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Abstract

The design and synthesis o f  asynchronous circuits is 
gaining importance in both the industrial and academic 
worlds. Timed circuits are a class o f  asynchronous circuits 
that incorporate explicit timing information in the specifica­
tion. This information is used throughout the synthesis pro­
cedure to optimize the design. In order to synthesize a timed 
circuit, it is necessary to explore the timed state space o f  the 
specification. The memory required to store the timed state 
space o f  a complex specification can be prohibitive fo r  large 
designs when explicit representation methods are used. This 
paper describes the application o f  BDDs and MTBDDs to 
the representation o f  timed state spaces and the synthesis 
o f timed circuits. These implicit techniques significantly im­
prove the memory efficiency o f timed state space exploration 
and allow more complex designs to be synthesized. Implicit 
methods also allow the derivation o f solution spaces con­
taining all valid solutions to the synthesis problem facilitat­
ing subsequent optimization and technology mapping steps.

1. Introduction

Recent trends in the integrated circuit industry, such as 
decreasing feature sizes and increasing clock speeds, make 
global synchronization across large chips difficult to main­
tain. As a result, many designers have become interested 
in asynchronous circuits because they eliminate the need 
for global synchronization. Asynchronous circuits consist 
of groups of independent modules which communicate us­
ing handshaking protocols. Since there is no global clock, 
clock distribution and skew are not issues. Also, eliminat­
ing the global clock permits modules to work at their own 
pace and allows average-case performance to be realized. 
There are a number of different styles for designing asyn­
chronous circuits. Most asynchronous design methodolo­
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gies are based on the assumption that nothing is known 
about the delays between signal transitions. Therefore, 
the circuit must be constrained to work correctly even in 
cases which never occur in a realistic implementation. The 
overhead necessary to guarantee this behavior often makes 
the asynchronous average-case performance worse than the 
synchronous worst-case.

Timed circuits are a class of asynchronous circuits which 
use explicit timing information in circuit synthesis. Pre­
cise timing relationships are often unknown before syn­
thesis and technology mapping. However, applying even 
rough estimates can lead to the removal of large amounts 
of circuitry that would be required for a speed-independent 
design. These timing assumptions can then be formally 
verified after synthesis when the actual timing values are 
known. This design style can lead to significant gains in cir­
cuit performance over asynchronous circuits designed with­
out timing assumptions [15].

The first stage of timed circuit synthesis involves the ex­
ploration of the timed state space to determine which un­
timed states are reachable by the system. The circuit is first 
specified using a formalism that allows a lower and an up­
per bound to be assigned to the causal relationships between 
signals. Timing analysis is then performed by our design 
tool ATACS using geometric regions and partially ordered 
sets (POSETS) of events, which has been shown to be an 
efficient method for representing information about timed 
state spaces [3, 4, 16, 17]. We use Binary Decision Dia­
grams (BDDs) [7] and Multi-terminal Binary Decision Di­
agrams [10] to efficiently represent these timed state spaces.

The second stage of synthesis consists of repeatedly di­
viding the state graph into subregions to determine the nec­
essary behaviors. For each signal, the graph is divided into 
those regions where the signal should be enabled to rise, 
should be enabled to fall, should remain high, or should 
remain low. Equations are derived to represent a circuit 
implementation which conforms to these behaviors. Our 
synthesis method uses BDDs allowing the derivation of so­
lution spaces containing all valid solutions to the synthesis 
problem.
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2. Timed state space exploration

Timed circuit synthesis is dependent on a complete ex­
ploration of the timed state space of the specification. This 
state space can be very large since it must include, not only 
all of the combinations of signal values allowed by the spec­
ification, but also the time relationships between signal fir­
ings. However, it can be smaller than the complete state 
space of an equivalent specification without timing since 
states that are not reachable given the timing information 
are not explored.

