical b eh av io rs  such  a s  d y n am ic  
g a it co n tro l. In  th is  p a p e r, w e p re se n t a  novel m e th o d  fo r  design ing  
co n tin u o u s-tim e  re c u r re n t  n e u ra l  n e tw o rk s  (C T R N N s) th a t  c o n ­
ta in  m u ltip le  e m b ed d ed  l im it cycles, a n d  w e show  th a t  it is possib le  
to  sw itch  th e  n e tw o rk s  be tw een  these  e m b ed d ed  lim it cycles w ith  
sim ple  tra n s ie n t  in p u ts . W e a lso  d esc rib e  th e  design  a n d  tes tin g  
of a  fu lly  in te g ra te d  fo u r-n e u ro n  C T R N N  ch ip  th a t  is u sed  to 
im p lem en t th e  n e u ra l n e tw o rk  p a tte rn  g e n e ra to rs . W e p ro v id e  
tw o exam ple  m u lt ip a t te rn  g e n e ra to rs  a n d  show  th a t  th e  m ea su re d  
w aveform s fro m  th e  ch ip  ag ree  w ell w ith  n u m e ric a l s im u la tio n s .

In d e x  Terms— A nalog  n e u ra l  n e tw o rk , an a lo g  V L S I, c e n tra l  p a t ­
te rn  g e n e ra to r  (C P G ) im p lem en ta tio n s , c o n tin u o u s-tim e  re c u rre n t  
n e u ra l n e tw o rk  (C T R N N ), m u lt ip a t te rn  g e n e ra to rs .

I. INTRODUCTION

A. Central Pattern Generators

MANY activities vital to animal survival such as walking, 
breathing, and digestion require repetitive, rhythmic ac­
tivation of an animal’s muscles. These rhythmic muscle contrac­

tions and relaxations are controlled by specialized neural net­
works called central pattern generators (CPGs) [1]. CPGs have 
been studied by biologists and neuroscientists since the early 
1900s, and two key principles have emerged from these studies. 
First, CPGs are independent neural networks located outside 
of the brain, i.e., control of locomotion is distributed. Second, 
though sensory feedback and descending inputs from the brain 
(i.e., the cerebellum) can improve the quality of the motor pat­
terns, CPGs are capable of sustaining rhythmic outputs in the 
absence of such inputs [2], [3].

Modeling CPGs provides a way of testing existing theories 
about their behavior. For example, it has long been observed that 
four-legged animals vary their gait according to their speed [4], 
yet experimentation has not made clear the underlying mecha­
nisms responsible for such behavior. Recently, researchers have 
demonstrated that multiple output rhythms, similar to those ob­
served in animal gait control, can be produced by small neural

Manuscript received January 5, 2005; revised October 27, 2005. This work 
was supported by the National Science Foundation under Grant EIA-0130773.

R. J. Kier and R. R. Harrison are with the Department of Electrical and Com­
puter Engineering, University of Utah, Salt Lake City, UT 84112 USA (e-mail: 
kier@eng.utah.edu).

J. C. Ames and R. D. Beer are with the Department of Electrical Engineering 
and Computer Science, Case Western Reserve University, Cleveland, OH 44106 
USA.

Digital Object Identifier 10.1109/TNN.2006.875983

networks with fixed connectivity [5], [6]. Furthermore, these 
studies have shown that, like their biological counterparts, the 
artificial networks are multistable or reconfigurable, i.e., they 
can be switched between the multiple output patterns through 
the application of a transient input. These studies employed bio­
logically realistic (Hodgkin-Huxley type) neuron models which 
involve several differential equations per neuron. In this paper, 
we show that the same qualitative reconfigurable behavior can 
be realized using a significantly less complex, and hence sim­
pler to implement, neuron model.

Our work is similar to that demonstrated in [7]. However, in 
this prior work, the authors were able to embed specific patterns 
into a network, but their method required a neuron model with 
two synaptic connections per neuron: one fast time constant con­
nection to stabilize the network state and one slow time constant 
connection to compute the network’s next state. In contrast, we 
employ a model neuron that requires only a single time constant 
per neuron while maintaining the ability to embed specific pat­
terns into a network.

B. Applications

Biology often offers attractive, elegant solutions to engi­
neering problems. Take, for example, legged robotics, where 
engineers often place an emphasis on centralized control. In 
contrast, biological systems rarely make use of centralized 
control; more often control is distributed throughout the body. 
CPGs are a classic example of this distributed control. CPGs 
handle the low-level limb coordination required for walking, 
leaving the brain available for higher level tasks such as nav­
igation and obstacle avoidance. Implementing this type of 
distributed control with neural networks has been difficult in 
engineered systems because simulation of even the simplest 
neural network models requires significant computational 
power. As a result, PCs were used to simulate numerically 
neural networks in many of the early legged robotic systems 
which used CPG-based control (e.g., [8] and [9]). This config­
uration requires the robot to be tethered to an umbilical cord, 
limiting its range and usefulness. Ideally, a hardware neural 
network and a small microcontroller could be used onboard the 
robot, thereby removing the need for an undesirable umbilical 
cord. The microcontroller could handle the robot’s higher 
functions (i.e., decision-making, navigation, etc.), leaving the 
low-level limb coordination to the neural network controller.

Although hardware (both analog and digital) neural net­
works have been around for some time, they have not been 
well-suited for CPG implementations because they usually 
lacked dynamics. However, in recent years, hardware CPG 
implementations have received more attention. Some work has
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Fig. 1. Block diagram of a single CTRNN neuron. Note that the bias input Oi is applied to the input of the low-pass filter rather than its output. Because 6* is a 
constant, this system is equivalent to that described by (1).

been inspired by observations of CPGs in swimming animals. 
For example, an analog CPG based on coupled intrinsic oscil­
lators was developed in [10]. In contrast, other researchers have 
developed CPGs for quadrupedal gait control [11]. Finally, 
other researchers have been working on bipedal locomotion 
controllers [12]-[14]. All of these hardware CPGs are capable 
of creating sustained output rhythms similar to those found in 
biological systems. However, none of these previous imple­
mentations has demonstrated reconfigurable (i.e., multistable) 
behavior.

