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MIGRATION ALONE CAN PRODUCE PERSISTENCE OF 
HOST-PARASITOID MODELS 

April 1993 

It has long been recognized that the unstable equilibrium of a single-patch 
predator-prey model cannot be stabilized by diffusive coupling with identical 
patches, since the coupled system acts exactly like the single-patch system if 
the patches are synchronized (Maynard Smith 1974; Allen 1975; Reeve 1988). 
Persistence of coupled locally unstable systems depends on the maintenance of 
asynchrony among the populations sufficient to buffer crashes (den Boer 1968; 
Allen 1975; Crowley 1981; Reeve 1988, 1990; Taylor 1988). Three mechanisms 
have been proposed to maintain this asynchrony (Taylor 1988): heterogeneity 
among patches, low but nonzero migration rates, and large numbers of patches. 

Heterogeneity among patches can take many forms. Several sorts of permanent 
fixed heterogeneity, such as variability in host apparency (Bailey et al. 1962), 
existence of refugia (Hassell 1978), biased dispersal (Comins and Blatt 1974), and 
fixed differences in growth rates and other parameters (Chewning 1975), have 
been shown to enhance the local stability of host-parasitoid or predator-prey 
models. Such heterogeneity acts implicitly in the attack rates experienced by 
individual hosts (Hassell and May 1988; Hassell and Pac ala 1990) and thus un­
derlies the stable dynamics possible with the negative-binomial model of host­
parasitoid dynamics (May 1978). Heterogeneity produced by adding uncorrelated 
stochasticity to the parameters governing otherwise identical coupled system has 
been recently discussed and reviewed in depth by Reeve (1988). 

Another sort of heterogeneity has received little explicit consideration to my 
knowledge: different initial conditions of otherwise identical coupled systems. 
Crowley (1981) showed that predator-prey oscillations can be reduced in ampli­
tude by this mechanism. I here show that this mechanism can maintain bounded 
oscillations of even a small number of deterministic Nicholson-Bailey models 
of host-parasitoid interactions (Hassell 1978) coupled by .migration. Single-patch 
models of this sort are notoriously unstable, exhibiting trajectories with popula­
tion explosions and crashes of increasing amplitude. Hassell et al. (1991) simulate 
a similar system of locally coupled equations and demonstrate that persistence 
and complicated dynamics are possible when the number of patches is large 
enough. I here examine the parameter values for which stable oscillations exist 
in a globally coupled system, indicating that low migration rates are indeed neces­
sary for persistence by this mechanism but that increasing the number of patches 
may not increase probabilities of persistence. I also show that this mechanism of 
persistence operates even in the presence of some stochasticity in the model 
parameters. 
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The equations used in this note are 

and 

H,(t + 1) = (1 - fLh)"H,(t)e-aP1(t) + fLh"H2(t)e- aP2
(t) , 

H 2(t + 1) = (1 - fLh)"H2(t)e- aP2(t) + fLh"H,(t)e-aP1(t) , 

P,(t + 1) = (1 - fLp)H,(t)(1 - e-aP1(r» + fLpH2(t)(1 _e- aP2(t» , (1) 

Pz(t + 1) = (1 - fLp)Hz(t)(1 - e- aP2(r) + fLpH,(t)(1 _e-aP1(t) , 

where H,(t) and HzCt) are the host populations at time t in patches 1 and 2, 
respectively, P,(t) and Pz(t) are parasitoid populations,,, is host reproduction per 
generation in the absence of parasitism, a is the area of discovery, and fLh and fLp 
are the fractions of hosts and parasitoids that migrate in each generation. The 
sequence of events described by these equations differs slightly from that in 
Reeve (1988). Note that the parameters in the two patches are identical. 

Figure 1 illustrates a population trajectory generated by these equations. This 
oscillation persists indefinitely on the computer; to enhance visibility only the 
first few cycles are illustrated. The mathematical structure of these oscillations 
is apparently very complex. The oscillation shown is asymmetrical in that the 
two patches undergo different, though similar, population cycles. The oscillation 
remains bounded because the two systems remain out of phase. Locally stable, 
out-of-phase oscillations have been demonstrated to exist in continuous time 
when two identical systems, each with a stable oscillation when uncoupled, are 
coupled in various ways (Aronson et al. 1987, 1990), but to my knowledge out-of­
phase oscillations have not been demonstrated when the coupled systems display 
unbounded dynamics in isolation. With other parameter values, several different 
oscillations can coexist, including symmetrical, asymmetrical, and very long pe­
riod cycles and apparently chaotic trajectories. This note ignores these complexi­
ties and focuses on the existence and general properties of the oscillations. Stud­
ies of the properties of identical coupled continuous-time oscillators (Aronson 
et al. 1987, 1990) have found a complex structure of coexisting locally stable 
oscillations. 