The size of the timing information depends on the tim­
ing algorithm being used. One representation is to attach a 
clock to each signal transition that advances only in dis­
crete time steps [8]. This representation can cause state 
space explosion, especially for large delay ranges [17]. A 
BDD method has been proposed in [6], to improve discrete 
time memory performance, but it does not address the state 
explosion problem inherent in discrete time. The geomet­
ric region method, where timing information is stored as 
a constraint matrix representing relationships between sig­
nal transition times, has been shown to be an efficient way 
to represent a timed state space [3, 14, 16, 17]. However, 
even with a region based representation, the memory re­
quired to store such a state space explicitly can be pro­
hibitive for large designs. In many domains, implicit meth­
ods have been shown to significantly reduce memory usage
[7]. Since timed state space exploration is such a memory 
intensive process, it is an excellent candidate for such an 
approach.

2.1. M otivating example

The block diagram in Figure 1 is for a controller for a 
self-timed FIFO. In [13], a highly optimized timed circuit 
implementation is presented which is designed by hand. 
The correctness of this circuit is highly dependent on tim­
ing parameters. This example is used to show how our 
timed circuit synthesis method can derive the same efficient 
circuit from the description of the required behavior and 
the known timing parameters. The basic behavior is that 
when a request comes in (i.e., FIN+ ) and the fifo is empty 
(i.e., EOUT  is high), the data is latched (i.e., EnJ>ar+ and 
En—). In parallel, the insertion is acknowledged (i.e., SE- 
OUT_ -) and the next stage is requested to accept the data 
(i.e., FOUT+ ). When the next stage accepts the data (i.e., 
SEIN-—), the FIFO is set to be empty (i.e., EOUT-h) and 
the latch is opened (i.e., E n h a r— and En+).

2 .2. Explicit tim ed state space exploration

En_bar En

Figure 1. Block diagram for a timed FIFO.

formally in [2]. TEL structures can represent a set of spec­
ifications equivalent to those represented by both time and 
timed Petri nets, as well as others that are quite difficult to 
represent with a Petri net. A TEL structure consists of a 
set of rules that represent causality between signal transi­
tions, or events, as well as a set of conflicts which are used 
to model disjunctive and choice behavior. Each rule is of 
the form { e , f , l ,u ,  b), where e is the enabling event, f  is 
the enabled event, {I, u) is the bounded timing constraint, 
and is a boolean expression which must be satisfied be­
fore is allowed to occur. A rule is said to be enabled if 
its enabling event has occurred and its boolean expression 
evaluates to true. The timing constraint places a lower and 
upper bound on the timing of a rule. A rule is satisfied if the 
amount of time which has passed since the enabling event 
has exceeded the lower bound of the rule. A rule is said to 
be expired if the amount of time which has passed since the 
enabling event has exceeded the upper bound of the rule. 
Ignoring conflict, an event cannot occur until all rules en­
abling it are satisfied. An event must always occur before 
every rule enabling it has expired. Since an event may be 
enabled by multiple rules, it is possible that the differences 
in time between the enabled event and some enabling events 
exceed the upper bound of their timing constraints, but not 
for all enabling events.

A graphical representation of the TEL structure for the 
FIFO example is shown in Figure 2. Nodes represent signal 
transitions and arcs represent causal relationships between 
them. Tokens on arcs indicate that the preceding transition 
has occurred but the following transition has not. All in­
coming arcs must have tokens to fire a transition.

The goal of state space exploration is to derive the state

The state space exploration procedure used by a t a c s  
begins with a timed event/level (TEL) structure, described F ig u r e  2 . T h e  T E L  s t r u c tu r e  f o r  th e  F IF O .



graph (SG), which is necessary for circuit synthesis. A SG 
is a graph in which the vertices are untimed states and the 
edges are possible state transitions. A transition between 
two states exists if the specification allows the circuit to 
move from one state to the other with one signal transition. 
A reduced state graph (RSG) is a SG where some branches 
have been pruned because timing information has shown 
them to be unreachable. A RSG is modeled by the tuple 

where is the set of input signals, is the set 
of output signals, is the set of states, and is
the set of edges. For each state , there is a corresponding 
labeling function which returns
the value of each signal and whether it is enabled (i.e., 0 
if a; is stable low, R if a; is enabled to rise, 1 if a; is stable 
high, F if is enabled to fall). A state transition is 
often denoted as follows: where is the signal that
changed value.