In this paper, we present a new implementation of an artificial 
CPG that can be switched between multiple output patterns via 
brief transient inputs. In Section II, we review the continuous­
time neural network (CTRNN) neuron model used in this paper. 
Next, Section III describes the design method used to embed 
multiple limit cycles (i.e., patterns) into a fixed-connectivity 
CTRNN. Additionally, we present two illustrative examples of 
the design procedure. Section IV describes the analog circuitry 
used to implement the CTRNN neurons. In Section V, results 
from our CPG chips are presented and compared with our sim­
ulations for the two example networks designed in Section III. 
Finally, we give some conclusions and future directions for this 
work in Section VI.

II. Continuous-Time Recurrent Neural Networks 
(CTRNNS)

The state of each neuron in a CTRNN is described by the 
first-order differential equation

d: ■ N  
n - - =  - y i  +  X j wa  ‘ a (2/i +  6o) +  Ti (1)

where y i  is the state of the i t h  neuron, t ,  is the time constant of 
the ith neuron, 0j is a bias for the ,/th neuron, Wjt is the synaptic 
weight from the jth  neuron to the ith neuron, a(x) is the logistic 
sigmoid function

=  i m -x  (2)1 +  e x

and Ii is an external input to the /(h neuron [15]. CTRNNs 
are identical to Hopfield’s continuous model [16] except that 
the connection weights between any pair of neurons need not

be symmetric and self-connections are allowed. Fig. 1 shows a 
block diagram of a single neuron corresponding to the descrip­
tion given by (1).

While this artificial neuron model is much simpler than 
other, more biologically accurate neuron models (e.g., the 
Hodgkin-Huxley model), it remains attractive for many 
reasons.

1) It is computationally inexpensive to simulate; hence offline 
simulations can be used to quickly evolve desirable net­
work patterns using genetic algorithms.

2) The model is mathematically tractable.
3) CTRNNs are universal approximators of smooth dynamics

[17].
4) The CTRNN neuron has a plausible biological interpreta­

tion. The mean membrane potential is represented by y , , 
Oi captures the firing threshold, and t, corresponds to the 
membrane time constant. The parameter a(y, +  0,) repre­
sents the mean firing rate while w jt describes the synaptic 
interactions with the self-connections (w u ) endowing each 
neuron with bistability properties.

5) The model is amenable to analog circuit implementation.

III. Design of multipattern Generators

A. Design Method

In this section, we describe a way to program the weights 
and biases of a CTRNN so that it generates multiple desired 
temporal patterns. Each pattern consists of a sequence of quasi­
stable states in which different combinations of neurons are sat­
urated on and off. Although the patterns will typically be cy­
cles, they need not be. We use previous work on the dynamics of 
CTRNNs to derive a set of inequalities involving the connection 
weights and biases from a specification of the desired temporal 
patterns. If this set of inequalities is solvable, then any solution 
will lead to a CTRNN that exhibits the desired patterns. Because 
the neurons are being operated in saturation, the dynamics of the 
resulting CTRNN resembles a finite-state machine and part of 
the design process is reminiscent of conventional state machine 
design techniques.

A useful way of looking at the dynamics of the individual neu­
rons of a given network is in terms of their steady-state output. 
For a given input, a neuron will eventually settle on some output 
value, which we can plot versus the input value to generate a
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Fig. 2. Steady-state input/output (SSIO) curve corresponding to a self-weight 
of 12 and bias of — 6. This curve shows how the location of the equilibrium 
points of a single neuron changes as a function of the synaptic input. In the 
folded region, the system is bistable, where the outer branches are stable and 
the inner branch is unstable.

steady-state input/output (SSIO) curve [15]. An SSIO curve is 
obtained by setting (1) for a single neuron to zero, solving for 
I  in terms of y, and then plotting a (y  +  9) versus I . If the 
self-weight is less than four, there will be only a single stable 
equilibrium point for each input. But when the self-weight goes 
above four, the SSIO curve folds back on itself, so that there is a 
region of bistability—two stable equilibrium points separated 
by an unstable equilibrium point. In general, the self-weight 
boundary between unistability and multistability will be deter­
mined by the reciprocal of the maximum of the activation func­
tion derivative; the number 4 arises here because the maximum 
of cr'(a) is 1/4 [15].

Fig. 2 shows an SSIO curve for a self-weight of 12 and a bias 
of - 6. The horizontal axis is the total input I  to the neuron [not 
including the self-input, which enters nonlinearly into (1)], and 
the vertical axis is the neuron’s output a (y  +  9). In this case, the 
bistable region lies between inputs of —2.607 and 2.607.

The left and right boundaries of this region, denoted IL and 
I r , indicate where a neuron will make a transition from on to 
off (// ) or from off to on (Ir ). The boundary values for the 
bistable region of the SSIO curve are functions of the neuron’s 
self-weight w  and bias 0 [151

1 +  1J w (w  — 4)

(w, 9) =  — 2 In

— 0

+  \ /w  — 4 N

- 6 .

(3)

(4)

These expressions are obtained by solving for the simultaneous 
zeros of the single-neuron vector field and its derivative to pick 
out the manifold of saddle-node bifurcations that delineate the 
boundary between unistable and bistable behavior.

In this section, we look at using the SSIO curves to predict 
when a neuron will transition from off to on, based on the in­
puts of the other neurons. To simplify the analysis, we assume

that all neurons have binary outputs, and that transitions occur 
instantaneously. When neurons are driven sufficiently far into 
saturation, the binary approximation is quite accurate.

We can form the network state at any given time by assuming 
each neuron is either on (1) or off (0), and concatenating these 
states to make a binary vector. We also define allowed tran­
sitions between states by assuming that only one neuron can 
change state at a time. Fig. 3 shows all possible transitions be­
tween states for three- and four-neuron networks. With these as­
sumptions, the states and possible transitions for an Ar-neuron 
network form an TV-dimensional hypercube.

