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Pseudospin Ferromagnetism in Double-Quantum-W ire Systems
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We propose that a pseudospin ferromagnetic (i.e., interwire coherent) state can exist in a system of two 
parallel wires of finite width in the presence of a perpendicular magnetic field. This novel quantum many- 
body state appears when the interwire distance decreases below a certain critical value which depends on 
the magnetic field. We determine the phase boundary of the ferromagnetic phase by analyzing the 
softening of the spin-mode velocity using the bosonization approach. We also discuss the signatures of this 
state in tunneling and Coulomb drag experiments.
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Ferromagnetism (FM) in low dimensional itinerant elec
tronic systems is one of the most interesting subjects in 
condcnscd matter physics. As early as the 1960s Licb and 
Mattis [1] (LM) have proved that a fcrromagnctic state 
cannot exist in onc-dimcnsional (ID) system if the 
clcctron-clcctron interaction is spin or velocity indepen
dent and symmetric with rcspcct to the interchange of 
clcctron coordinates. Therefore, possible candidates for 
ID FM must involve some nontrivial modification in the 
band structure and interaction to avoid the restrictions of 
LM ’s theorem. Most of the examples proposed in the 
literature [2] rely on some highly degenerate flat bands 
(or at least systems with the divergent density of states) and 
can be understood as a generalization of Hund’s rule [3]. 
The only cxccption appears to be a model of finite range 
hopping with a negative tunneling energy [4].

From the experimental point of view, however, physical 
realization of the ID FM in thcrmodynamical limit is still 
absent to the best of our knowledge. In two dimensions 
(2D), some of the most intriguing fcrromagnctic systems 
arc the quantum Hall (QH) bilaycrs at the total filling factor 
one. In these systems the flat band structure is provided by 
the magnetic field (Landau levels) and dear experimental 
cvidcncc of the 2D pscudospin ferromagnetism (PSFM, 
with the pscudospin being the layer index) has been ob
served in the tunneling [5] and drag experiments [6] several 
years after thcorctical proposals [7].

In this Letter wc propose a realistic one-dimensional 
system which should exhibit a pscudospin fcrromagnctic 
order. The system consists of two fmite-width quantum 
wires with a magnetic field applied pcrpcndicular to the 
wire surfacc; see Fig. 1(a). Bccausc of the pcrpcndicular 
magnetic field, singlc-clcctron states as well as the cffcc- 
tivc mass and Coulomb interaction arc strongly modified, 
leading to the softening of the spin-modc velocity when the 
intcrwirc distance is smaller than a critical value, dc. The 
system then bccomcs an casy-planc PSFM state due to the 
appcarancc of intcrwirc cohcrcncc (IWC), which should 
manifest itself in the appcarancc of the resonant peak in the 
tunneling conductancc at small bias voltages. Wc also

PACS numbers: 73.23.- b ,  73.21 .—b

calculatc the drag resistance of such ID PSFM states 
within the mcan-field approximation and demonstrate 
that the drag resistance first increases and scalcs with the 
longitudinal size as the magnetic field is increased (or the 
intcrwirc distance is dccrcascd) toward the phase transition 
boundary and then bccomcs dramatically reduced (i.e., not 
sealed with the size) when entering the PSFM state. The 
proposed ID PSFM transition should be experimentally 
accessible by the present or near future semiconductor 
technology.

The double wire system wc consider is aligned in the y 
direction. Fig. 1(a), and centered at x  =  0 and z =  ±d /2 .  
Electrons arc confined by a parabolic potential, \mca\x1, in 
the x  direction, and their motion in z direction is quenched. 
Using the Landau gauge, the single particle Hamiltonian of 
momentum k in each wire can be derived to be

1 , 1 , ,  k2
( D

where m* =  m(co~. + col)/col is the renormalized clcctron
mass, co = tJ coI + ca2 is the Landau level splitting, and 
x (i = l2)k is the guiding ccntcr coordinate with /0 =

iJcoc/m(coI + Wq) being the magnetic length. coc =  eB /m c  
is the bare cyclotron frequency. The wave functions and 
energy spectrum of Eq. (1) arc similar to the standard QH

(a)

FIG. 1. (a) Schematic double wire system considered in this 
Letter, (b) and (c) are single particle energy f^,(k) of each wire 
for B = 0 and B + 0 cases, respectively.
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system [81: >p„X s{r )  =  L 2e iky<pn(x +  x0) j 8 ( z  ~  sd /2 )  
and E^(k) =  (n + |)<w + where n is the Landau level 
index and s =  ±  ̂is the pseudospin index for the lower or 
upper wire, <pn(x) =  (TT1̂ 22nnU0y 1̂ 2e^x2̂ H n(x/I0) is 
the nth eigenfunction of a parabolic potential with /0 =  

Throughout this Letter we concentrate on the 
strong magnetic field (or low electron density) regime so 
that only the lowest energy level (n =  0) is occupied. One 
can see that the magnetic field enhances the effective mass 
in the longitudinal (y) direction, leading to a Hatband 
structure with high density of states similar to the Landau 
level degeneracy in 2D system; see Fig. 1(b).