The initial conditions for the simulation shown were chosen at random from a 
neighborhood of the unstable equilibrium point of the system with the oscillation 
amplifying and maintaining an initial random asynchrony in the two patches. 
Since the parameters in the two patches are identical, identical initial conditions 
would make the two patches act as a single unstable patch. In simulations with 
overly similar initial conditions, the two patches become synchronized and popu­
lation sizes explode. Figure 2 illustrates one cross section of the four-dimensional 
set of initial conditions that converge to a bounded oscillation, chosen in the 
plane where the parasitoid density in each patch is set initially to its equilibrium 
value. Note that the region does not come too close to the line of initial synchroni­
zation but that initial asynchrony alone is not sufficient to produce persistence. 
The cross section in the plane where host density is set initially to its equilibrium 
value is very similar. 

If all such oscillations had values of population size varying by many orders of 
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FIG. I.-Trajectories of system 1. A, The dynamics of the host populations in patch 1 
(solid line with solid squares) and patch 2 (dotted line with open squares); B, the parasitoid 
population dynamics. Parameter values are A = 4, fLh = fLp = fLp = .01, and a = 1. 

magnitude, they would be of little interest biologically (Morrison and Barbosa 
1987). Reeve (1988) used the coefficient of variation of population size over time 
as a measure of variability, but this approach fails to capture the key problem of 
unrealistically small populations (i.e., a population oscillating between 100 and 1 
has very nearly the same coefficient of variation as one oscillating between 100 
and 0.001). Instead, I use the standard deviation of the log host population size 
through the course of the oscillation as a measure of variability, which strongly 
correlates with the amplitude of the oscillation of log host population size. Figure 
3 illustrates the behavior of this statistic over a range of parameter values. Small 
dots indicate low population variability, large dots indicate high variability, and 
the absence of a dot indicates the absence of a stable oscillation. Figure 3A fixes 
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FIG. 2.-Cross section of the basin of attraction for the oscillation shown in fig. I where 
the initial value of each parasitoid population has been set equal to its equilibrium value. 
The diagonal line indicates the set of points where the two host initial conditions take the 
same value. Initial conditions that converge to an oscillation with larger amplitude in patch 
1 than patch 2, as shown in fig. I, are represented by the hatched area; the solid area 
represents the reverse. 
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host reproduction A. at the intermediate value of 4 and examines the effects of the 
two migration rates, "Low" variability (standard deviation of log host population 
size of less than two) is associated with migration rates of approximately 0,05, 
which lie near the maximum migration rates that produce persistence, Existence 
of oscillations seems to be enhanced when host migration is higher than parasitoid 
migration, although the "island" of persistent migration rates above the diagonal 
defies ready explanation, Figure 3B fixes the two migration rates to be equal and 
plots persistence and variability as a function of migration and of host reproduc­
tion, Lower growth rates are associated with greater persistence and generally 
with lower variability, Note, however, that persistence is much less likely for 
A. = 2 than for A. = 3, with other simulations indicating that there is a threshold 
growth rate near two below which persistence is impossible, 

To check whether the oscillations would persist in the presence of stochasticity 
in the parameters, I added noise to the model parameters by choosing their val­
ues, independently in each patch, uniformly from a range centered on the mean 
with length set by a given "noise leveL" For example, with a noise level of 0.1, 
parameter values would be chosen uniformly from the set spanning 0,9-1. 1 times 
the deterministic value. The coefficient of variation of such a distribution is about 
0.82 times the noise leveL The lognormal and gamma parameter distributions 
used by Reeve (1988) differ in that randomly generated parameters can take on 
very large or very small values even when coefficients of variation are smalL 

The results shown in figure 4 were generated by simulating system 1, starting 
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FIG. 3.-Persistence and variability of trajectories of system 1 as a function of parameter 
values. Dot size indicates the SD of log host population sizes over the course of 500 iterations. 
The smallest dot represents an SD of between one and two, the next smallest an SD of 
between two and three, and so on. A blank space indicates that no oscillation was found. 
Fig. 3A fixes A = 4, while fig. 3B fixes fLh = fLp ' Both fix a = 1. 