Since our TEL structure specifications include timing 
constraints, it is necessary to use a timed state space ex­
ploration algorithm to find the reachable state space. The 
method used is to perform a depth first search to find all 
reachable timed states. A timed state for a TEL structure 
consists of a set of rules whose enabling events have fired, 
R m , the state of all the signals, sc, and a set of timing 
information, . The timing information, , is repre­
sented with geometric regions, which were first introduced 
in [5, 11].

When the geometric region approach is used for timing 
analysis, a constraint matrix specifies the maximum dif­
ference in time between the enabling times of all the cur­
rently enabled rules. The Oth row and column of the matrix 
contain the separations between the enabling times of each 
enabled rule and a dummy rule . The enabling time of

is defined to be uniquely 0. Each entry in the ma­
trix M  has the value m ax(t(enabling(jj) — t(enabling(i))), 
which is the maximum time difference between the enabling 
time of rule j  and the enabling time of rule i. Since the en­
abling time of is always zero, the maximum time differ­
ence between the enabling of rule and the enabling of rule 
f 0 (m od  is just the maximum time since i was enabled. The 
maximum time difference between the enabling time of 
and the enabling time of rule ( ) is the negation of the 
minimum time since i was enabled. Note that M  only needs 
to contain information on the timing of the rules that are 
currently enabled, not on the whole set of rules. Figure 3(a) 
shows a sample geometric region, and Figure 3(b) shows 
the corresponding constraint matrix. The region is a convex 
polygon defining the relationships between the timers asso­
ciated with the active rules at a given point in the state space 
exploration, and the matrix is a concise numerical descrip­
tion of the region. In this case, the region indicates that the 
timer , associated with rule , can have a value anywhere 
from two to twenty time units, but no more than five time

units greater than . ( , and
h - t i  <  5.) Similarly, timer £2, associated with rule f 2 can 
have a value between zero and fifteen, but must be no more 
than two time units less than . ( ,
and h  -  h  <  -2 .)  The polygon shown in Figure 3(a) 
contains all points which conform to these timing
constraints.

Geometric Region Constraint Matrix

ĉolumn trow < II jM

l0 t1 t2

l0 0 20 15
-2 0 -2

l2 0
5 0

(a) (b)

Figure 3. A geom etric region and matrix.

2.3. Implicit tim ed state space exploration

The explicit enumeration method described above re­
quires too much memory to effectively represent complex 
designs. Therefore, it is necessary to explore alternative 
methods of storing this information. Since much of the data 
compiled during state space exploration consists of sim­
ple bit vectors, we have chosen to use BDDs, which have 
been shown to be a highly efficient method for storing and 
manipulating Boolean functions [7]. Because geometric 
region information is integer-valued, MTBDDs have been 
chosen to store the region matrices. MTBDDs are a type of 
BDD which allow terminal nodes to contain numerical data, 
rather than just the constants TRUE and FALSE. Geomet­
ric region matrices only have entries for currently enabled 
rules. However, to make the representation more manage­
able, the matrices are expanded to a canonical form, where 
rows and columns representing rules that are not enabled 
have been filled with a “not an entry” symbol, the constant 
FALSE. MTBDDs collapse paths with common structural 
features to the fewest nodes possible. In addition, because 
of the nature of BDD implementations, it is possible for 
separate geometric regions with similar structures to have 
common subregions stored in the same memory location.

The MTBDD for a region is composed of three parts. 
First, a BDD is constructed to store the bit vector that indi­
cates which rules are in R m . Second, it is necessary to store 
the list of regions associated with each R m set. To represent 
this list structure, a numerical index i is used to indicate that 
a given matrix is the matrix associated with a given R m



set. Any number i can be viewed as a bit vector and rep­
resented as a BDD. In order to conserve space, precisely 
enough bits are used to represent the largest number cur­
rently needed. Finally, the geometric region matrix must be 
represented. There are many ways to represent regions, and 
on the surface using MTBDDs would seem to be a very in­
efficient method. Methods for representing sparse matrices 
have been developed for scientific computing that are much 
more efficient at representing single matrices. There are two 
major benefits to this approach. First, it allows matrices to 
be manipulated within the BDD paradigm, which among 
other advantages allows two matrices to be compared for 
equality in constant time regardless of size. The greatest 
advantage, however, is the capacity to amortize the costs 
of storage across many matrices. Many of the matrices en­
countered in practice differ very little from one another. The 
BDD storage system used in ATACS allows additional ma­
trices to be added to the database and only consume the re­
sources necessary to represent the new elements. This often 
leads to the use of only a few BDD nodes per matrix.