The interaction Hamiltonian can be derived to be [81:

H , X  Vslrs M ± ’ k 1>*2)9 0 -L s\,S2,k\,k2,iiL 

X Csukl+qy/2Csukt-(i>./2cS2'k2- (jy/2CS2,k2 + <i>f t ’

where cSrk(c^k) are the electron field operators, £i± = L W  

is the wire area, and ^ '( q i . f c i . f c )  =  A(qj_)2 f% % V (q) X 
[1 + 8s _si{e^'qzd -  is the effective ID in
teraction with V(q) being the Coulomb interaction. The 
form function, A(qj_) =  exp[ - ( g 2!® + q2i y % ) / 4 \  is ob
tained by integrating the electron spatial wave function [81. 
Because of the presence of magnetic field, the effective ID 
interaction, V^Xq^, k\, k2), is not equivalent to any spin- 
independent (or velocity-independent) symmetric poten
tial. Thus, in our system, the ferromagnetic state is not 
inhibited by the LM’s theorem.

Starting from Eqs. (1) and (2), one can use the standard 
bosonization approach to describe the low energy physics 
near the Fermi points. After neglecting the irrelevant (non
local) terms, we obtain H  =  + H b, where

H a = 2% y ^ ^ an a(y)2 + —  Sy^aCv)2]- (3)

Here the sum consists of charge p  and spin a  channels. 
H b f  dy  cos[V8$cr(v)] describes the undiagonalizable 
backward scattering term [91. U a and <$a are the bos
onic operators satisfying the commutation relation: 
[ $ a(y), T W ) ]  =  i 8 a>a>8(y -  / ) •  The renormalized ve
locity and Luttinger exponents are

+ 8ea)(^ + 8 </>„)>
h  + a

(4)

where 8ej</>a = ,a +  (2^2,a “  £l,||)] ^  8i,p/a ~
± 8 u ) -  Here g4>n/j. =  f ^ [ V l /0 (qx, 0)], g2j /±  =  

7f*r 0) cos(29j1̂ F^o)’ and ^ 1.11/-L =
2kF) are defined as the usual g-ology interaction in the 
Luttinger liquid theory [91 with kF being the Fermi mo
mentum. V7(q_i_) and Vo(qj_) are the intrawire and inter
wire interaction matrix elements, respectively. To simplify 
calculations we model the screened Coulomb interaction

by using V(q) =  {A-Tre2A^I€0)e- lql2Ao where e0 is the static 
dielectric constant and A0 is screening length. The quali
tative results obtained below should not be sensitive to the 
details of the screening potential.

The ferromagnetic transition occurs as the spin stiffness, 
v N,a =  ualK<r =  v F(\ + becomes zero [101, or
g i l l  =  2 t t v f  +  2(g4>a +  g2>a)- I n  general, the low energy 
Luttinger liquid parameters should be renormalized by the 
backward scattering, H b, and therefore the phase boundary 
obtained from the bare Luttinger parameters should be 
modified also. However, when in PSFM phase, the spin 
stiffness is negative so that higher order derivatives, like 
c)2#^, have to be included to stabilize the system and to 
give a nonzero spin density, p s dy®#  [101. As a result, 
the sine-Gordon backward scattering will oscillate in real 
space and hence become negligible after averaging in the 
thermodynamical limit. Therefore for simplicity we may 
assume that the renormalization effects are not very serious 
so that the phase boundary of the PSFM state can still be 
estimated roughly by using the bare Luttinger parameters 
as stated above. The critical behavior of similar transition 
has been also discussed very recently [101.

