
Timed Circuit Synthesis Using Implicit Methods *

Robert A. Thacker Wendy Belluomini
Computer Science Department

University of Utah
Salt Lake City, UT 84112

Chris J. Myers
Electrical Engineering Department

University of Utah
Salt Lake City, UT 84112

Abstract

The design and synthesis o f asynchronous circuits is
gaining importance in both the industrial and academic
worlds. Timed circuits are a class o f asynchronous circuits
that incorporate explicit timing information in the specifica­
tion. This information is used throughout the synthesis pro­
cedure to optimize the design. In order to synthesize a timed
circuit, it is necessary to explore the timed state space o f the
specification. The memory required to store the timed state
space o f a complex specification can be prohibitive fo r large
designs when explicit representation methods are used. This
paper describes the application o f BDDs and MTBDDs to
the representation o f timed state spaces and the synthesis
o f timed circuits. These implicit techniques significantly im­
prove the memory efficiency o f timed state space exploration
and allow more complex designs to be synthesized. Implicit
methods also allow the derivation o f solution spaces con­
taining all valid solutions to the synthesis problem facilitat­
ing subsequent optimization and technology mapping steps.

1. Introduction

Recent trends in the integrated circuit industry, such as
decreasing feature sizes and increasing clock speeds, make
global synchronization across large chips difficult to main­
tain. As a result, many designers have become interested
in asynchronous circuits because they eliminate the need
for global synchronization. Asynchronous circuits consist
of groups of independent modules which communicate us­
ing handshaking protocols. Since there is no global clock,
clock distribution and skew are not issues. Also, eliminat­
ing the global clock permits modules to work at their own
pace and allows average-case performance to be realized.
There are a number of different styles for designing asyn­
chronous circuits. Most asynchronous design methodolo­

*This research is supported by NSF CAREER award MIP-9625014,
SRC contract 97-DJ-487, an SRC Graduate Fellowship, and Intel Corp.

gies are based on the assumption that nothing is known
about the delays between signal transitions. Therefore,
the circuit must be constrained to work correctly even in
cases which never occur in a realistic implementation. The
overhead necessary to guarantee this behavior often makes
the asynchronous average-case performance worse than the
synchronous worst-case.

Timed circuits are a class of asynchronous circuits which
use explicit timing information in circuit synthesis. Pre­
cise timing relationships are often unknown before syn­
thesis and technology mapping. However, applying even
rough estimates can lead to the removal of large amounts
of circuitry that would be required for a speed-independent
design. These timing assumptions can then be formally
verified after synthesis when the actual timing values are
known. This design style can lead to significant gains in cir­
cuit performance over asynchronous circuits designed with­
out timing assumptions [15].

The first stage of timed circuit synthesis involves the ex­
ploration of the timed state space to determine which un­
timed states are reachable by the system. The circuit is first
specified using a formalism that allows a lower and an up­
per bound to be assigned to the causal relationships between
signals. Timing analysis is then performed by our design
tool ATACS using geometric regions and partially ordered
sets (POSETS) of events, which has been shown to be an
efficient method for representing information about timed
state spaces [3, 4, 16, 17]. We use Binary Decision Dia­
grams (BDDs) [7] and Multi-terminal Binary Decision Di­
agrams [10] to efficiently represent these timed state spaces.

The second stage of synthesis consists of repeatedly di­
viding the state graph into subregions to determine the nec­
essary behaviors. For each signal, the graph is divided into
those regions where the signal should be enabled to rise,
should be enabled to fall, should remain high, or should
remain low. Equations are derived to represent a circuit
implementation which conforms to these behaviors. Our
synthesis method uses BDDs allowing the derivation of so­
lution spaces containing all valid solutions to the synthesis
problem.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276285435?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Timed state space exploration

Timed circuit synthesis is dependent on a complete ex­
ploration of the timed state space of the specification. This
state space can be very large since it must include, not only
all of the combinations of signal values allowed by the spec­
ification, but also the time relationships between signal fir­
ings. However, it can be smaller than the complete state
space of an equivalent specification without timing since
states that are not reachable given the timing information
are not explored.