A matrix with integer entries can be viewed as a func­
tion ( ). With row and column indices 
parameterized as binary numbers, this function becomes 
{0 ,1 }” x {0 ,1}” Z . The geometric region matri­
ces are thus parameterized and stored as a function which 
takes row and column indices and returns the appropri­
ate matrix entry ( ). MTBDDs are an 
ideal way to represent this type of function [10]. Fig­
ure 4 shows the complete MTBDD for the timed state 
where , the link value is 2, and the re­
gion is the one shown in Figure 3. When a new timed 
state is found, the timed state list MTBDD is extended 
by the call:

In this formula, 
constructs a BDD for the set, 

constructs a MTBDD for the region, 
is the list index BDD for this region, and is the if- 

then-else operator.
To represent the reachable state space, a predicate on 

the vector x  is defined which returns true for all states reach­
able in any number of transitions from the initial state. The 
vector is , where each variable is in .

The NextState function is a predicate on which 
returns true for all the state pairs for which may be 
reached from in exactly one signal transition. A compli­
cation arises from the use of timing in generating the RSGs. 
As mentioned before, when timing considerations show a 
state to be unreachable, it may be removed from the RSG. 
If we based our implementation only on the reduced state 
graph, the enablings to reach these states would be lost, 
and the resulting circuit would be suboptimal. In the FIFO 
example, a naive derivation of and results in the cir­
cuit found in Figure 5(a) for S E O U T This generalized C-

(c0), ( c0\ ,@\ @ @0 \1 0 / \ l  0̂ \̂1
( 0) (20) ( FALSE ) (15 (-2 | (0) (FALSE ) (-2 J (0 Q (FALSE ) Q

Figure 4. MTBDD for a timed state.

element circuit may work, but it is a larger and slower gate 
than the simple NAND gate shown in Figure 5(b) which is 
derived from the correct RSG. This problem is solved in the 
explicit system by using a four valued logic system (0, R, 1, 
and F as described above). However, in the implicit method 
the use of bit vectors makes this less attractive, as it would 
double the necessary length of the vectors.

~EOUT

~FOUT_

FIN

EOUT

(a) (b)

Figure 5. G ates for SEOUT..

The basic problem can be illustrated using the famil­
iar diamond shown in Figure 6. The original speed- 
independent graph is shown in Figure 6(a). For the timing 
specified in the TEL structure in Figure 6(b), the signal 
always rises before , so the state (1R) is removed from the 
graph. If the correct enablings are not maintained, the less 
concurrent graph shown in Figure 6(c) is produced. The en­
abling of is now delayed by the time necessary to fire , 
and each cycle of the circuit is slowed by that amount. In 
other words, the improperly pruned graph loses the fact that 

was the enabling event, and actually represents the TEL 
fragment in Figure 6(d). The total time necessary to tra­
verse this graph from state to state should be 10 
time units, but instead it increases to 15 time units. This less 
concurrent circuit may not only be slower, but it may also

FIN

SEOUT



(a) (b) (c) (d) (e)

Figure 6. “G host sta te” exam ple.

be incorrect if it violates the original timing assumptions.
To maintain the correct enablings, the relation is pop­

ulated with a transition for every enabled signal, even if the 
target state is not reachable. Such a “ghost transition” can 
be detected by the fact that the target state is not contained 
in the relation. This ghost state consists of the same val­
ues as the original state, except that the enabled signal has 
changed phase.

Figure 6(e) shows an example of a “haunted” graph: the 
state (1R) has been reinserted as a “ghost state” with a tran­
sition from (RR). This path is never taken, but it is essential 
that it be represented.

2.4. Results

We have implemented the implicit timed state space ex­
ploration procedure and tested it on a number of examples. 
Since most timed circuit examples are quite small due to 
previous memory limitations of synthesis tools, we have 
parameterized our asynchronous FIFO example in order to 
demonstrate the effectiveness of implicit methods. This 
FIFO is very concurrent when parameterized and generates 
an extremely large number of geometric regions which cor­
respond to the number of regions necessary to synthesize a 
large complex design. The POSET timing method for state 
exploration discussed in [3] is used to generate the timed 
state space. The examples shown were run on a 400 MHz 
PentiumII with 384Mb of memory.