In Fig. 2 we show the calculated critical interwire dis
tance as a function of magnetic field for various single wire 
electron densities, ne. PSFM occurs in the large field and 
small distance regime. At zero distance, #2/4,0- =  and 
therefore the critical field (<w(.Cr) is the minimum field 
strength for the backward interaction (g y )  to be dominant. 
On the other hand, in the extremely large field regime, the 
Fermi velocity approaches zero. The critical distance (dcr) 
is now determined by the competition between the back
ward scattering and the forward scattering in the spin 
channel. For kFA0 =  1rneA0 >  1 we can obtain the analytic

expression of <wc cr and d CT: a)CCT ~  a)0-sj 2 r ~ 1e<'2k,'Ao)2 -  1 
and dcr ~  Aoe- *̂'"'0̂ , where rs =  me2/ e 0irkF is the ratio 
of the average potential and kinetic energies. We also 
checked explicitly that in the parameter regime we con
sider here the (easy-axis) pseudospin polarized state is

L o g 10(© c /©  0)

FIG. 2. Calculated critical interlayer distance, dc, as a function 
of magnetic field ( <ac). Electron density in an individual wire, 
ne, is 0.6,0.7,..., 1.0 X  105 cm-1 from top to bottom. Here 
A0 =  500 A and w0 = 0.05 meV.
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always energetically unfavorable compared to the (easy- 
plane) pseudospin ferromagnetic phase.

We now discuss how such a PSFM phase can be ob
served in realistic experiments. In this phase the system has 
quasi long-range order characterized by the presence of a 
Goldstone mode. Tunneling spectroscopy used in the QH 
bilayers [5] can be also applied to the present system. We 
expect a strong enhancement of the tunneling conductance 
at small voltage bias when the system enters the PSFM 
state. Another approach to demonstrating the ID PSFM in 
the double wire system is to perform the Coulomb drag 
experiments. Such experiments have been done on 2D [6] 
and ID [11] semiconductor heterostructures in recent 
years, and the drag resistance, R d, is a direct measure of 
the interwire interaction [12]. If no magnetic field or 
interwire coherence, the drag resistance behaves differ
ently in the two different regimes: in the perturbative 
regime R d vanishes in low temperature limit (R d T1 
e2/h)  [12,13]; in the strong interaction regime, however, 
the backward scattering between the two wires becomes 
relevant [14] and opens a gap A in the energy spectrum, 
corresponding to the formation of a locked charge density 
wave phase (LCDW) with a divergent drag resistivity Rd oc 
exp(A/T) in low temperature regime.

To analyze the drag resistance in the presence of inter
wire coherence, it is useful to employ the Hartree-Fock 
(HF) approximation. This approach neglects long wave
length fluctuations present in ID systems, but we expect 
these fluctuations give rise only to small corrections in the 
drag resistance deep inside the PSFM phase. The HF 
Hamiltonian then can be easily diagonalized by transform-4- 4
mg the electron operators into the symmetric (c^k + c{k)
and the antisymmetric (c jk — c jk) channels with the eigen- 
energies, E f  =  k1/2m" ’+ '£k + A.k ^  H'0. Here X k and 
A* are the intrawire self-energy and the IWC gap, respec
tively, and Wq is the shift of the band energy in response to 
the reconstruction of the ground state due to coupling to 
leads; see Figs. 3(b) and 3(c). For simplicity, in our calcu
lation we neglect the momentum dependence of X* and A* 
and approximate them by their values at k =  0. Within this 
approximation, we obtain (at zero temperature):

2 0 ~  ^ < 1  +  e - < W )  -  - A - ,  (5)
4 By 77 Av

v ^e - m x 0y-

8V^Av
(6)

A ,-where Vj =  e2A0/ e 0Ax, k x =  J A q +  Iq/ 4, and

yjkl  +  11/Tq. «coh =  2n e is the total electron density of 
both wires in the coherent regime. We note that due to 
interwire Coulomb interaction, ncoh can be different from 
the electron density in the incoherent ID reservoir, 2«res. 
Therefore we define rj =  ncoh/2 n res to be their ratio for the 
convenience of later discussion and its value will be de
termined later. In the above equations, we have assumed 
that all electrons fall into symmetric band. This is justified

FIG. 3. (a) Typical setup for conductance experiment of the 
double wire system, where the two wires interact in the middle 
regime (0 <  y < L) and are connected to ideal ID reservoir in 
the left- (y <  0) and right- (y > L) hand sides. The upper (active) 
wire is biased by a voltage V, while the lower (passive) wire is 
biased by VR and VL with currents ly^ in the two wires, 
respectively, (b) and (c) are the band energy for electrons in 
the incoherent reservoirs and in the coherent double wire regime, 
respectively. The upper and lower bands in (b) are for the 
antisymmetric and symmetric bands, respectively.

because the bottom of the antisymmetric band can be 
shown to be above the chemical potential by AE  =  2A0 — 
4r)2E F > 0, when the magnetic field is large enough. (Here
Ef =  r/- B - is the Fermi energy m the incoherent ID 
reservoir.)

