
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 4, JULY 2006 1025

Design and Implementation of Multipattern
Generators in Analog VLSI

Ryan J. Kier, Student Member, IEEE, Jeffrey C. Am es, Randall D. Beer, and Reid R. Harrison, Member, IEEE

A b strac t— In re c e n t y ea rs , co m p u ta tio n a l b io log ists have show n
th ro u g h sim u la tio n th a t sm all n e u ra l n e tw o rk s w ith fixed co n ­
n ectiv ity a re cap a b le o f p ro d u c in g m u ltip le o u tp u t rh y th m s in
resp o n se to tra n s ie n t in p u ts . I t is believed th a t su ch n e tw o rk s m ay
p lay a key ro le in c e r ta in b io log ical b eh av io rs such a s d y n am ic
g a it co n tro l. In th is p a p e r, w e p re se n t a novel m e th o d fo r design ing
co n tin u o u s-tim e re c u r re n t n e u ra l n e tw o rk s (C T R N N s) th a t c o n ­
ta in m u ltip le e m b ed d ed l im it cycles, a n d w e show th a t it is possib le
to sw itch th e n e tw o rk s be tw een these e m b ed d ed lim it cycles w ith
sim ple tra n s ie n t in p u ts . W e a lso d esc rib e th e design a n d tes tin g
of a fu lly in te g ra te d fo u r-n e u ro n C T R N N ch ip th a t is u sed to
im p lem en t th e n e u ra l n e tw o rk p a tte rn g e n e ra to rs . W e p ro v id e
tw o exam ple m u lt ip a t te rn g e n e ra to rs a n d show th a t th e m ea su re d
w aveform s fro m th e ch ip ag ree w ell w ith n u m e ric a l s im u la tio n s .

In d e x Terms— A nalog n e u ra l n e tw o rk , an a lo g V L S I, c e n tra l p a t ­
te rn g e n e ra to r (C P G) im p lem en ta tio n s , c o n tin u o u s-tim e re c u rre n t
n e u ra l n e tw o rk (C T R N N), m u lt ip a t te rn g e n e ra to rs .

I. INTRODUCTION

A. Central Pattern Generators

MANY activities vital to animal survival such as walking,
breathing, and digestion require repetitive, rhythmic ac­
tivation of an animal’s muscles. These rhythmic muscle contrac­

tions and relaxations are controlled by specialized neural net­
works called central pattern generators (CPGs) [1]. CPGs have
been studied by biologists and neuroscientists since the early
1900s, and two key principles have emerged from these studies.
First, CPGs are independent neural networks located outside
of the brain, i.e., control of locomotion is distributed. Second,
though sensory feedback and descending inputs from the brain
(i.e., the cerebellum) can improve the quality of the motor pat­
terns, CPGs are capable of sustaining rhythmic outputs in the
absence of such inputs [2], [3].

Modeling CPGs provides a way of testing existing theories
about their behavior. For example, it has long been observed that
four-legged animals vary their gait according to their speed [4],
yet experimentation has not made clear the underlying mecha­
nisms responsible for such behavior. Recently, researchers have
demonstrated that multiple output rhythms, similar to those ob­
served in animal gait control, can be produced by small neural

Manuscript received January 5, 2005; revised October 27, 2005. This work
was supported by the National Science Foundation under Grant EIA-0130773.

R. J. Kier and R. R. Harrison are with the Department of Electrical and Com­
puter Engineering, University of Utah, Salt Lake City, UT 84112 USA (e-mail:
kier@eng.utah.edu).

J. C. Ames and R. D. Beer are with the Department of Electrical Engineering
and Computer Science, Case Western Reserve University, Cleveland, OH 44106
USA.

Digital Object Identifier 10.1109/TNN.2006.875983

networks with fixed connectivity [5], [6]. Furthermore, these
studies have shown that, like their biological counterparts, the
artificial networks are multistable or reconfigurable, i.e., they
can be switched between the multiple output patterns through
the application of a transient input. These studies employed bio­
logically realistic (Hodgkin-Huxley type) neuron models which
involve several differential equations per neuron. In this paper,
we show that the same qualitative reconfigurable behavior can
be realized using a significantly less complex, and hence sim­
pler to implement, neuron model.

Our work is similar to that demonstrated in [7]. However, in
this prior work, the authors were able to embed specific patterns
into a network, but their method required a neuron model with
two synaptic connections per neuron: one fast time constant con­
nection to stabilize the network state and one slow time constant
connection to compute the network’s next state. In contrast, we
employ a model neuron that requires only a single time constant
per neuron while maintaining the ability to embed specific pat­
terns into a network.

B. Applications

Biology often offers attractive, elegant solutions to engi­
neering problems. Take, for example, legged robotics, where
engineers often place an emphasis on centralized control. In
contrast, biological systems rarely make use of centralized
control; more often control is distributed throughout the body.
CPGs are a classic example of this distributed control. CPGs
handle the low-level limb coordination required for walking,
leaving the brain available for higher level tasks such as nav­
igation and obstacle avoidance. Implementing this type of
distributed control with neural networks has been difficult in
engineered systems because simulation of even the simplest
neural network models requires significant computational
power. As a result, PCs were used to simulate numerically
neural networks in many of the early legged robotic systems
which used CPG-based control (e.g., [8] and [9]). This config­
uration requires the robot to be tethered to an umbilical cord,
limiting its range and usefulness. Ideally, a hardware neural
network and a small microcontroller could be used onboard the
robot, thereby removing the need for an undesirable umbilical
cord. The microcontroller could handle the robot’s higher
functions (i.e., decision-making, navigation, etc.), leaving the
low-level limb coordination to the neural network controller.

Although hardware (both analog and digital) neural net­
works have been around for some time, they have not been
well-suited for CPG implementations because they usually
lacked dynamics. However, in recent years, hardware CPG
implementations have received more attention. Some work has

1045-9227/$20.00 © 2006 IEEE

Authorized licensed use limited to: The University of Utah. Downloaded on June 30,2010 at 22:03:55 UTC from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276285520?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kier@eng.utah.edu

1026 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 4, JULY 2006

Fig. 1. Block diagram of a single CTRNN neuron. Note that the bias input Oi is applied to the input of the low-pass filter rather than its output. Because 6* is a
constant, this system is equivalent to that described by (1).

been inspired by observations of CPGs in swimming animals.
For example, an analog CPG based on coupled intrinsic oscil­
lators was developed in [10]. In contrast, other researchers have
developed CPGs for quadrupedal gait control [11]. Finally,
other researchers have been working on bipedal locomotion
controllers [12]-[14]. All of these hardware CPGs are capable
of creating sustained output rhythms similar to those found in
biological systems. However, none of these previous imple­
mentations has demonstrated reconfigurable (i.e., multistable)
behavior.

In this paper, we present a new implementation of an artificial
CPG that can be switched between multiple output patterns via
brief transient inputs. In Section II, we review the continuous­
time neural network (CTRNN) neuron model used in this paper.
Next, Section III describes the design method used to embed
multiple limit cycles (i.e., patterns) into a fixed-connectivity
CTRNN. Additionally, we present two illustrative examples of
the design procedure. Section IV describes the analog circuitry
used to implement the CTRNN neurons. In Section V, results
from our CPG chips are presented and compared with our sim­
ulations for the two example networks designed in Section III.
Finally, we give some conclusions and future directions for this
work in Section VI.