Figure 7 shows the memory usage pattern of the state 
space exploration for 4 stages of the timed FIFO for both the 
explicit and implicit methods. The x-axis shows the num­
ber of regions explored and the y-axis shows the maximum 
memory used to that point in the state space exploration. 
The solid lines represent the implicit method and the dashed 
lines represent the explicit method. The graphs show that 
the implicit method not only yields a significant overall im­
provement in memory usage, but also that the memory us­
age trends for the implicit method are much better. As the 
number of regions grows very large, the amount of mem­
ory used by the implicit method approaches an asymptotic 
value. This occurs since once the BDDs get mostly full, 
adding additional regions does not add significant memory 
due to the node sharing behavior of BDDs. When the BDDs 
get large and a new region is added, most of the nodes 
needed for this state are already in the current BDD, and

very little new memory is necessary. With explicit meth­
ods, on the other hand, each new region throughout the 
state space exploration requires a new allocation of mem­
ory, causing the memory usage of the explicit method to 
grow linearly with the number of regions.

Maximum Memory Usage for a 4-Stage FIFO

Figure 7. FIFO memory performance.

3. Synthesis

The synthesis stage starts with a reduced state graph 
(RSG) implicitly stored as described in the previous section 
using two BDD structures: , the reachable state space, and 
N ,  the next state relation.

3.1. Excitation regions and quiescent states

In order to obtain an implementation, the state space is 
first decomposed for each output signal into a collection of 
excitation regions. An excitation region for the output sig­
nal is a maximally connected set of states in which the 
signal is enabled to change to a given value (i.e., 
or ). If the signal is rising in the region (i.e.,

), it is called a set region, otherwise the region is 
called a reset region. The excitation regions for each signal 
transition are indexed with the variable and the exci­
tation region for a signal transition is denoted ER , 
where “*”indicates “ ” for set regions and “ ” for reset re­
gions. We also define a set of excited states , which 
is the union of the excitation regions for a given signal tran­
sition, i.e.,

For each signal transition, there is an associated set of 
stable, or quiescent, states QS . For a rising transition 
x  f , it is the states where the signal is stable high (i.e., 
QS ), and for a falling tran­
sition, it is the states where the signal is stable low, i.e., 
QS(x 4.) — {« £  $  | s(x )  — 0}).



Given the BDD , the BDD representations of ES and 
QS are straightforward to find. For instance, the set of ex­
cited states for would be found by applying the fol­
lowing formula: . 
And the quiescent states can be found in a similar manner:

.
The function is defined to be the existen­

tial quantifier of the variable in the function . This is 
equivalent to , and is used to return the portion of
the predicate which can return TRUE for any value of a;. 
This function is extended to iteratively operate on a vector 
of variables , and results in a new function which does 
not depend on the variables in .

The excitation regions would then be found by dividing 
each excited set into connected regions. To do this, the al­
gorithm merely picks a seed state at random and iteratively 
adds all excited states reachable in one step from the region.

3.2. Timed circuit im plem entation

The circuit is implemented by creating a function block 
for each output signal, consisting of a C-element with a 
sum-of-products (SOP) stack each for the set and reset (see 
Figure 8). Each product block in the SOPs for each func­
tion implements a cover for a single excitation region. Note 
that while depicted as a simple AND gate, in order to guar­
antee hazard-freedom, this “product” block may need to be 
a more general function block. The circuit may be imple­
mented using a standard C-element (SC) structure using dis­
crete gates, as shown in Figure 8(a). It may also be created 
using a complex gate known as a generalized C-element 
(gC) [12]. Figure 8(b) shows a transistor-level gC design 
using a weak feedback staticizer, and Figure 8(c) shows a 
fully static design. If a gC only has one pullup and one 
pulldown stack, it can be depicted as shown in Figure 5(a). 
Note that a signal labelled with a “+” is only used in the 
pullup stack, and a signal labelled with a “-” is only used in 
the pulldown stack.