For simplicity, we require that all neurons be bistable, which 
requires that w >  4. We set w =  12, to give a fairly curved 
SSIO diagram, with a bistable region of width 5.21. Using a 
fixed self-weight reduces (3) and (4) to linear functions of the 
neuron’s bias.

Given a desired transition from one network state A to a 
second state D, we can compute an inequality corresponding 
to this transition as follows. Denote the neuron changing from 
state A  to state D as the y(h neuron. Then the synaptic input to 
the ,/th neuron, i^ j wi j cr(yi +  :̂)> must be greater than 
IR(w j,0 j)  if it is turning on, or less than I l (w j , 9j) if it is 
turning off. Note that, assuming that the external input I:j is zero 
(which is reasonable for a CPG), the inequality generated is only 
a function of the weights on edges coming into the jth  neuron 
and the bias of the jth  neuron. Therefore, the inequalities for 
each neuron will be independent of those for any other neuron 
and can be solved separately. In total, we must solve the inequal­
ities for N 2 — N  weights and N  biases.

We also need to restrict the other transitions involving the 
states we have specified, by requiring that every network state 
that has a defined transition leaving it have no other transition 
leaving it; that is, that every network state we include in our 
cycles be unambiguous regarding what its next state will be. 
As a direct consequence, any cycles we wish to embed in the 
network must be vertex disjoint. They can overlap in their use 
of neurons, but not in their use of network states.

Furthermore, the system is never allowed to transition from 
a state A  to another state B  and back to A  without an interme­
diate state. Because the self-weight is not taken as part of the 
neural input, relative to the SSIO curve, the transition from one 
state to another and its reverse have the same input value to the 
neuron, and it can only be above I r  or below I I , but not both. 
Due to the mutual exclusivity of this situation, it is not necessary 
to include explicit restrictions of these backward transitions. 
Note that without the binary neuron assumption, neurons could 
change their outputs slightly, without crossing the 0.5 threshold, 
and then such a cycle would be possible.

We also must be sure that the cycles we program in are in fact 
stable limit cycles. We test this empirically, by perturbing each 
cycle in the system by small random amounts and verifying that 
it settles back onto the limit cycle. For each of the circuits we 
generate, we perform this test for each cycle, applying a con­
stant external input to each neuron, of a magnitude randomly 
generated, uniformly distributed in the range of [—1,1]. All cy­
cles shown in this paper are stable.
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Fig. 3. Possible transitions in three- and four-neuron networks. Circles indicate network states, labeled by the outputs of each neuron when in that state. Edges 
indicate possible transitions, where one neuron is allowed to change state at a time. Note that these maps are isomorphic to the subset inclusion ordering of the 
power sets of sets of three and four elements, respectively.

Fig. 4. Diagrams of systems A-l, A2, and A3 after independent inequalities in a three-neuron system are separated. Circles indicate network states, labeled by 
the outputs of all neurons besides the one transitioning (designated “x”). Straight lines indicate subset inclusion. Arcs indicate which states are flipped when the 
corresponding weight changes sign. Using these arcs and our transition ordering, the solvability of the system can be predicted.

B. Solvability

We have shown how to generate a system of inequalities 
corresponding to a set of desired transitions between network 
states, but the question arises of whether this system will 
always be solvable; that is, can arbitrary patterns be embedded 
in an Ar-neuron network? To clarify this question, we develop 
a formal specification of the task at hand.

Since each neuron’s inequalities involve only its own 
self-weight, bias, and the weights of incoming connections, 
we can separate the inequalities by the neuron they relate 
to. In an Ar-neuron system, this will give us N  new sys­
tems A 1,A 2, ■ ■ ■ ■ A N containing 2N~1 states each, where in 
system A; all inequalities are functions of wu, 0, , and weights 
wj i ( j  7̂  *)• Fig. 4 shows the three systems generated when 
N  =  3.

Let T  =  { Ij. II. 0} represent the set of possible transitions 
from a given network state, where L indicates transitioning off, 
R  indicates transitioning on, and 0 indicates that no transition is 
allowed. The input to the neuron is x =  5^,= [ w ^yi. Recall

that according to the SSIO curve (see Fig. 2), if a: < //., (lie 
neuron will settle in the “off” state; if IL <  x <  IR, the neuron 
will remain in its current state; and if I r  <  x, the neuron will 
settle in the “on” state. Using this idea of the natural ordering on 
the input from other neurons, we create an ordering on T. We 
define a binary relation -< on T  such that I, II. Then T
combined with -< forms a totally ordered set.

Let Y  be the set of binary vectors of length N  — 1. Then 
we define a function ip : Y  —> T, which, for a given network 
state y G Y  (the outputs of all other neurons), describes the 
transition t  e  T  allowed. Note that Y  along with the subset 
inclusion relation C forms a partially ordered set. This raises 
the question of whether cp is order-preserving (that is, whether, 
given a, b G Y , a C b implies cp(a) <  <p{b)).