II. Continuous-Time Recurrent Neural Networks
(CTRNNS)

The state of each neuron in a CTRNN is described by the
first-order differential equation

d: ■ N
n - - = - y i + X j wa ‘ a (2/i + 6o) + Ti (1)

where y i is the state of the i t h neuron, t , is the time constant of
the ith neuron, 0j is a bias for the ,/th neuron, Wjt is the synaptic
weight from the jth neuron to the ith neuron, a(x) is the logistic
sigmoid function

= i m -x (2)1 + e x

and Ii is an external input to the /(h neuron [15]. CTRNNs
are identical to Hopfield’s continuous model [16] except that
the connection weights between any pair of neurons need not

be symmetric and self-connections are allowed. Fig. 1 shows a
block diagram of a single neuron corresponding to the descrip­
tion given by (1).

While this artificial neuron model is much simpler than
other, more biologically accurate neuron models (e.g., the
Hodgkin-Huxley model), it remains attractive for many
reasons.

1) It is computationally inexpensive to simulate; hence offline
simulations can be used to quickly evolve desirable net­
work patterns using genetic algorithms.

2) The model is mathematically tractable.
3) CTRNNs are universal approximators of smooth dynamics

[17].
4) The CTRNN neuron has a plausible biological interpreta­

tion. The mean membrane potential is represented by y , ,
Oi captures the firing threshold, and t, corresponds to the
membrane time constant. The parameter a(y, + 0,) repre­
sents the mean firing rate while w jt describes the synaptic
interactions with the self-connections (w u) endowing each
neuron with bistability properties.

5) The model is amenable to analog circuit implementation.

III. Design of multipattern Generators

A. Design Method

In this section, we describe a way to program the weights
and biases of a CTRNN so that it generates multiple desired
temporal patterns. Each pattern consists of a sequence of quasi­
stable states in which different combinations of neurons are sat­
urated on and off. Although the patterns will typically be cy­
cles, they need not be. We use previous work on the dynamics of
CTRNNs to derive a set of inequalities involving the connection
weights and biases from a specification of the desired temporal
patterns. If this set of inequalities is solvable, then any solution
will lead to a CTRNN that exhibits the desired patterns. Because
the neurons are being operated in saturation, the dynamics of the
resulting CTRNN resembles a finite-state machine and part of
the design process is reminiscent of conventional state machine
design techniques.

A useful way of looking at the dynamics of the individual neu­
rons of a given network is in terms of their steady-state output.
For a given input, a neuron will eventually settle on some output
value, which we can plot versus the input value to generate a

Authorized licensed use limited to: The University of Utah. Downloaded on June 30,2010 at 22:03:55 UTC from IEEE Xplore. Restrictions apply.

KIER et al.: MULTIPATTERN GENERATORS IN ANALOG VLSI 1027

Fig. 2. Steady-state input/output (SSIO) curve corresponding to a self-weight
of 12 and bias of — 6. This curve shows how the location of the equilibrium
points of a single neuron changes as a function of the synaptic input. In the
folded region, the system is bistable, where the outer branches are stable and
the inner branch is unstable.

steady-state input/output (SSIO) curve [15]. An SSIO curve is
obtained by setting (1) for a single neuron to zero, solving for
I in terms of y, and then plotting a (y + 9) versus I . If the
self-weight is less than four, there will be only a single stable
equilibrium point for each input. But when the self-weight goes
above four, the SSIO curve folds back on itself, so that there is a
region of bistability—two stable equilibrium points separated
by an unstable equilibrium point. In general, the self-weight
boundary between unistability and multistability will be deter­
mined by the reciprocal of the maximum of the activation func­
tion derivative; the number 4 arises here because the maximum
of cr'(a) is 1/4 [15].

Fig. 2 shows an SSIO curve for a self-weight of 12 and a bias
of - 6. The horizontal axis is the total input I to the neuron [not
including the self-input, which enters nonlinearly into (1)], and
the vertical axis is the neuron’s output a (y + 9). In this case, the
bistable region lies between inputs of —2.607 and 2.607.

The left and right boundaries of this region, denoted IL and
I r , indicate where a neuron will make a transition from on to
off (//) or from off to on (Ir). The boundary values for the
bistable region of the SSIO curve are functions of the neuron’s
self-weight w and bias 0 [151

1 + 1J w (w — 4)

(w, 9) = — 2 In

— 0

+ \ /w — 4 N

- 6 .

(3)

(4)

These expressions are obtained by solving for the simultaneous
zeros of the single-neuron vector field and its derivative to pick
out the manifold of saddle-node bifurcations that delineate the
boundary between unistable and bistable behavior.

In this section, we look at using the SSIO curves to predict
when a neuron will transition from off to on, based on the in­
puts of the other neurons. To simplify the analysis, we assume

that all neurons have binary outputs, and that transitions occur
instantaneously. When neurons are driven sufficiently far into
saturation, the binary approximation is quite accurate.

We can form the network state at any given time by assuming
each neuron is either on (1) or off (0), and concatenating these
states to make a binary vector. We also define allowed tran­
sitions between states by assuming that only one neuron can
change state at a time. Fig. 3 shows all possible transitions be­
tween states for three- and four-neuron networks. With these as­
sumptions, the states and possible transitions for an Ar-neuron
network form an TV-dimensional hypercube.

For simplicity, we require that all neurons be bistable, which
requires that w > 4. We set w = 12, to give a fairly curved
SSIO diagram, with a bistable region of width 5.21. Using a
fixed self-weight reduces (3) and (4) to linear functions of the
neuron’s bias.

Given a desired transition from one network state A to a
second state D, we can compute an inequality corresponding
to this transition as follows. Denote the neuron changing from
state A to state D as the y(h neuron. Then the synaptic input to
the ,/th neuron, i^ j wi j cr(yi + :̂)> must be greater than
IR(w j,0 j) if it is turning on, or less than I l (w j , 9j) if it is
turning off. Note that, assuming that the external input I:j is zero
(which is reasonable for a CPG), the inequality generated is only
a function of the weights on edges coming into the jth neuron
and the bias of the jth neuron. Therefore, the inequalities for
each neuron will be independent of those for any other neuron
and can be solved separately. In total, we must solve the inequal­
ities for N 2 — N weights and N biases.

We also need to restrict the other transitions involving the
states we have specified, by requiring that every network state
that has a defined transition leaving it have no other transition
leaving it; that is, that every network state we include in our
cycles be unambiguous regarding what its next state will be.
As a direct consequence, any cycles we wish to embed in the
network must be vertex disjoint. They can overlap in their use
of neurons, but not in their use of network states.

Furthermore, the system is never allowed to transition from
a state A to another state B and back to A without an interme­
diate state. Because the self-weight is not taken as part of the
neural input, relative to the SSIO curve, the transition from one
state to another and its reverse have the same input value to the
neuron, and it can only be above I r or below I I , but not both.
Due to the mutual exclusivity of this situation, it is not necessary
to include explicit restrictions of these backward transitions.
Note that without the binary neuron assumption, neurons could
change their outputs slightly, without crossing the 0.5 threshold,
and then such a cycle would be possible.

We also must be sure that the cycles we program in are in fact
stable limit cycles. We test this empirically, by perturbing each
cycle in the system by small random amounts and verifying that
it settles back onto the limit cycle. For each of the circuits we
generate, we perform this test for each cycle, applying a con­
stant external input to each neuron, of a magnitude randomly
generated, uniformly distributed in the range of [—1,1]. All cy­
cles shown in this paper are stable.