To calculate the drag resistance in a typical experimental 
setup, Fig. 3(a), we first note that the drag resistance \Rd =  
(VR — V j / / t for / | =  0] can be expressed through the 
conductance of symmetric currents [G+ = l \ / V  for VL =  
V, VR =  0, and hence /} =  /j] and the conductance of 
antisymmetric currents [G_ = l \ / V  for VL =  0, VR =  V, 
and hence /} =  — /j], according to: Rd =  G I 1 — G +1. The 
symmetric and antisymmetric conductances, G ±, in the 
presence of interwire coherence at temperature T  can be 
easily derived to be [15],

G_ 16ttT
dE

cosh2( ^ )  1 1
Us\2,
R e(rsr*), (7)

where t$/a and rs/a are the transition and reflection coef
ficients for the symmetric or antisymmetric channels, re
spectively. For simplicity we assume that A0 is constant for 
0 <  y < L  and vanishes outside this interval [the shaded 
area of Fig. 3(a)]. We then obtain

- i kLJ_f 2 ikKse ,
D  (*2 ^ K 2)sm(KsL), (8)

where £>= (k2 + K2)sin(KsL) + 2/&kscos(ksL) and

k s =  ^jk 2 +  (2 ? 7 2 — 1 ) & |  with E  =  k2/2m*. ra is also 
given by Eq. (8), replacing K s — > iK a , where K a =

^ 2 g k 2F -  (4tj2 -  1)&| -  k2 and $ =  Aq/ E f .
At zero temperature the conductance and hence the drag 

resistance exhibit periodic dependence on the number of 
electrons. At intermediate temperatures, v F/ L  T 
EF, these oscillations are smeared out yielding
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R,, = R
(1 + 2rj)(2£ — 4 rj2 — 1) 1 + 4 r f

n  + 277(1 -  277) 2?7
(9)

where R0 = Ir r / e2. In Fig. 4 we show the calculated drag 
resistance as a function of £ =  A0/ E F. It is negative when 
i  is small, but becomes positive with increasing £ and 
eventually saturates at (1 — ]/2rj)R0.

Finally we determine the electron deplation, 77, by 
equating the chemical potential inside the coherent regime 
and the chemical potential in the incoherent regime within 
the HF approximation. Unlike in 3D material, the electron 
deplation in the present 1D double wire system cannot be 
compensated by the possible dipole layer formation at the 
junction points and therefore we expect 77 can be appreci
ably smaller than 1. In small d  limit, we obtain [15]

_  1 , ( d \ 2 0  ~  1/8AVA>)[1 + (cajca0)2] 
77 2 \A0 j  16[1 + (coJ coq)2 + Ar/4A0r J ’

where kF =  77«res is determined by the electron density in 
the reservoir. In the inset of Fig. 4, we plot the drag 
resistance as a function of magnetic field at a given inter
wire distance and electron density «res. We note that a finite 
drag resistance (Rd does not scale with the wire length at 
T  =  0) is a signature of the coherent state. The origin of 
this effect is the indistinguishibility of electrons flowing in 
the active and passive wires ((cj'q ) #  0). A similar phe
nomenon has already been observed in the 2D QH bilayer 
systems [6].

As mentioned above, without the magnetic field and 
interwire coherence, the ground state of the double wire 
system is predicted to be a LCDW for long-range Coulomb 
interaction with an infinite drag resistance at zero tempera
ture. R,/ calculated in this scenario always increases as the 
interwire distance decreases, due to the enhancement of 
interwire interaction. However, as we have shown in this 
Letter, when a strong magnetic field is applied, a finite Rlt 
that does not scale with the wire length is expected to be 
observed when entering the PSFM phase. The combination

FIG. 4. Drag conductance as a function of £ =  AQ/E F, follow
ing Eq. (9). Results for two electron densities, r], are shown 
together. Inset: drag conductance as a function of magnetic field 
for d  =  0.08A0. nICh = 0.6 and 0.7 X IO3 cm "1 for the lower 
and upper curves, respectively.

of the above two results leads to the following overall 
description of the drag resistance: when the interwire 
distance is decreased from a large value (or the magnetic 
field is increased from zero) the low temperature drag 
resistance should first increase and reach a maximum value 
around the phase boundary (Fig. 2) and then begin to 
decrease to almost zero due to IWC when entering the 
PSFM phase. Such nontrivial behavior of drag resistance 
could indicate a formation of 1D pseudospin ferromagne
tism in small interwire distance or large magnetic fields.

To summarize, we have shown that in the presence of a 
strong magnetic field the electronic system can become 
(pseudospin) ferromagnetic in the double-quantum-wire 
system. We further demonstrate that the low temperature 
drag resistance has a nonmonotonic behavior near the 
phase transition boundary, which should become observ
able in the present or near future experiments.
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