It appears that if cp is order-preserving, the system of inequal­
ities At must have a solution. For a , b £ Y , a C b , a  represents 
a state receiving less input from other neurons than b. Thus it 
would make sense that the range of the SSIO curve accessible to 
a should also be “less than” 6’s, in the sense that corresponding 
boundaries (left or right) of a ’s range should be less than those
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TABLE I
Desired Transition Inequalities for Example 1

From To From To Inequality
0 0 0 0 0 0 0 1 0 > Ir (W 44 , 64) 0 0 1 0 0 1 1 0 w32 > M w22- 82)
0 0 0 1 0 0 1 1 Vl'43 > //;(vi’33, 6/3) 0 1 1 0 0 1 0 0 W23 < 4(w33;
0 0 1 1 0 1 1 1 W32 + 11’42 > Ir('v22, 82) 0 1 0 0 0 1 0 1 W’24 > h i ( w 44, O4 )
0 1 1 1 1 1 1 1 VV21 + W31 + W! ] > /flOn, ^1) 0 1 0 1 1 1 0 1 W2\ + Vt’41 > k ( w \ b  0 \)
1 1 1 1 1 1 1 0 IV14 + lt'24 + W34 < 4(W44, ft() 1 1 0 1 1 0 0 1 W\2 + VV42 < 4("'22> O2)
1 1 1 0 1 1 0 0 w13 + w23 < 4(M’33, 03) 1 0 0 1 1 0 1 1 Wj3 + W43 > 4(w 3 3 ,

1 1 0 0 1 0 0 0 »’\2 < 4 (m’22- #2) 1 0 1 1 1 0 1 0 W14 + W34 < IL(\V44, #4)
1 0 0 0 0 0 0 0 0 < I].(w 11> #l) 1 0 1 0 0 0 1 0 W31 < 4 0 n -  Oy)

of b. Some care is necessary in stating this, as the SSIO curve’s 
bistable region may not be fully within the range reachable from 
any network states, for some values of the neuron self-weight.
We can use the bias to shift the SSIO curve left and right, but 
only to a limited degree. Exactly how much of a restriction this 
is, and in exactly what cases the system is solvable, remains for 
future work.

This gives us a tentative criterion for determining whether 
a system is solvable. However, we have thus far implicitly as­
sumed that input from other neurons is positive. In the CTRNN, 
this is not always the case. Specifically, the input’s sign is deter­
mined by the weight w.ij on the input coming from neuron i into 
the jth  neuron, and these weights are variables in our systems 
of inequalities.

What happens when we flip a given weight, say, ir ,r  
from positive to negative? Let us define the vector S  of 
signs of the weights on connections coming into neuron j  as
S =  (si , so,  ■ • ■ • Sj_i, S j+ i....... sN ), where each si is equal
to 1 if the corresponding weight wtj  is positive and — 1 if Wy 
is negative.

Suppose we have an S  where each s.; =  1. Choose one weight 
Wkj and make it negative, so Sk =  — 1 , and call this new vector 
S'. In the case of S', a Y  where yk =  0 will yield a greater 
net input x to neuron j  than will a V where y>, =  1. If ip is the 
mapping we use in the case of S,  let us create a new mapping 
ip' based on ip which reflects the fact that ijk is now subtracting 
from our net input. For each y e  Y,  let y' be the vector such that 
y'l =  yi if-i 7  ̂ fc and y'k =  1 — y k. Then define <p'(y) =  ip{y').
Roughly speaking, cp' is cp “reflected” across the fcth axis of ( - Examples

Fig. 5. Two embeddings of pairs of eight cycles in four-neuron state space. 
Straight arrows indicate embedded transitions, while curved arrows indicate 
transitions caused by external inputs that switch from one embedded cycle to 
the other. For both examples, one of the embedded patterns is shaded in gray 
while the other embedded pattern is not shaded. (a) Example 1. (b) Example 2.

desired set of transitions is solvable. A number of questions re­
main open to further research. For example, rather than testing 
all 2n ~ l mappings from V to T,  is there a general property 
of the cycles that can be used to determine the solvability? If 
a given set of inequalities is not solvable, can we transform it 
into a solvable system by adding a minimal number of neurons 
to separate conflicting transitions? Can the approach be general­
ized to allow multiple neurons to change state simultaneously or 
to allow the duration of the transitions to be programmed rather 
than treating them as instantaneous?

its domain. The arcs in Fig. 4 labeled by a weight designation 
show how this reflection can be visualized in the case N  =  3. 
Therefore, by manipulating the sign of the interneuron weights, 
we can create a family of functions <I> =  {<p1, if k  K
where K ,  the number of such functions, is equal to 2 V \  since 
we have N — 1 weights we can make positive or negative.

If any one of these functions is order-preserving, it seems that 
the system can be solved. And conversely, it seems that if none 
of the functions preserves order, there will be no solution to the 
system of inequalities. The caveats mentioned earlier regarding 
the SSIO curve’s exact position versus the range of inputs real­
izable by the network also apply here, and we leave the specifi­
cation of the exact circumstances in which this will limit us to 
future work. For our present purposes, this rudimentary method 
alone is sufficient to guide the design process and allow us to 
embed multiple limit cycles.

In summary, we have shown one way to formalize the con­
ditions under which the set of inequalities corresponding to a

Although a number of open theoretical questions remain 
about the general solvability of an arbitrary set of transitions, 
we demonstrate in this section that the method can be practi­
cally applied. Specifically, we present two examples of pairs of 
embedded cycles. Both examples create two cycles of length 
eight in four-neuron networks, making use of every network 
state available. The state transitions are shown in Fig. 5.

The first example’s cycles, as shown in Fig. 5(a), are {0000, 
0001, 0011, 0111 , 1111 , 1110, 1100, 1000} and {0010, 0110, 
0100,0101, 1101, 1001,1011,1010}. We convert each of these 
transitions to an inequality, based on which neuron is transi­
tioning and what the originating network state is. For example, 
in the transition {0000,0001}, neurons 1 through 3 are off, while 
neuron 4 is turning on. So neuron 4’s internal state must be 
pushed above J r .  Thus the inequality becomes 0 * w u  +  0 * 
1024 +  0 * W34 >  / r (  w44, 6*4), or simply 0 >  IR(w a ,  04). The 
set of inequalities this generates is shown in Table I.
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TABLE II
Selected Forbidden Transition Inequalities for Example 1

Fig. 6. Example of solvability method with respect to neuron 2, using the transitions defined for Example 1. The transition diagram on the left shows the transitions 
that neuron 2 undergoes (circled and labeled with the network state). These correspond to the L and I? states labeled in the network diagram on the right (the other 
states have no transition, corresponding to the state, but are not marked here for clarity). The straight lines between network states illustrate the subset inclusion 
ordering. The four dark arcs show the effect of flipping the sign of weight »'i2, which in this case is necessary to maintain the ordering L ^  0 ^  I?.