Authorized licensed use limited to: The University of Utah. Downloaded on June 30,2010 at 22:03:55 UTC from IEEE Xplore. Restrictions apply.

1028 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 4, JULY 2006

Fig. 3. Possible transitions in three- and four-neuron networks. Circles indicate network states, labeled by the outputs of each neuron when in that state. Edges
indicate possible transitions, where one neuron is allowed to change state at a time. Note that these maps are isomorphic to the subset inclusion ordering of the
power sets of sets of three and four elements, respectively.

Fig. 4. Diagrams of systems A-l, A2, and A3 after independent inequalities in a three-neuron system are separated. Circles indicate network states, labeled by
the outputs of all neurons besides the one transitioning (designated “x”). Straight lines indicate subset inclusion. Arcs indicate which states are flipped when the
corresponding weight changes sign. Using these arcs and our transition ordering, the solvability of the system can be predicted.

B. Solvability

We have shown how to generate a system of inequalities
corresponding to a set of desired transitions between network
states, but the question arises of whether this system will
always be solvable; that is, can arbitrary patterns be embedded
in an Ar-neuron network? To clarify this question, we develop
a formal specification of the task at hand.

Since each neuron’s inequalities involve only its own
self-weight, bias, and the weights of incoming connections,
we can separate the inequalities by the neuron they relate
to. In an Ar-neuron system, this will give us N new sys­
tems A 1,A 2, ■ ■ ■ ■ A N containing 2N~1 states each, where in
system A; all inequalities are functions of wu, 0, , and weights
wj i (j 7̂ *)• Fig. 4 shows the three systems generated when
N = 3.

Let T = { Ij. II. 0} represent the set of possible transitions
from a given network state, where L indicates transitioning off,
R indicates transitioning on, and 0 indicates that no transition is
allowed. The input to the neuron is x = 5^,= [w ^yi. Recall

that according to the SSIO curve (see Fig. 2), if a: < //., (lie
neuron will settle in the “off” state; if IL < x < IR, the neuron
will remain in its current state; and if I r < x, the neuron will
settle in the “on” state. Using this idea of the natural ordering on
the input from other neurons, we create an ordering on T. We
define a binary relation -< on T such that I, II. Then T
combined with -< forms a totally ordered set.

Let Y be the set of binary vectors of length N — 1. Then
we define a function ip : Y —> T, which, for a given network
state y G Y (the outputs of all other neurons), describes the
transition t e T allowed. Note that Y along with the subset
inclusion relation C forms a partially ordered set. This raises
the question of whether cp is order-preserving (that is, whether,
given a, b G Y , a C b implies cp(a) < <p{b)).

It appears that if cp is order-preserving, the system of inequal­
ities At must have a solution. For a , b £ Y , a C b , a represents
a state receiving less input from other neurons than b. Thus it
would make sense that the range of the SSIO curve accessible to
a should also be “less than” 6’s, in the sense that corresponding
boundaries (left or right) of a ’s range should be less than those

Authorized licensed use limited to: The University of Utah. Downloaded on June 30,2010 at 22:03:55 UTC from IEEE Xplore. Restrictions apply.

KIER et al.: MULTIPATTERN GENERATORS IN ANALOG VLSI 1029

TABLE I
Desired Transition Inequalities for Example 1

From To From To Inequality
0 0 0 0 0 0 0 1 0 > Ir (W 44 , 64) 0 0 1 0 0 1 1 0 w32 > M w22- 82)
0 0 0 1 0 0 1 1 Vl'43 > //;(vi’33, 6/3) 0 1 1 0 0 1 0 0 W23 < 4(w33;
0 0 1 1 0 1 1 1 W32 + 11’42 > Ir('v22, 82) 0 1 0 0 0 1 0 1 W’24 > h i (w 44, O4)
0 1 1 1 1 1 1 1 VV21 + W31 + W!] > /flOn, ^1) 0 1 0 1 1 1 0 1 W2\ + Vt’41 > k (w \ b 0 \)
1 1 1 1 1 1 1 0 IV14 + lt'24 + W34 < 4(W44, ft() 1 1 0 1 1 0 0 1 W\2 + VV42 < 4("'22> O2)
1 1 1 0 1 1 0 0 w13 + w23 < 4(M’33, 03) 1 0 0 1 1 0 1 1 Wj3 + W43 > 4(w 3 3 ,

1 1 0 0 1 0 0 0 »’\2 < 4 (m’22- #2) 1 0 1 1 1 0 1 0 W14 + W34 < IL(\V44, #4)
1 0 0 0 0 0 0 0 0 < I].(w 11> #l) 1 0 1 0 0 0 1 0 W31 < 4 0 n - Oy)

of b. Some care is necessary in stating this, as the SSIO curve’s
bistable region may not be fully within the range reachable from
any network states, for some values of the neuron self-weight.
We can use the bias to shift the SSIO curve left and right, but
only to a limited degree. Exactly how much of a restriction this
is, and in exactly what cases the system is solvable, remains for
future work.

This gives us a tentative criterion for determining whether
a system is solvable. However, we have thus far implicitly as­
sumed that input from other neurons is positive. In the CTRNN,
this is not always the case. Specifically, the input’s sign is deter­
mined by the weight w.ij on the input coming from neuron i into
the jth neuron, and these weights are variables in our systems
of inequalities.

What happens when we flip a given weight, say, ir ,r
from positive to negative? Let us define the vector S of
signs of the weights on connections coming into neuron j as
S = (si , so, ■ • ■ • Sj_i, S j+ i....... sN), where each si is equal
to 1 if the corresponding weight wtj is positive and — 1 if Wy
is negative.

Suppose we have an S where each s.; = 1. Choose one weight
Wkj and make it negative, so Sk = — 1 , and call this new vector
S'. In the case of S', a Y where yk = 0 will yield a greater
net input x to neuron j than will a V where y>, = 1. If ip is the
mapping we use in the case of S, let us create a new mapping
ip' based on ip which reflects the fact that ijk is now subtracting
from our net input. For each y e Y, let y' be the vector such that
y'l = yi if-i 7 ̂ fc and y'k = 1 — y k. Then define <p'(y) = ip{y').
Roughly speaking, cp' is cp “reflected” across the fcth axis of (- Examples

Fig. 5. Two embeddings of pairs of eight cycles in four-neuron state space.
Straight arrows indicate embedded transitions, while curved arrows indicate
transitions caused by external inputs that switch from one embedded cycle to
the other. For both examples, one of the embedded patterns is shaded in gray
while the other embedded pattern is not shaded. (a) Example 1. (b) Example 2.

desired set of transitions is solvable. A number of questions re­
main open to further research. For example, rather than testing
all 2n ~ l mappings from V to T, is there a general property
of the cycles that can be used to determine the solvability? If
a given set of inequalities is not solvable, can we transform it
into a solvable system by adding a minimal number of neurons
to separate conflicting transitions? Can the approach be general­
ized to allow multiple neurons to change state simultaneously or
to allow the duration of the transitions to be programmed rather
than treating them as instantaneous?

its domain. The arcs in Fig. 4 labeled by a weight designation
show how this reflection can be visualized in the case N = 3.
Therefore, by manipulating the sign of the interneuron weights,
we can create a family of functions <I> = {<p1, if k K
where K , the number of such functions, is equal to 2 V \ since
we have N — 1 weights we can make positive or negative.