from initial conditions chosen at random from a four-dimensional neighborhood 
of the equilibrium point of extent roughly equal to that shown in figure 2. The 
system is said to persist if trajectories remain bounded between 104 and 10- 4 for 
500 iterations. Persistence probabilities drop off nearly linearly when noise is 
added to the area of discovery a or to the growth rate '/I., not reaching zero until 
the noise level reaches one. Noise in the migration rates has a much smaller 
effect. Adding noise to all parameters simultaneously acts essentially multiplica­
tively. Other simulations indicate that these results are somewhat sensitive to the 
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FIG. 4.-Probability that a two-patch system with noise remains bounded for 500 time 
steps for a range of noise levels (see text). Probabilities are computed as the fraction of initial 
conditions chosen randomly from a neighborhood of the equilibrium that lead to bounded 
dynamics. The curves show results when noise is added to the area of discovery a (dashed 
line with solid squares). the growth rate A (solid line with open circles), the migration levels 
fLh and fLp (solid line with open squares), and all parameters simultaneously (thick line with 
solid circles). Mean parameter values are A = 4, fLh = fLp = .01. and a = I. 
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size of the neighborhood from which the initial conditions are chosen, but the 
general pattern appears robust. 

In order to study the effects of patch number on persistence, system 1 must 
be expanded to include an arbitrary number (k) of patches. The equations used 
for these simulations are 

k 

Hi(t + 1) = (1 - fLh)'AHJt)e-aPi(t) + ~h'AI H/t)e-aPi(t) 

j~ 1 

and (2) 

k 

Pi(t + 1) = (1 - fLp)H/t)(l - e-ap,(t) + 7IHj (t)(l - e-a?f(I). 

j~l 

Probability of persistence was found as in figure 4 by choosing initial populations 
for each patch from a region around the equilibrium and counting the fraction of 
simulations that remain bounded indefinitely. Figure SA shows the results when 
the model is run without noise, and figure SB shows the results when the model 
is run with a small and with a moderate amount of noise. Most obviously, the 
results with no noise or low noise show a large effect of parity, with small even 
numbers of patches persisting with much higher probability than small odd num­
bers of patches. Apparently, the fact that systems with an odd number of patches 
cannot be divided into two counterbalancing portions of equal size makes persis-
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FIG. 5.-Probability that dynamics remain bounded for 500 time steps as a function of the 
number of patches. Probabilities are computed as in fig. 4. A. Results with no stochasticity; 
B. results with a low noise level of 0.1 added to all parameters (solid circles) and a moderate 
noise level of 0.5 added to all parameters (open squares). Mean parameter values are" 
4, fLh = fLp = .01. and a = 1. 

tence highly unlikely. With no noise, the parity ceases to matter after sufficienly 
many patches have been added, and the probability of persistence approaches an 
asymptotic value roughly equal to the average of those for small systems of both 
parities. With low noise, the probability of persistence tends to increase at large 
patch numbers. With moderate noise, the probability of persistence is appreciably 
higher than zero only with two patches. Except for the strong effect of parity, 
results depend on the size of the region from which initial conditions are chosen, 
and generalization of these results to any more realistic measure of persistence 
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probability is unwarranted. These results contrast with the simulations of Hassell 
et al. (1991), in which a system of locally coupled Nicholson-Bailey equations on 
a square lattice could persist only if the lattice were sufficiently large. 

The unrealistic nature of the Nicholson-Bailey model and the migration regime 
make it unlikely that the detailed output of these simulations has direct implica­
tions for the field. However, the results indicate that a hitherto neglected sort of 
heterogeneity, that of different initial conditions in otherwise identical weakly 
coupled patches, can suffice to maintain bounded oscillations in even a highly 
unstable model. The oscillations occur in the nonlinear range of the model, which 
makes possible a sensitive response to details of the initial conditions. This mode 
of persistence, meaningful mainly when stochasticity is not too large, appears to 
be distinct from the stochastically generated asynchrony described by Reeve 
(1988) in systems of many patches at higher noise levels. In this case, a low level 
of variation in the parameters acts to break up an existing pattern of spatial 
heterogeneity, while in the other a high level of variation creates persistence­
promoting spatial heterogeneity. Finally, persistence in this model does not have 
a simple relationship with the number of patches. 
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