As mentioned above, we also want to restrict these neural 
states so that they cannot transition elsewhere. Each state could 
potentially transition to three other states in the network (ex­
cluding a self-transition), namely, those resulting from any of 
the other three neurons changing state, so we must explicitly 
forbid these. Thus there are a total of 32 inequalities for the for­
bidden transitions. The way we forbid transitions is by requiring 
that the neuron’s internal state be greater than IL for a forbidden 
“o ff’ transition and less than IR for a forbidden “on” transition. 
For example, Table II shows the inequalities corresponding to 
the two forbidden transitions from network state 0000 and from 
1111.

Once we build a complete list of desired and forbidden transi­
tion inequalities, we can generate a parameter set that simultane­
ously satisfies these inequalities. Since we sometimes need to try 
multiple configurations to get one where all the limit cycles we 
want are stable, we generally pick parameters randomly within 
the valid ranges. While a more sophisticated method of solu­
tion will likely be necessary for larger networks, this method has 
been sufficient for the examples presented here. Picking random 
parameters in this case, we arrive at the following weight ma­
trix and biases, where the row number designates the origi­

nating neuron and the column number designates the destina­
tion neuron:

12
7.18571

-0.624068
7.31

-11.7235 -3.44359
12 -10.5646 

8.93508 12
-1.47654 10.2795

0 =  [-10.8512 -3 .64164  -4 .78549

-6.63136
2.54641

-7.26261
12

-  0.415379]

The solvability method described in the previous section can be 
illustrated using this example (Fig. 6). There are four transitions 
of neuron 2’s state (circled in the state diagram on the left), 
which create two ‘L’ and two ‘R’ states in the lattice on the right 
(for clarity, ‘0’ states are not marked). Because in this case, we 
have some states where 0 <  L  (e.g., 000 and 100) and some 
states where R. <  0 (e.g., 011 and 111), we can deduce that we 
must flip the sign of weight w i2 (shown by the dark arrows) to 
ensure the ordering L <  0 <  R. The other two weights (iu32 
and w42) can be either positive or negative. This agrees with the 
empirical results shown in the weight matrix.

The second example’s cycles, shown in Fig. 5(b), are {0001, 
0011, 0010, 0110, 1110, 1100, 1101, 1001} and {0000, 0100, 
0101,0111, 1111, 1011, 1010, 1000}. We use the same method

Authorized licensed use limited to: The University of Utah. Downloaded on June 30,2010 at 22:03:55 UTC from IEEE Xplore. Restrictions apply.



KIER et al.: MULTIPATTERN GENERATORS IN ANALOG VLSI 1031

to generate inequalities, but in this case we restrict the possible 
parameter values to integers due to the 5-bit precision of the 
synapse circuitry. Thus we obtain the following weight matrix 
and biases:

12
5
5
0

-1 1

- 5  - 5  0
12 0 5
0 12 - 5

- 5  5 12 
-  1 - 6 -6 ] ,

through the noninverting input transistor M [. The diode-con­
nected pMOS transistor M0 ut serves as the input of a current 
mirror that copies the output current to the inputs of the synapse 
circuitry. The input to the circuit is taken as vLp f , the gate 
voltage of the noninverting input transistor M i. The inverting 
input of the differential pair (the gate of M2) is connected to 
a reference voltage Vref , . This reference voltage is normally 
at circuit ground (i.e., halfway between the positive and nega­
tive power supplies). However, Vrefi can take on large transient 
values to realize reconfigurablility [i.e., it can serve as the I; in­
puts in (1)]. It can be shown that the output current is given by

Fig. 7 shows the simulation results for both example net­
works. The thick bars represent the duration of a transient /, =
10 input to the neuron. Note that the time constant parameters 
for each neuron do not enter into the design procedure, hence 
they can be chosen arbitrarily to scale the pattern frequency. For 
the simulations shown in Fig. 7, all time constants were set to 
one.

IV. Analog VLSI Implementation

A. Silicon Neuron Overview

We have designed and tested a four-neuron CPG chip in 
AMI’s 1.5 /j,m CMOS process. The block diagram and a labeled 
die photo of the CTRNN chip are shown in Fig. 8. The chip 
contains a fully programmable four-neuron CTRNN along with 
a suite of test devices. The chip uses ±2.5 V supply voltages. 
Each neuron on the chip implements the CTRNN model and is 
fully programmable. Fig. 9 shows the schematic for one neuron 
on the chip with boxes indicating the major subcircuits that 
correspond to the block diagram in Fig. 1. Note that for the 
convenience of implementation, the biases 0, are summed with 
the synaptic inputs rather than the neuron state y , . This change 
does not affect the dynamics of the CTRNN because the bias is 
a constant and unaffected by the low-pass filter operation in (1). 
The weights and biases of each neuron are programmable on the 
range —15 <  Wji <  15 via 5-bit multiplying digital-to-analog 
converters (MDACs). The time constants, which are set by 
the bias currents to G m-C  filters, also are programmed with 
5-bit precision on the range 0 <  n  <  0.8 s. Additionally, each 
neuron has an analog voltage input-Vref;, corresponding to the
11 parameter in (1), that can be used either to provide sensory 
feedback or to switch the CPG between stable limit cycles. 
Finally, the output of each neuron is an analog current * o u t*  
representing the neuron’s mean firing rate. In the following 
sections, we will discuss each neuron subcircuit in greater 
detail.