If any one of these functions is order-preserving, it seems that
the system can be solved. And conversely, it seems that if none
of the functions preserves order, there will be no solution to the
system of inequalities. The caveats mentioned earlier regarding
the SSIO curve’s exact position versus the range of inputs real­
izable by the network also apply here, and we leave the specifi­
cation of the exact circumstances in which this will limit us to
future work. For our present purposes, this rudimentary method
alone is sufficient to guide the design process and allow us to
embed multiple limit cycles.

In summary, we have shown one way to formalize the con­
ditions under which the set of inequalities corresponding to a

Although a number of open theoretical questions remain
about the general solvability of an arbitrary set of transitions,
we demonstrate in this section that the method can be practi­
cally applied. Specifically, we present two examples of pairs of
embedded cycles. Both examples create two cycles of length
eight in four-neuron networks, making use of every network
state available. The state transitions are shown in Fig. 5.

The first example’s cycles, as shown in Fig. 5(a), are {0000,
0001, 0011, 0111 , 1111 , 1110, 1100, 1000} and {0010, 0110,
0100,0101, 1101, 1001,1011,1010}. We convert each of these
transitions to an inequality, based on which neuron is transi­
tioning and what the originating network state is. For example,
in the transition {0000,0001}, neurons 1 through 3 are off, while
neuron 4 is turning on. So neuron 4’s internal state must be
pushed above J r . Thus the inequality becomes 0 * w u + 0 *
1024 + 0 * W34 > / r (w44, 6*4), or simply 0 > IR(w a , 04). The
set of inequalities this generates is shown in Table I.

Authorized licensed use limited to: The University of Utah. Downloaded on June 30,2010 at 22:03:55 UTC from IEEE Xplore. Restrictions apply.

1030 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 4, JULY 2006

TABLE II
Selected Forbidden Transition Inequalities for Example 1

Fig. 6. Example of solvability method with respect to neuron 2, using the transitions defined for Example 1. The transition diagram on the left shows the transitions
that neuron 2 undergoes (circled and labeled with the network state). These correspond to the L and I? states labeled in the network diagram on the right (the other
states have no transition, corresponding to the state, but are not marked here for clarity). The straight lines between network states illustrate the subset inclusion
ordering. The four dark arcs show the effect of flipping the sign of weight »'i2, which in this case is necessary to maintain the ordering L ^ 0 ^ I?.

As mentioned above, we also want to restrict these neural
states so that they cannot transition elsewhere. Each state could
potentially transition to three other states in the network (ex­
cluding a self-transition), namely, those resulting from any of
the other three neurons changing state, so we must explicitly
forbid these. Thus there are a total of 32 inequalities for the for­
bidden transitions. The way we forbid transitions is by requiring
that the neuron’s internal state be greater than IL for a forbidden
“o ff’ transition and less than IR for a forbidden “on” transition.
For example, Table II shows the inequalities corresponding to
the two forbidden transitions from network state 0000 and from
1111.

Once we build a complete list of desired and forbidden transi­
tion inequalities, we can generate a parameter set that simultane­
ously satisfies these inequalities. Since we sometimes need to try
multiple configurations to get one where all the limit cycles we
want are stable, we generally pick parameters randomly within
the valid ranges. While a more sophisticated method of solu­
tion will likely be necessary for larger networks, this method has
been sufficient for the examples presented here. Picking random
parameters in this case, we arrive at the following weight ma­
trix and biases, where the row number designates the origi­

nating neuron and the column number designates the destina­
tion neuron:

12
7.18571

-0.624068
7.31

-11.7235 -3.44359
12 -10.5646

8.93508 12
-1.47654 10.2795

0 = [-10.8512 -3 .64164 -4 .78549

-6.63136
2.54641

-7.26261
12

- 0.415379]

The solvability method described in the previous section can be
illustrated using this example (Fig. 6). There are four transitions
of neuron 2’s state (circled in the state diagram on the left),
which create two ‘L’ and two ‘R’ states in the lattice on the right
(for clarity, ‘0’ states are not marked). Because in this case, we
have some states where 0 < L (e.g., 000 and 100) and some
states where R. < 0 (e.g., 011 and 111), we can deduce that we
must flip the sign of weight w i2 (shown by the dark arrows) to
ensure the ordering L < 0 < R. The other two weights (iu32
and w42) can be either positive or negative. This agrees with the
empirical results shown in the weight matrix.

The second example’s cycles, shown in Fig. 5(b), are {0001,
0011, 0010, 0110, 1110, 1100, 1101, 1001} and {0000, 0100,
0101,0111, 1111, 1011, 1010, 1000}. We use the same method

Authorized licensed use limited to: The University of Utah. Downloaded on June 30,2010 at 22:03:55 UTC from IEEE Xplore. Restrictions apply.

KIER et al.: MULTIPATTERN GENERATORS IN ANALOG VLSI 1031

to generate inequalities, but in this case we restrict the possible
parameter values to integers due to the 5-bit precision of the
synapse circuitry. Thus we obtain the following weight matrix
and biases:

12
5
5
0

-1 1

- 5 - 5 0
12 0 5
0 12 - 5

- 5 5 12
- 1 - 6 -6] ,

through the noninverting input transistor M [. The diode-con­
nected pMOS transistor M0 ut serves as the input of a current
mirror that copies the output current to the inputs of the synapse
circuitry. The input to the circuit is taken as vLp f , the gate
voltage of the noninverting input transistor M i. The inverting
input of the differential pair (the gate of M2) is connected to
a reference voltage Vref , . This reference voltage is normally
at circuit ground (i.e., halfway between the positive and nega­
tive power supplies). However, Vrefi can take on large transient
values to realize reconfigurablility [i.e., it can serve as the I; in­
puts in (1)]. It can be shown that the output current is given by

Fig. 7 shows the simulation results for both example net­
works. The thick bars represent the duration of a transient /, =
10 input to the neuron. Note that the time constant parameters
for each neuron do not enter into the design procedure, hence
they can be chosen arbitrarily to scale the pattern frequency. For
the simulations shown in Fig. 7, all time constants were set to
one.

IV. Analog VLSI Implementation

A. Silicon Neuron Overview

We have designed and tested a four-neuron CPG chip in
AMI’s 1.5 /j,m CMOS process. The block diagram and a labeled
die photo of the CTRNN chip are shown in Fig. 8. The chip
contains a fully programmable four-neuron CTRNN along with
a suite of test devices. The chip uses ±2.5 V supply voltages.
Each neuron on the chip implements the CTRNN model and is
fully programmable. Fig. 9 shows the schematic for one neuron
on the chip with boxes indicating the major subcircuits that
correspond to the block diagram in Fig. 1. Note that for the
convenience of implementation, the biases 0, are summed with
the synaptic inputs rather than the neuron state y , . This change
does not affect the dynamics of the CTRNN because the bias is
a constant and unaffected by the low-pass filter operation in (1).
The weights and biases of each neuron are programmable on the
range —15 < Wji < 15 via 5-bit multiplying digital-to-analog
converters (MDACs). The time constants, which are set by
the bias currents to G m-C filters, also are programmed with
5-bit precision on the range 0 < n < 0.8 s. Additionally, each
neuron has an analog voltage input-Vref;, corresponding to the
11 parameter in (1), that can be used either to provide sensory
feedback or to switch the CPG between stable limit cycles.
Finally, the output of each neuron is an analog current * o u t*
representing the neuron’s mean firing rate. In the following
sections, we will discuss each neuron subcircuit in greater
detail.