In [9], a parametrized family of decompositions of high- 
fanin gates is investigated at one time by adding additional

00̂ Rrl0^r —s00 si 
01—̂

00—c|pn"r10 —cj[
01—̂pnr11—o|Q 
30 —1[~ s10—1|_
31HCsi

(a) (b) (c)
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variables. We extend this idea to synthesis by represent­
ing our covers by a series of implications of the form

. These implications are 
ANDed together to produce a BDD which represents ev­
ery possible potential single cube cover of the correspond­
ing ER: C0(x * ,k )  =  A ^ o ,  w h e r e to  =  [(xi,o ^  

. We then apply restriction operators 
to this BDD, to remove covered states which violate our re­
quirements for a valid cover. Any satisfying assignment of 
the remaining BDD is a valid implementation: if a vari­
able appears in the positive phase, the implied variable must 
appear in the cover; if it appears in the negative phase, the 
variable cannot be included; and if it does not appear at all, 
it may or may not be used, at the designers discretion.

Occasionally an excitation region is found which can­
not be covered by a single cube. Our algorithm creates 
a SOP block to represent this region, instead of a simple 
“AND” function. To accomplish this, the algorithm tests 
each cover BDD to see if it is identically FALSE. If this 
occurs, a second (or third, etc.) initial cover is created, 
and ORed together with the preceding initial cover (i.e., 
C  — CoVCi V.-.Cto). The resulting BDD is passed through 
the same filters, producing a multicube implementation.

3.3. Correct cover formulation

In order to create a valid timed circuit implementation, it 
is necessary to define the states a cover must include, may 
include, and may not include. Each cube of the implemen­
tation must include the entire corresponding excitation re­
gion. In order to minimize the logic, it may also include any 
unreachable state, and may include some additional reach­
able states. Inclusion of some reachable states, however, 
can cause incorrect behavior. These disallowed states vary, 
depending on the type of circuit chosen. In a gC imple­
mentation, any state where the signal is enabled in the same 
direction or stable at the final value may be included. In a 
SC circuit, some of those states may need to be excluded to 
guarantee hazard-freedom. The correctness constraints dis­
cussed here were developed in [1] for speed-independent 
circuits and extended to timed circuits in [14].

In a gC implementation, the allowed growth regions in­
clude the remainder of the excitation space and the en­
tire quiescent space for the corresponding signal transi­
tion. In other words, correct covers must satisfy the fol­
lowing covering constraint: . 
The boolean equation for this restriction is the following: 

. That is, the cover may not include 
any reachable state not in the quiescent or excited spaces. 
This prevents the gate from being pulled up and down si­
multaneously.

In a SC implementation, additional internal signals are 
introduced by the use of discrete gates. In order to pre-

s00
s01



vent the introduction of hazards, additional restrictions are 
placed on the states allowed in the cover. The purpose is 
to ensure that each cover makes a single monotonic tran­
sition when it is actively changing the output and makes 
no other transitions at any other time. To guarantee this, 
we need a modified covering constraint and an entrance 
constraint. This ensures that the transition of the gate is 
acknowledged. The covering constraint is the following:

In other words, the cover must 
include the entire ER, and may only include states from the 
ER or the corresponding QS. The resulting boolean equa­
tion is: . This ensures that only one 
AND block is on at a time, so the transition can be acknowl­
edged by a transition on the output. In addition, the cover 
may only be entered through the excitation region. This is 
to guarantee a single monotonic transition, with no unac­
knowledged glitch in the function block. The entrance con­
straint is
and the resulting boolean equation is

. The
final boolean equation for the violations is: .

The valid cover BDD, VC, is constructed to include all 
implementations that do not include any violating states and 
completely cover the corresponding excitation region. In 
other words, we filter the cover BDD with the follow­
ing conditions: (1) , and (2) . 
The combined boolean equation is

The function imple­
ments the universal quantifier. This is equivalent to f x A f^x, 
and returns the portion of the predicate that is independent 
of the value of x. This can be extended to iteratively oper­
ate on the vector x. The resulting BDD represents all valid 
covers of the signal.