B. Sigmoid Circuit

The CTRNN model in (1) employs the standard logistic sig­
moid function (2) to provide a mapping from a neuron’s mem­
brane potential to its mean firing rate. The sigmoid circuit in 
Fig. 9 encodes the neuron membrane potential as a voltage while 
the mean firing rate is encoded as a current. It is a simple four- 
transistor CMOS circuit based on a differential pair biased in the 
subthreshold region of operation by an nMOS current source 
(MB2). The output is taken as the drain current * o u t*  flowing

I B
k v l p y  — u r e f

(5)

Ut

where UT =  kT /q  «  26 mV is the thermal voltage, k «  0.7 
is the subthreshold gate coupling coefficient, and I b  is the bias 
current (100 nA) [18]. Comparing (2) and (5) reveals that except 
for a scaling factor of k /U t  on the input, the circuit directly im­
plements the logistic sigmoid function. This scaling factor does 
not present a serious problem because it can be compensated for 
elsewhere in the neuron circuit.

C. Synapse Circuitry

The output of each neuron *out* is copied to the input of 
every neuron in the network. As shown in Fig. 9, this is easily 
accomplished with a cascoded diode-connected transistor 
(M 0 u t )  which forms the input to a pMOS current mirror. 
Each neuron in the circuit has an identical transistor to complete 
the current mirror. The strength of the connection between a 
pair of neurons is controlled by a programmable 5-bit MDAC 
synapse.

In contrast to the more common synapse circuits that use 
compact analog multipliers and capacitive weight storage 
[19]-[22] or floating gate circuitry [23]-[27], the synapse 
circuit used in this paper employs a hybrid analog-digital ap­
proach. MDAC synapses are usually based on cascoded current 
mirror DACs [14], [19], [28], [29]. This paper employs a cur­
rent-mode MDAC synapse that is different than the commonly 
used cascoded current mirror MDAC mentioned above. The 
circuit is similar to the mini-DAC calibration technique for 
artificial neural networks that has been reported recently [30].

The MDAC synapse circuit in Fig. 10 is based on a resistive 
R-2R  DAC. This circuit is similar to our previously reported 
MDAC synapse [31], [32]. The primary difference between the 
two circuits lies in the sign bit circuitry. In this version, the 
output is always directed through a cascoded nMOS current 
mirror to reduce finite drain resistance effects due to variations 
in output voltage. However, the R -2R  divider network core re­
mains the same.

It is clear from Fig. 10 that resistors have not been used to 
implement the R -2R  divider. Instead, a network of pMOS tran­
sistors is used to perform the linear current division [33], [34]. 
All the transistors in Fig. 10 have the same width-to-length ratio. 
Therefore, series combinations of the branch transistors (MBx) 
and the activated switch transistors (MSwxa or MSwxb) are used 
to realize the 2R  branches of the divider. Note that only one
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Fig. 7. Simulated output patterns for the two example CTRNNs. The thick bar represents the duration of an I, =10 external input used to switch between output 
patterns. Both figures illustrate the following sequence of events for the two example networks. 1) The network is shown initially oscillating in one of the two 
embedded limit cycles. 2) A transient external input is applied to one neuron's I, input causing the network to enter a new part of the state space where the alternate 
embedded limit cycle dominates. 3) The network is allowed to oscillate in the alternate limit cycle for a few cycles. 4) A transient external input is applied a second 
time causing the network to return to the original limit cycle. (a) Example 1 CTRNN. Neuron 3’s external input is used to control the output pattern. (b) Example 
2 CTRNN. Neuron 4’s external input is used to control the output pattern.

switch transistor is on at a time because the pair is driven with 
complementary signals from the SRAM storage circuitry. The 
current in each branch is switched either into a dummy cas-

coded diode-connected transistor or into the nMOS output cur­
rent mirror. Note that although the voltages at these nodes may 
differ, the linear current division is not affected. Unlike its re­
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Fig. 8 (a) Chip block diagram. (b) Labeled die photograph.

Fig. 9. Complete schematic for a single neuron used on the chip. Major functional blocks corresponding to the block diagram in Fig. 1 are highlighted.

sistive counterpart, all that is required for an MOS current di­
vider is a large network voltage drop to keep the switch transis­
tors Mgwxy in saturation. This feature of MOS pseudoresistive 
networks removes the need for an op-amp to provide a virtual 
ground (which is required in resistive implementations). In prac­
tice, finite drain resistance in saturation does impact linear cur­
rent division in the MDAC splitters. To mitigate this problem, 
we have designed the sign bit circuitry to provide roughly equal 
voltages on both branches of the splitter cells. The output of the

MDAC is formed by summing the binary-weighed components 
of the input, giving

3 c.
^  =  (- 1)SsignE ^ T T  (6)

where D  is the stored weight. It can be seen from (6) that the 
weight magnitudes are always less than one. The gain of the low-
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Fig. 10. Circuit diagram of the 5-bit - pMOS MDAC synapse and its symbol (inset).

pass filter circuitry can be used to realize weight magnitudes 
greater than unity.

The chip contains 24 individually programmable 5-bit 
MDACs. Most are used either as synapses (16) or neuron 
threshold biases (4), but four are used to set each neuron’s 
time constant. For a network of size N , N (N  +  2) synapse 
circuits are required for full interconnectivity. Therefore, the 
synapse layout area becomes a critical factor in determining 
the size of network that can be fabricated on a given chip. The 
MDAC synapse described above requires only 6900 //.in2 in a 
1 p r o c e s s .  If programmability is necessary, an additional 
7300 (j,m2 of area (14200 //in2 total) is required for the 5-bit 
SRAM (the SRAM is implemented using a standard five-tran­
sistor topology).

D. Input Summing and I-V  Converter

After the input currents from each neuron are weighted by the 
synapse circuitry, they are summed together at the input to cur- 
rent-to-voltage converter as shown in Fig. 9. The I-V conversion 
is necessary because the input to the sigmoid circuitry described 
above is a voltage signal while the synapse circuits produce a 
current signal. Ideally, a resistor could be used to perform the 
I-V conversion. However, the subthreshold currents used in the 
sigmoid circuitry (IB =  100 nA) would require a prohibitively 
large resistance to give a reasonable voltage swing.