B. Sigmoid Circuit

The CTRNN model in (1) employs the standard logistic sig­
moid function (2) to provide a mapping from a neuron’s mem­
brane potential to its mean firing rate. The sigmoid circuit in
Fig. 9 encodes the neuron membrane potential as a voltage while
the mean firing rate is encoded as a current. It is a simple four-
transistor CMOS circuit based on a differential pair biased in the
subthreshold region of operation by an nMOS current source
(MB2). The output is taken as the drain current * o u t* flowing

I B
k v l p y — u r e f

(5)

Ut

where UT = kT /q « 26 mV is the thermal voltage, k « 0.7
is the subthreshold gate coupling coefficient, and I b is the bias
current (100 nA) [18]. Comparing (2) and (5) reveals that except
for a scaling factor of k /U t on the input, the circuit directly im­
plements the logistic sigmoid function. This scaling factor does
not present a serious problem because it can be compensated for
elsewhere in the neuron circuit.

C. Synapse Circuitry

The output of each neuron *out* is copied to the input of
every neuron in the network. As shown in Fig. 9, this is easily
accomplished with a cascoded diode-connected transistor
(M 0 u t) which forms the input to a pMOS current mirror.
Each neuron in the circuit has an identical transistor to complete
the current mirror. The strength of the connection between a
pair of neurons is controlled by a programmable 5-bit MDAC
synapse.

In contrast to the more common synapse circuits that use
compact analog multipliers and capacitive weight storage
[19]-[22] or floating gate circuitry [23]-[27], the synapse
circuit used in this paper employs a hybrid analog-digital ap­
proach. MDAC synapses are usually based on cascoded current
mirror DACs [14], [19], [28], [29]. This paper employs a cur­
rent-mode MDAC synapse that is different than the commonly
used cascoded current mirror MDAC mentioned above. The
circuit is similar to the mini-DAC calibration technique for
artificial neural networks that has been reported recently [30].

The MDAC synapse circuit in Fig. 10 is based on a resistive
R-2R DAC. This circuit is similar to our previously reported
MDAC synapse [31], [32]. The primary difference between the
two circuits lies in the sign bit circuitry. In this version, the
output is always directed through a cascoded nMOS current
mirror to reduce finite drain resistance effects due to variations
in output voltage. However, the R -2R divider network core re­
mains the same.

It is clear from Fig. 10 that resistors have not been used to
implement the R -2R divider. Instead, a network of pMOS tran­
sistors is used to perform the linear current division [33], [34].
All the transistors in Fig. 10 have the same width-to-length ratio.
Therefore, series combinations of the branch transistors (MBx)
and the activated switch transistors (MSwxa or MSwxb) are used
to realize the 2R branches of the divider. Note that only one

Authorized licensed use limited to: The University of Utah. Downloaded on June 30,2010 at 22:03:55 UTC from IEEE Xplore. Restrictions apply.

1032 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 4, JULY 2006

Fig. 7. Simulated output patterns for the two example CTRNNs. The thick bar represents the duration of an I, =10 external input used to switch between output
patterns. Both figures illustrate the following sequence of events for the two example networks. 1) The network is shown initially oscillating in one of the two
embedded limit cycles. 2) A transient external input is applied to one neuron's I, input causing the network to enter a new part of the state space where the alternate
embedded limit cycle dominates. 3) The network is allowed to oscillate in the alternate limit cycle for a few cycles. 4) A transient external input is applied a second
time causing the network to return to the original limit cycle. (a) Example 1 CTRNN. Neuron 3’s external input is used to control the output pattern. (b) Example
2 CTRNN. Neuron 4’s external input is used to control the output pattern.

switch transistor is on at a time because the pair is driven with
complementary signals from the SRAM storage circuitry. The
current in each branch is switched either into a dummy cas-

coded diode-connected transistor or into the nMOS output cur­
rent mirror. Note that although the voltages at these nodes may
differ, the linear current division is not affected. Unlike its re­

Authorized licensed use limited to: The University of Utah. Downloaded on June 30,2010 at 22:03:55 UTC from IEEE Xplore. Restrictions apply.

KIER et al.: MULTIPATTERN GENERATORS IN ANALOG VLSI 1033

Fig. 8 (a) Chip block diagram. (b) Labeled die photograph.

Fig. 9. Complete schematic for a single neuron used on the chip. Major functional blocks corresponding to the block diagram in Fig. 1 are highlighted.

sistive counterpart, all that is required for an MOS current di­
vider is a large network voltage drop to keep the switch transis­
tors Mgwxy in saturation. This feature of MOS pseudoresistive
networks removes the need for an op-amp to provide a virtual
ground (which is required in resistive implementations). In prac­
tice, finite drain resistance in saturation does impact linear cur­
rent division in the MDAC splitters. To mitigate this problem,
we have designed the sign bit circuitry to provide roughly equal
voltages on both branches of the splitter cells. The output of the

MDAC is formed by summing the binary-weighed components
of the input, giving

3 c.
^ = (- 1)SsignE ^ T T (6)

where D is the stored weight. It can be seen from (6) that the
weight magnitudes are always less than one. The gain of the low-

Authorized licensed use limited to: The University of Utah. Downloaded on June 30,2010 at 22:03:55 UTC from IEEE Xplore. Restrictions apply.

1034 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 4, JULY 2006

Fig. 10. Circuit diagram of the 5-bit - pMOS MDAC synapse and its symbol (inset).

pass filter circuitry can be used to realize weight magnitudes
greater than unity.

The chip contains 24 individually programmable 5-bit
MDACs. Most are used either as synapses (16) or neuron
threshold biases (4), but four are used to set each neuron’s
time constant. For a network of size N , N (N + 2) synapse
circuits are required for full interconnectivity. Therefore, the
synapse layout area becomes a critical factor in determining
the size of network that can be fabricated on a given chip. The
MDAC synapse described above requires only 6900 //.in2 in a
1 p r o c e s s . If programmability is necessary, an additional
7300 (j,m2 of area (14200 //in2 total) is required for the 5-bit
SRAM (the SRAM is implemented using a standard five-tran­
sistor topology).

D. Input Summing and I-V Converter

After the input currents from each neuron are weighted by the
synapse circuitry, they are summed together at the input to cur-
rent-to-voltage converter as shown in Fig. 9. The I-V conversion
is necessary because the input to the sigmoid circuitry described
above is a voltage signal while the synapse circuits produce a
current signal. Ideally, a resistor could be used to perform the
I-V conversion. However, the subthreshold currents used in the
sigmoid circuitry (IB = 100 nA) would require a prohibitively
large resistance to give a reasonable voltage swing.

Alternatively, an operational transconductance amplifier
(OTA) connected in the unity-gain follower configuration can
be used to emulate a high resistance by forcing a current into
its output terminal. The negative feedback of the circuit forces
the OTA to change its output current to match the input current

that is forced into its output. The output voltage of the OTA
I-V converter can be written as

"" Gm ' I I

where Gm = k /b ia s /2 J /t is the transconductance of the OTA.
It can be seen from (7) that the circuit has built-in compensation
for the sigmoid circuit scale factor. Unfortunately, the expres­
sion in (7) holds only for a limited range which corresponds to
the 80-mV input linear range of the OTA (| v?+ — < 40 mV).
Despite this limitation, an OTA-based I-V converter is used in
this paper. It is possible to extend the input linear range of an
OTA by using a larger bias current, but this in turn increases the
transconductance of the OTA resulting in a lower overall voltage
swing for the same input current swing. There are other methods
to increase the linear range of the OTA such as source degenera­
tion and gate degeneration [35], [36]. Unfortunately, both tech­
niques force the synapse gain to become dependent on k , and,
though well matched across similarly biased devices, the exact
value of k is not well known at design time.