Figure 9 shows two possible timed circuit implementa­
tions for the FIFO controller. The circuit shown in Fig­
ure 9(a) is the one found using explicit logic synthesis. 
While the first circuit is also found during implicit logic 
synthesis, the circuit shown in Figure 9(b) is selected as 
it uses a simple NAND gate rather than a generalized C- 
element to implement EOUT . Both of these gates have the 
same cost (2 literals for the reset region), so either may be 
selected arbitrarily by the explicit method. In fact, we are 
lucky to have only one generalized C-element as SEOUT_ 
and FOUT also have equal cost generalized C-element im­
plementations. We do not know until after the logic opti­
mization step whether the gate can be reduced to a com­
binational gate, so ending up with a combinational gate is 
simply a matter of luck. However, the implicit technique 
efficiently keeps track of all possible implementations al­
lowing the technology mapping step to pick the one that 
leads to the best optimized circuit implementation. One last 
interesting note is the circuit shown in Figure 9(b) is exactly 
the one found by hand in [13].

Figure 9. Timed FIFO Circuit.

3.4. Results

The complete BDD timed circuit synthesis procedure has 
been automated within the CAD tool ATACS. This algo­
rithm has been applied to the design of numerous timed 
circuit designs. Synthesis results are shown in Table 1. 
The first column shows the number of gC style solutions 
found using the BDD synthesis procedure that can be im­
plemented within the stack size limits. (A set of simple 
filters have been employed to extract the set of solutions 
having reasonable implementations in CMOS technology.) 
Most of the examples have a huge number of possible im­
plementations with four or fewer transistors in each stack 
(“need decomp” is used to indicate that there is no valid im­
plementation using only four-stacks). However, since they 
are stored implicitly, keeping track of this many solutions is 
not difficult and is useful for technology mapping. The sec­
ond column shows the number of solutions for each exam­
ple where each transistor stack has its minimum size. Some 
of these have only one minimal solution, but several have 
multiple minimal solutions which are not found if explicit 
synthesis methods are used.

The numbers in this table represent the number of po­
tential implementations for the entire circuit. This number 
is the product of the possible covers for each individual ex­
citation region. For example, in the gC implementation of 
the SPDOR, the set region for a; has 8 solutions, the reset 
region has , each of the two set regions for has 8 so­
lutions, and the reset region has which makes a total of 
8 x 2 x 8 x 8 x 8  — 8192. The SC implementation is 
more restricted so it only has possible solutions. The 
use of implicit methods not only improves memory perfor­
mance for large specifications, they also allow a parame­
terized family of solutions to be produced. Possibilities for 
component sharing between functions are also increased by 
the capacity to consider all valid solutions in parallel.

4. Conclusions and future work

This paper presents a design tool for the synthesis of 
timed circuits. This tool utilizes BDD based algorithms and 
data structures to allow the synthesis of larger timed circuit 
implementations. We formulated a MTBDD representation
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Table 1. Ex jerimental results.
# of Solutions

Examples <  4 min
spdor 8192 1
spdand 512 1
cnt 614656 1
mmuoptSV 1.3 xlO23 405
mmuopt 3.7 xlO9 4
slatch 1.3 xlO15 2
elatch 9.4 xlO12 4
SELopt need decomp 4
tsbm need decomp 4
scsiSVT 3.2 xlO9 18
lapb 16384 1
lapb2 1.2 xlO9 1
lapb3 6.1 xlO15 2
lapb4 2,2 xlO22 4
fifo 1.7 xlO11 4
fifo2 1.9 xlO27 16
fifo3 2.1 xlO43 64

for the timed state spaces during timed state space explo­
ration. We also described a BDD representation of the re­
duced state graph which is derived alongside. We use ghost 
transitions to preserve accurate signal enabling information. 
We have developed BDD formulations and algorithms for 
both standard-C and generalized C-element implementation 
styles. These algorithms find all valid covers for each exci­
tation region (if necessary, by transparently finding minimal 
multicube covers).

The two major advantages of the implicit synthesis 
method is that larger timed systems can be designed and 
a parameterized family of solutions is found while ear­
lier algorithms merely found a single solution. Consider­
ing all possible valid implementations will greatly facili­
tate technology mapping. In the future, we plan to ex­
tend BDD based technology mapping algorithms for speed- 
independent circuits to timed circuits.
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