Alternatively, an operational transconductance amplifier 
(OTA) connected in the unity-gain follower configuration can 
be used to emulate a high resistance by forcing a current into 
its output terminal. The negative feedback of the circuit forces 
the OTA to change its output current to match the input current

that is forced into its output. The output voltage of the OTA 
I-V converter can be written as

"" Gm ' I I

where Gm =  k /b ia s /2 J /t  is the transconductance of the OTA. 
It can be seen from (7) that the circuit has built-in compensation 
for the sigmoid circuit scale factor. Unfortunately, the expres­
sion in (7) holds only for a limited range which corresponds to 
the 80-mV input linear range of the OTA (| v?+ — <  40 mV). 
Despite this limitation, an OTA-based I-V converter is used in 
this paper. It is possible to extend the input linear range of an 
OTA by using a larger bias current, but this in turn increases the 
transconductance of the OTA resulting in a lower overall voltage 
swing for the same input current swing. There are other methods 
to increase the linear range of the OTA such as source degenera­
tion and gate degeneration [35], [36]. Unfortunately, both tech­
niques force the synapse gain to become dependent on k , and, 
though well matched across similarly biased devices, the exact 
value of k is not well known at design time.

Instead of using special techniques to extend the linear range 
of the OTA, this paper uses a simple OTA (with an 80-mV input 
linear range) that is biased with a larger current. As mentioned 
above, this decreases the effective resistance of the I-V con­
verter. However, this loss can be compensated for by using a 
high-gain low-pass filter in the subsequent stage.

E. Low-Pass Filter

Each neuron in a CTRNN is endowed with first-order dy­
namics as described by (1). In terms of circuit implementa­
tion, the neuron’s dynamics is identical to that of a first-order
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Fig. 11. Measured output patterns from the CTRNN chip. The thick bar represents the duration of an I, =11 external input used to switch between output 
patterns. Both figures illustrate the following sequence of events for the two example networks. 1) The network is shown initially oscillating in one of the two 
embedded limit cycles. 2) A transient external input is applied to one neuron's I, input, causing the network to enter a new part of the state space where the alternate 
embedded limit cycle dominates. 3) The network is allowed to oscillate in the alternate limit cycle for a few cycles. 4) A transient external input is applied a second 
time causing the network to return to the original limit cycle. (a) Example 1 CTRNN. Neuron 3’s external input is used to control the output pattern. (b) Example 
2 CTRNN. Neuron 4’s external input is used to control the output pattern.

low-pass filter. The simplest active low-pass filter is the inte- itance to the output of an OTA configured as a voltage fol- 
grator follower Gm-C  filter realized by connecting a capac- lower. However, this circuit provides unity gain. Fortunately,
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this simple Gm-C  filter can be modified to provide gain if the 
short-circuit feedback path is replaced with a capacitive divider 
network as shown in Fig. 9. The circuit’s response is given by

K C  dmLPF (8)

which is easily recognizable as the state equation for a first-order 
low-pass filter. The (1+ K )  term is the gain that is used to realize 
greater than unity synapse weights and to compensate for the 
attenuation of the I-V converter circuit. It can be seen that this 
circuit makes the time constant of the filter variable through the 
OTA bias current I is,,,,

K C  2 Ut K C
Gn nIB,

(9)

where C  =  1 pF. Note that the large size of unit capacitance 
makes the capacitor array in Fig. 8(b) artificially large. This 
large capacitance was selected so that I is,,., would be large 
enough to be measured reliably during testing.

1) Low-Pass Filter Gain: The gain of the low-pass filter must 
be large enough to compensate for the attenuation introduced 
by the I-V converter and allow for greater than unity synapse 
weights. The synapse circuitry implements weights normalized 
by 16, so the low-pass filter gain must be at least 16. The amount 
of additional gain required to compensate for the OTA’s lim­
ited range can be computed by considering the input currents a 
neuron can expect to see. In a four-neuron network, each neuron 
receives input from five synapse circuits: one from each neuron 
and one bias. Since 1:1 current mirrors are used to connect the 
sigmoid outputs to the synapse circuits, each neuron can con­
tribute at most a current equal to I b , the sigmoid bias current. 
Therefore, the maximum possible input current for any neuron 
would be ± 51  b , but this event is unlikely because the weights 
can be positive and negative. Hence, the total input current to 
each neuron will seldom be greater than 2.5IB - As a result, the 
OTA is biased with / b i a s  =  5 / s  to ensure good linearity, but 
this has the effect of attenuating the signals by a factor of 2.5. 
Therefore, the overall gain required is 40 (K  =  39).

Thus far, two assumptions have been made about the low-pass 
filter circuit of Fig. 9. First, the node v_  must have a well- 
defined dc operating point for the circuit to operate properly. 
Second, the open-loop voltage gain of the OTA must be suffi­
ciently high to ensure a closed-loop gain of (1+ K ) .  In an earlier 
work, we used quasi-infinite resistors to establish a high resis­
tance dc path to the i>_ node [32], Unfortunately, this introduced 
large offsets and a high-pass pole-zero pair that changed the dy­
namics of the filter. In this paper, the node is fabricated as 
drawn in Fig. 9, and ultraviolet (UV) irradiation was to be used 
to remove any floating charge present on the node. However, a 
layout error (a ground shield over the capacitor array was not re­
moved from the previous layout) prevented the UV from having 
the desired effect. Therefore, the offset present in each neuron is 
compensated for by adjusting the programmed bias value and/or

adjusting the external input V r e f  to each neuron. In future ver­
sions of the chip, Fowler-Nordheim tunneling will be used to 
remove unwanted floating charge.

The accuracy with which the closed-loop gain can be set to 
40 depends on two things: 1) the matching between the capac­
itances C  and K C  and 2) the open-loop gain of the OTA. If 
proper layout techniques are used, capacitor ratios can be set 
with very good accuracy (to within ±0.01%) [37]. However, 
even if the capacitor ratio is set perfectly, the accuracy of the 
closed-loop gain still depends on the OTA’s open-loop gain. 
Therefore, a high-gain cascoded current mirror OTA is used 
to achieve an open-loop gain of 91.2 dB, allowing the desired 
closed-loop gain of 40 to be set to within 0.11%.