Instead of using special techniques to extend the linear range
of the OTA, this paper uses a simple OTA (with an 80-mV input
linear range) that is biased with a larger current. As mentioned
above, this decreases the effective resistance of the I-V con­
verter. However, this loss can be compensated for by using a
high-gain low-pass filter in the subsequent stage.

E. Low-Pass Filter

Each neuron in a CTRNN is endowed with first-order dy­
namics as described by (1). In terms of circuit implementa­
tion, the neuron’s dynamics is identical to that of a first-order

Authorized licensed use limited to: The University of Utah. Downloaded on June 30,2010 at 22:03:55 UTC from IEEE Xplore. Restrictions apply.

KIER et al.: MULTIPATTERN GENERATORS IN ANALOG VLSI 1035

Fig. 11. Measured output patterns from the CTRNN chip. The thick bar represents the duration of an I, =11 external input used to switch between output
patterns. Both figures illustrate the following sequence of events for the two example networks. 1) The network is shown initially oscillating in one of the two
embedded limit cycles. 2) A transient external input is applied to one neuron's I, input, causing the network to enter a new part of the state space where the alternate
embedded limit cycle dominates. 3) The network is allowed to oscillate in the alternate limit cycle for a few cycles. 4) A transient external input is applied a second
time causing the network to return to the original limit cycle. (a) Example 1 CTRNN. Neuron 3’s external input is used to control the output pattern. (b) Example
2 CTRNN. Neuron 4’s external input is used to control the output pattern.

low-pass filter. The simplest active low-pass filter is the inte- itance to the output of an OTA configured as a voltage fol-
grator follower Gm-C filter realized by connecting a capac- lower. However, this circuit provides unity gain. Fortunately,

Authorized licensed use limited to: The University of Utah. Downloaded on June 30,2010 at 22:03:55 UTC from IEEE Xplore. Restrictions apply.

1036 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 4, JULY 2006

this simple Gm-C filter can be modified to provide gain if the
short-circuit feedback path is replaced with a capacitive divider
network as shown in Fig. 9. The circuit’s response is given by

K C dmLPF (8)

which is easily recognizable as the state equation for a first-order
low-pass filter. The (1+ K) term is the gain that is used to realize
greater than unity synapse weights and to compensate for the
attenuation of the I-V converter circuit. It can be seen that this
circuit makes the time constant of the filter variable through the
OTA bias current I is,,,,

K C 2 Ut K C
Gn nIB,

(9)

where C = 1 pF. Note that the large size of unit capacitance
makes the capacitor array in Fig. 8(b) artificially large. This
large capacitance was selected so that I is,,., would be large
enough to be measured reliably during testing.

1) Low-Pass Filter Gain: The gain of the low-pass filter must
be large enough to compensate for the attenuation introduced
by the I-V converter and allow for greater than unity synapse
weights. The synapse circuitry implements weights normalized
by 16, so the low-pass filter gain must be at least 16. The amount
of additional gain required to compensate for the OTA’s lim­
ited range can be computed by considering the input currents a
neuron can expect to see. In a four-neuron network, each neuron
receives input from five synapse circuits: one from each neuron
and one bias. Since 1:1 current mirrors are used to connect the
sigmoid outputs to the synapse circuits, each neuron can con­
tribute at most a current equal to I b , the sigmoid bias current.
Therefore, the maximum possible input current for any neuron
would be ± 51 b , but this event is unlikely because the weights
can be positive and negative. Hence, the total input current to
each neuron will seldom be greater than 2.5IB - As a result, the
OTA is biased with / b i a s = 5 / s to ensure good linearity, but
this has the effect of attenuating the signals by a factor of 2.5.
Therefore, the overall gain required is 40 (K = 39).

Thus far, two assumptions have been made about the low-pass
filter circuit of Fig. 9. First, the node v_ must have a well-
defined dc operating point for the circuit to operate properly.
Second, the open-loop voltage gain of the OTA must be suffi­
ciently high to ensure a closed-loop gain of (1+ K) . In an earlier
work, we used quasi-infinite resistors to establish a high resis­
tance dc path to the i>_ node [32], Unfortunately, this introduced
large offsets and a high-pass pole-zero pair that changed the dy­
namics of the filter. In this paper, the node is fabricated as
drawn in Fig. 9, and ultraviolet (UV) irradiation was to be used
to remove any floating charge present on the node. However, a
layout error (a ground shield over the capacitor array was not re­
moved from the previous layout) prevented the UV from having
the desired effect. Therefore, the offset present in each neuron is
compensated for by adjusting the programmed bias value and/or

adjusting the external input V r e f to each neuron. In future ver­
sions of the chip, Fowler-Nordheim tunneling will be used to
remove unwanted floating charge.

The accuracy with which the closed-loop gain can be set to
40 depends on two things: 1) the matching between the capac­
itances C and K C and 2) the open-loop gain of the OTA. If
proper layout techniques are used, capacitor ratios can be set
with very good accuracy (to within ±0.01%) [37]. However,
even if the capacitor ratio is set perfectly, the accuracy of the
closed-loop gain still depends on the OTA’s open-loop gain.
Therefore, a high-gain cascoded current mirror OTA is used
to achieve an open-loop gain of 91.2 dB, allowing the desired
closed-loop gain of 40 to be set to within 0.11%.

2) Time Constant Programmability: We have shown that the
capacitance values are used to set the closed-loop gain of the
low-pass filter circuit. This prevents using the capacitance to
vary the time-constant of the filter, but as is indicated by (9), the
time constant of the integrated low-pass filter is variable through
the OTA bias current I is,,,, • Consequently, programmable time
constants can be realized by using an MDAC to set the bias cur­
rent. Unfortunately, the time constant is inversely proportional
to the bias current, making it difficult to program a wide range of
time constants with uniform precision. Therefore, an additional
circuit is needed to compute the inverse of the MDAC current.

Fortunately, to realize long time constants, the bias current
/b lp f must be a subthreshold current which allows translinear
MOS circuits to be used [38]. The two transistors M invi and
MiNv 2 form a translinear circuit that computes the inverse of the
source current of M invi which is supplied by a special unipolar
5-bit MDAC. The bias voltage Vbiast is common to all neurons
in the circuit, and it is used to scale simultaneously all time
constants in the network by the same factor.

V. MEASURED RESULTS

A. CTRNN Waveforms

The chip was tested by programming it with the parameters
for the multipattern networks described in Section III. The time
constants were set to approximately 0.5 s rather than the value
of 1 s used in the simulations. This smaller value was chosen be­
cause the maximum recording time of the measurement equip­
ment was only 45 s (compare this to the time scale of Fig. 7).
Extemal inputs were applied to the chip via the V ref; pins. In
Fig. 11, the input and output of each neuron are shown as the
networks are switched between their stable oscillation patterns.
The duration of external input to each neuron is indicated as a
bar above the output waveform for each neuron. When applied,
the intensity of the input signal is constant at V re f;-4 0 0 mV,
corresponding to an /, input of +11 (recall that the V r e f ; sig­
nals are inverted, corresponding to —I, in the CTRNN model).
If the input bar is absent in Fig. 11, the corresponding I, input
is zero and the V r e f ; signal is at its nominal value.

The output waveforms in Fig. 11(a) correspond to the first ex­
ample CPG described in Section III. Two eight-state oscillatory
patterns have been embedded into the CTRNN using the proce­
dure described in Section III. The chip begins oscillating in the
limit cycle shaded in gray in Fig. 5(a). It is switched between

Authorized licensed use limited to: The University of Utah. Downloaded on June 30,2010 at 22:03:55 UTC from IEEE Xplore. Restrictions apply.

KIER et al.: MULTIPATTERN GENERATORS IN ANALOG VLSI 1037

the two patterns by applying a properly timed pulse to neuron
3’s input. As the CTRNN passes through state 0000, neuron 3’s
input is activated to force the network into state 0010, which
resides in the second limit cycle (shown in white) in Fig. 5(a).
The CTRNN remains in this limit cycle until neuron 3’s input is
again pulsed, this time as the CTRNN passes through state 1101,
forcing the next state to be 1111 , which is in the first (gray) limit
cycle. Note that the same input is used to switch between the pat­
terns, with the timing of the input determining which transition
will occur. Similarly, Fig. 11(b) shows the output waveforms for
the second CPG described in Section III. In this network, the ex­
ternal input to neuron 4 is used to switch the network between
the two embedded patterns.

It is clear from Fig. 11 that the CTRNN chip behaves as ex­
pected, demonstrating reconfigurability in multipattern CPGs.
With the exception of a bit of noise and some small variation
in the maximum neuron output levels, the measured waveforms
in Fig. 11 agree well with the simulated waveforms shown in
Fig. 7. The output level variation is due to mismatch in the
output current mirrors for each neuron. This variation arises
from the small size of the transistors that make up the neuron cir­
cuitry. If desired, this variation could be reduced by employing
larger transistors, though this would increase the layout area of
the network.

B. Power Consumption

The CTRNN chip operates on ±2.5-V supplies and dissipates
a total of 143.3 //.W. Of this 143.3 //.W, 56.8 //.W (40%) is used
by the output drivers, 53.5 //W (37%) is used by the master bias
circuitry, and 33 //W (23%) is used by the CTRNN. This trans­
lates into 8.25 //.W/neuron in the core. An additional I4.2//.W is
required for each neuron output that must be driven off-chip.

VI. Conclusion

In this paper, we have described a method of designing multi­
pattern CPGs using CTRNNs. Our method allows multiple pat­
terns to be embedded into a CTRNN with fixed connectivity.
We have demonstrated that it is possible to switch between these
multiple output patterns by using properly timed transient inputs
to specific neurons. We also presented a fully integrated analog
implementation of a four-neuron CTRNN. The chip has a dig­
itally programmable weight matrix and also offers long time
constants that are digitally programmable over a wide range.
We have used our chip to demonstrate multipattern CPGs devel­
oped using our new design method. The measured results from
our chip agree well with simulation results, making it possible
to develop multipattern CPGs using offline simulations without
being concerned with implementation details.

Future work in this area will be focused in three areas.
1) Larger networks: four-neuron networks are suitable for

controlling a single leg [39], but larger networks are
required for a complete locomotor controller.

2) Networks in which the self-weight is a freely-chosen
parameter.

3) Embedding more diverse transitions.
In this paper, we restricted our attention to patterns in which
only one neuron at a time was allowed to change state.

The implementation is scalable to larger networks so long
as the maximum weight magnitude decreases as the number
of neurons increases (i.e., the maximum currents in the I-V
converters must remain reasonable). CTRNNs demonstrate the
richest dynamical behavior when the input to each neuron re­
mains close to the center of the sigmoidal activation function
[15]. Therefore, this condition is likely to be met for networks
with rich dynamics. This leaves layout area and interconnect the
limiting factors in scaling the implementation to large numbers
of neurons. Using this 1.5-/j.m technology, it is feasible to fit
10-15 neurons on a 2.2 by 2.2 mm die.

References

[1] S. Grillner, “The motor infrastructure: from ion channels to neuronal
networks,” Nature Rev. Neurosci., vol. 4, pp. 573-586, Jul. 2003.

[2] M. Belanger, T. Drew, J. Provencher, and S. Rossignol, “A comparison
of treadmill locomotion in adult cats before and after spinal transec­
tion,” J. Neurophysiol., vol. 76, pp. 471-491, 1996.

[3] S. Grillner and P. Zangger, “The effect of dorsal root transection on the
efferent motor pattern in the cat’s hindlimb during locomotion,” Acta
Phys. Scand., vol. 120, pp. 393-405, 1984.

[4] K. Pearson and J. Gordon, “Locomotion,” in Principles o f Neural Sci­
ence, E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Eds. New York:
McGraw-Hill, 2001.

[5] C. C. Canavier, D. A. Baxter, J. W. Clark, and J. H. Byrne, “Nonlinear
dynamics in a model neuron provide a novel mechanism for transient
synaptic inputs to produce long-term alterations of postsynaptic ac­
tivity,” J. Neurophysiol., vol. 69, pp. 2252-2257, 1993.

[6] C. Luo, J. W. Clark, Jr., C. C. Canavier, D. A. Baxter, and J. H. Byrne,
“Multimodal behavior in a four neuron ring circuit: mode switching,”
IEEE Trans. Biomed. Eng., vol. 51, no. 2, pp. 205-218, Feb. 2004.

[7] D. Kleinfeld and H. Sompolinsky, “Associative network models for
central pattern generators,” in Methods in Neuronal Modeling, C. Koch
and I. Segev, Eds. Cambridge, MA: MIT Press, 1989.

[8] J. C. Gallagher, R. D. Beer, K. S. Espenschied, and R. D. Quinn, “Ap­
plication of evolved locomotion controllers to a hexpod robot,” Robot.
Auton. Syst., vol. 19, pp. 95-103, 1996.

[9] R. D. Beer, R. D. Quinn, H. J. Chiel, and R. E. Ritzmann, “Biologically
inspired approaches to robotics,” Commun. ACM, vol. 40, pp. 31-38,
1997.

[10] G. N. Patel, J. H. Holleman, and S. P. DeWeerth, “Analog VLSI model
of intersegmental coordination with nearest-neighbor coupling,” Adv.
Neural Inf. Process. Syst., vol. 11, pp. 719-725, 1998.

[11] S. Still, B. Scholkopf, K. Hepp, and R. Douglas, “Four-legged walking
gait control using a neuromorphic chip interfaced to a support vector
learning algorithm,” Adv. Neural Inf. Process. Syst., vol. 13, 2000.

[12] M. A. Lewis, R. Etienne-Cummings, M. J. Hartmann, A. H. Cohen,
and Z. R. Xu, “An in silico central pattern generator: silicon oscillator,
coupling, entrainment, and physical computation,” Biol. Cybern., vol.
88, pp. 137-151, 2003.

[13] F. Tenore, R. Etienne-Cummings, and M. A. Lewis, “Entrainment of
silicon central pattern generators for legged locomotory control,” Adv.
Neural Inf. Process. Syst., vol. 16, 2003.

[14] , “A programmable array of silicon neurons for the control
of legged locomotion,” in Proc. IEEE Int. Symp. Circuits Systems
(ISCAS), 2004, vol. V, pp. 349-352.

[15] R. D. Beer, “On the dynamics of small continuous-time recurrent neural
networks,” Adapt. Behav., vol. 3, pp. 471-511, 1995.