2) Time Constant Programmability: We have shown that the 
capacitance values are used to set the closed-loop gain of the 
low-pass filter circuit. This prevents using the capacitance to 
vary the time-constant of the filter, but as is indicated by (9), the 
time constant of the integrated low-pass filter is variable through 
the OTA bias current I is,,,, • Consequently, programmable time 
constants can be realized by using an MDAC to set the bias cur­
rent. Unfortunately, the time constant is inversely proportional 
to the bias current, making it difficult to program a wide range of 
time constants with uniform precision. Therefore, an additional 
circuit is needed to compute the inverse of the MDAC current.

Fortunately, to realize long time constants, the bias current 
/b lp f must be a subthreshold current which allows translinear 
MOS circuits to be used [38]. The two transistors M invi and 
MiNv 2 form a translinear circuit that computes the inverse of the 
source current of M invi which is supplied by a special unipolar 
5-bit MDAC. The bias voltage Vbiast is common to all neurons 
in the circuit, and it is used to scale simultaneously all time 
constants in the network by the same factor.

V. MEASURED RESULTS

A. CTRNN Waveforms

The chip was tested by programming it with the parameters 
for the multipattern networks described in Section III. The time 
constants were set to approximately 0.5 s rather than the value 
of 1 s used in the simulations. This smaller value was chosen be­
cause the maximum recording time of the measurement equip­
ment was only 45 s (compare this to the time scale of Fig. 7). 
Extemal inputs were applied to the chip via the V ref; pins. In 
Fig. 11, the input and output of each neuron are shown as the 
networks are switched between their stable oscillation patterns. 
The duration of external input to each neuron is indicated as a 
bar above the output waveform for each neuron. When applied, 
the intensity of the input signal is constant at V re f;-4 0 0  mV, 
corresponding to an /, input of +11 (recall that the V r e f ;  sig­
nals are inverted, corresponding to —I, in the CTRNN model). 
If the input bar is absent in Fig. 11, the corresponding I, input 
is zero and the V r e f ;  signal is at its nominal value.

The output waveforms in Fig. 11(a) correspond to the first ex­
ample CPG described in Section III. Two eight-state oscillatory 
patterns have been embedded into the CTRNN using the proce­
dure described in Section III. The chip begins oscillating in the 
limit cycle shaded in gray in Fig. 5(a). It is switched between
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the two patterns by applying a properly timed pulse to neuron 
3’s input. As the CTRNN passes through state 0000, neuron 3’s 
input is activated to force the network into state 0010, which 
resides in the second limit cycle (shown in white) in Fig. 5(a). 
The CTRNN remains in this limit cycle until neuron 3’s input is 
again pulsed, this time as the CTRNN passes through state 1101, 
forcing the next state to be 1111 , which is in the first (gray) limit 
cycle. Note that the same input is used to switch between the pat­
terns, with the timing of the input determining which transition 
will occur. Similarly, Fig. 11(b) shows the output waveforms for 
the second CPG described in Section III. In this network, the ex­
ternal input to neuron 4 is used to switch the network between 
the two embedded patterns.

It is clear from Fig. 11 that the CTRNN chip behaves as ex­
pected, demonstrating reconfigurability in multipattern CPGs. 
With the exception of a bit of noise and some small variation 
in the maximum neuron output levels, the measured waveforms 
in Fig. 11 agree well with the simulated waveforms shown in 
Fig. 7. The output level variation is due to mismatch in the 
output current mirrors for each neuron. This variation arises 
from the small size of the transistors that make up the neuron cir­
cuitry. If desired, this variation could be reduced by employing 
larger transistors, though this would increase the layout area of 
the network.

B. Power Consumption

The CTRNN chip operates on ±2.5-V supplies and dissipates 
a total of 143.3 //.W. Of this 143.3 //.W, 56.8 //.W (40%) is used 
by the output drivers, 53.5 //W (37%) is used by the master bias 
circuitry, and 33 //W (23%) is used by the CTRNN. This trans­
lates into 8.25 //.W/neuron in the core. An additional I4.2//.W is 
required for each neuron output that must be driven off-chip.

VI. Conclusion

In this paper, we have described a method of designing multi­
pattern CPGs using CTRNNs. Our method allows multiple pat­
terns to be embedded into a CTRNN with fixed connectivity. 
We have demonstrated that it is possible to switch between these 
multiple output patterns by using properly timed transient inputs 
to specific neurons. We also presented a fully integrated analog 
implementation of a four-neuron CTRNN. The chip has a dig­
itally programmable weight matrix and also offers long time 
constants that are digitally programmable over a wide range. 
We have used our chip to demonstrate multipattern CPGs devel­
oped using our new design method. The measured results from 
our chip agree well with simulation results, making it possible 
to develop multipattern CPGs using offline simulations without 
being concerned with implementation details.

Future work in this area will be focused in three areas.
1) Larger networks: four-neuron networks are suitable for 

controlling a single leg [39], but larger networks are 
required for a complete locomotor controller.

2) Networks in which the self-weight is a freely-chosen 
parameter.

3) Embedding more diverse transitions.
In this paper, we restricted our attention to patterns in which 
only one neuron at a time was allowed to change state.

The implementation is scalable to larger networks so long 
as the maximum weight magnitude decreases as the number 
of neurons increases (i.e., the maximum currents in the I-V 
converters must remain reasonable). CTRNNs demonstrate the 
richest dynamical behavior when the input to each neuron re­
mains close to the center of the sigmoidal activation function
[15]. Therefore, this condition is likely to be met for networks 
with rich dynamics. This leaves layout area and interconnect the 
limiting factors in scaling the implementation to large numbers 
of neurons. Using this 1.5-/j.m technology, it is feasible to fit 
10-15 neurons on a 2.2 by 2.2 mm die.
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