[16] J. J. Hopfield, “Neurons with graded response properties have collec­
tive computational properties like those of two-state neurons,” Proc.
Nat. Acad. Sciences, vol. 81, pp. 3088-3092, 1984.

[17] K. Funahashi and Y. Nakamura, “Approximation of dynamical systems
by continuous time recurrent neural networks,” Neural Netw., vol. 6,
pp. 801-806, 1993.

[18] C. Mead, Analog VLSI and Neural Systems. Reading, MA: Addison-
Wesley, 1989.

[19] B. E. Boser, E. Sackinger, J. Bromley, Y. L. Cun, and L. D. Jackel, “An
analog neural network processor with programmable topology,” IEEE
J. Solid-State Circuits, vol. 26, no. 12, pp. 2017-2025, Dec. 1991.

[20] S. Satyanarayana, Y. P. Tsividis, and H. P. Graf, “A reconfigurable
VLSI neural network,” IEEE J. Solid-State Circuits, vol. 27, no. 1, pp.
67-81, Jan. 1992.

Authorized licensed use limited to: The University of Utah. Downloaded on June 30,2010 at 22:03:55 UTC from IEEE Xplore. Restrictions apply.

1038 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 4, JULY 2006

[21] A. J. Montalvo, R. S. Gyurcsik, and J. J. Paulos, “Toward a general-pur­
pose analog VLSI neural network with on-chip learning,” IEEE Trans.
Neural Netw., vol. 8, no. 2, pp. 413-423, Mar. 1997.

[22] G. Cauwenburghs, “An analog VLSI recurrent neural network learning
a continuous-time trajectory,” IEEE Trans. Neural Netw., vol. 7, no. 2,
pp. 346-361, Mar. 1997.

[23] B. W. Lee, B. J. Sheu, and H. Yang, “Analog floating-gate synapses
for general-purpose VLSI neural computation,” IEEE Trans. Circuits
Syst., vol. 38, no. 6, pp. 654-658, Jun. 1991.

[24] S. M. Gowda, B. J. Sheu, J. Choi, C. G. Hwang, and J. S. Cable, “Design
and characterization analog VLSI neural network modules,” IEEE J.
Solid-State Circuits, vol. 28, no. 3, pp. 301-313, Mar. 1993.

[25] P. Hasler, “Continuous-time feedbackin floating-gate CMOS circuits,”
IEEE Trans. Circuits Syst. II, vol. 48, no. 1, pp. 56-64, Jan. 2001.

[26] C. Diorio, “A p-channel MOS synapse transistor with self-convergent
memory writes,” IEEE Trans. Electron Devices, vol. 47, no. 2, pp.
464-472, Feb. 2000.

[27] J. Dugger and P. Hasler, “A continuously-adapting analog node using
floating-gate synapses,” in Proc. 43rd IEEE Midwest Symp. Circuits
Systems, 2000, pp. 1058-1061.

[28] A. Moopenn, T. Duong, and A. P. Thakoor, “Digital-analog hybrid
synapse chips for electronic neural networks,” Adv. Neural Inf. Process.
Syst., vol. 2, pp. 769-776, 1990.

[29] H. Djahanshahi, M. Ahmadi, G. A. Jullien, and W. C. Miller, “Design
and VLSI implementation of a unified neuron-synapse architecture,” in
Proc. 6th Great Lakes Symp. VLSI, 1996, pp. 228-233.

[30] B. Linares-Barranco, T. Serrano-Gotarredona, and R. Serrano-Go-
tarredona, “Compact low-power calibration mini-DACs for neural
arrays with programmable weights,” IEEE Trans. Neural Netw., vol.
14, no. 5, pp. 1207-1216, Sep. 2003.

[31] R. J. Kier, R. R. Harrison, and R. D. Beer, “An MDAC synapse for
analog neural networks,” in Proc. IEEE Int. Symp. Circuits Systems
(ISCAS), 2004, vol. V, pp. 752-755.

[32] R. J. Kier, “Design of pattern generators in analog integrated circuits,”
master’s thesis, Univ. Utah, , Aug. 2004.

[33] K. Bult and G. J. G. M. Geelen, “An inherently linear and compact
MOST-only current division technique,” IEEE J. Solid-State Circuits,
vol. 27, no. 12, pp. 1730-1735, Dec. 1992.

[34] E. A. Vittoz and X. Arreguit, “Linear networks based on transistors,”
Electron. Lett., vol. 20, pp. 297-299, 1993.

[35] L. Watts, D. A. Kerns, R. F. Lyon, and C. A. Mead, “Improved imple­
mentations of the silicon cochlea,” IEEE J. Solid-State Circuits, vol.
27, no. 5, pp. 692-700, May 1992.

[36] R. Sarpeshkar, “Efficient precise computation with noisy components
extrapolating from an electronic cochlea to the brain,” Ph.D. disserta­
tion, California Inst. Tech., Pasadena, CA, 1997.

[37] A. Hastings, The Art o f Analog Layout. Englewood Cliffs, NJ: Pren-
tice-Hall, 2001.

[38] A. G. Andreou and K. A. Boahen, “Translinear circuits in subthreshold
MOS,” Analog Integr. Circuits Signal Process., vol. 9, pp. 141-166,
1996.

[39] J. C. Ames, “Design methods for pattern generation circuits,” M.S.
thesis, Case Western Reserve Univ., Cleveland, OH, 2003.

Ryan J. K ier (S’03) received the B.S. and M.S. de­
grees in electrical engineering from the University of
Utah, Salt Lake City, in 2004, where he is currently
pursuing the Ph.D. degree.

His thesis work involved the implementation
of neurally inspired circuits in analog VLSI. His
research interests include low-power VCO design
and integrated inductor optimization.

Jeffrey C. Ames, photograph and biography not available at the time of
publication.

Randall D. Beer received the B.S. degree in com­
puter engineering and the M.S. and Ph.D. degrees
in computer science from Case Western Reserve
University, Cleveland, OH, in 1985, 1985, and 1989,
respectively.

He is currently a Professor in the Electrical En­
gineering and Computer Science Department, Case
Western Reserve University, with joint appointments
in the Department of Biology and the Department
of Cognitive Science. He spent the 1995-1996 aca­
demic year on sabbatical leave at the Santa Fe Insti­

tute, and served as an External Faculty Member there from 1997 to 2003. In
July 2006, he will join the Cognitive Science Program and the Department of
Computer Science at Indiana University. His primary research interest is in un­
derstanding how coordinated behavior arises from the dynamical interaction of
an animal’s nervous system, its body, and its environment. He has worked on
the evolution and analysis of dynamical “nervous systems” for model agents,
neuromechanical modeling of animals, biologically inspired robotics, and dy­
namical systems approaches to behavior and cognition.

ReidR. Harrison (S’98-M’00) received the B.S. de­
gree in electrical engineering from the University of
Florida, Gainesville, in 1994 and the Ph.D. degree in
computation and neural systems from the California
Institute of Technology, Pasadena, in 2000.

He joined the University of Utah, Salt Lake City,
in 2000, where he is now an Assistant Professor of
electrical and computer engineering and an Adjunct
Assistant Professor of bioengineering. He has more
than 30 refereed publications since 1999 in the fields
of low-power analog and mixed-signal CMOS circuit

design, integrated electronics for neural interfaces and other biomedical devices,
and hardware for biologically inspired computational systems.

Authorized licensed use limited to: The University of Utah. Downloaded on June 30,2010 at 22:03:55 UTC from IEEE Xplore. Restrictions apply.