The size of the timing information depends on the tim­
ing algorithm being used. One representation is to attach a
clock to each signal transition that advances only in dis­
crete time steps [8]. This representation can cause state
space explosion, especially for large delay ranges [17]. A
BDD method has been proposed in [6], to improve discrete
time memory performance, but it does not address the state
explosion problem inherent in discrete time. The geomet­
ric region method, where timing information is stored as
a constraint matrix representing relationships between sig­
nal transition times, has been shown to be an efficient way
to represent a timed state space [3, 14, 16, 17]. However,
even with a region based representation, the memory re­
quired to store such a state space explicitly can be pro­
hibitive for large designs. In many domains, implicit meth­
ods have been shown to significantly reduce memory usage
[7]. Since timed state space exploration is such a memory
intensive process, it is an excellent candidate for such an
approach.

2.1. M otivating example

The block diagram in Figure 1 is for a controller for a
self-timed FIFO. In [13], a highly optimized timed circuit
implementation is presented which is designed by hand.
The correctness of this circuit is highly dependent on tim­
ing parameters. This example is used to show how our
timed circuit synthesis method can derive the same efficient
circuit from the description of the required behavior and
the known timing parameters. The basic behavior is that
when a request comes in (i.e., FIN+) and the fifo is empty
(i.e., EOUT is high), the data is latched (i.e., EnJ>ar+ and
En—). In parallel, the insertion is acknowledged (i.e., SE-
OUT_ -) and the next stage is requested to accept the data
(i.e., FOUT+). When the next stage accepts the data (i.e.,
SEIN-—), the FIFO is set to be empty (i.e., EOUT-h) and
the latch is opened (i.e., E n h a r— and En+).

2 .2. Explicit tim ed state space exploration

En_bar En

Figure 1. Block diagram for a timed FIFO.

formally in [2]. TEL structures can represent a set of spec­
ifications equivalent to those represented by both time and
timed Petri nets, as well as others that are quite difficult to
represent with a Petri net. A TEL structure consists of a
set of rules that represent causality between signal transi­
tions, or events, as well as a set of conflicts which are used
to model disjunctive and choice behavior. Each rule is of
the form { e , f , l ,u , b), where e is the enabling event, f is
the enabled event, {I, u) is the bounded timing constraint,
and is a boolean expression which must be satisfied be­
fore is allowed to occur. A rule is said to be enabled if
its enabling event has occurred and its boolean expression
evaluates to true. The timing constraint places a lower and
upper bound on the timing of a rule. A rule is satisfied if the
amount of time which has passed since the enabling event
has exceeded the lower bound of the rule. A rule is said to
be expired if the amount of time which has passed since the
enabling event has exceeded the upper bound of the rule.
Ignoring conflict, an event cannot occur until all rules en­
abling it are satisfied. An event must always occur before
every rule enabling it has expired. Since an event may be
enabled by multiple rules, it is possible that the differences
in time between the enabled event and some enabling events
exceed the upper bound of their timing constraints, but not
for all enabling events.

A graphical representation of the TEL structure for the
FIFO example is shown in Figure 2. Nodes represent signal
transitions and arcs represent causal relationships between
them. Tokens on arcs indicate that the preceding transition
has occurred but the following transition has not. All in­
coming arcs must have tokens to fire a transition.

The goal of state space exploration is to derive the state

The state space exploration procedure used by a t a c s
begins with a timed event/level (TEL) structure, described F ig u r e 2 . T h e T E L s t r u c tu r e f o r th e F IF O .

graph (SG), which is necessary for circuit synthesis. A SG
is a graph in which the vertices are untimed states and the
edges are possible state transitions. A transition between
two states exists if the specification allows the circuit to
move from one state to the other with one signal transition.
A reduced state graph (RSG) is a SG where some branches
have been pruned because timing information has shown
them to be unreachable. A RSG is modeled by the tuple

where is the set of input signals, is the set
of output signals, is the set of states, and is
the set of edges. For each state , there is a corresponding
labeling function which returns
the value of each signal and whether it is enabled (i.e., 0
if a; is stable low, R if a; is enabled to rise, 1 if a; is stable
high, F if is enabled to fall). A state transition is
often denoted as follows: where is the signal that
changed value.

Since our TEL structure specifications include timing
constraints, it is necessary to use a timed state space ex­
ploration algorithm to find the reachable state space. The
method used is to perform a depth first search to find all
reachable timed states. A timed state for a TEL structure
consists of a set of rules whose enabling events have fired,
R m , the state of all the signals, sc, and a set of timing
information, . The timing information, , is repre­
sented with geometric regions, which were first introduced
in [5, 11].

When the geometric region approach is used for timing
analysis, a constraint matrix specifies the maximum dif­
ference in time between the enabling times of all the cur­
rently enabled rules. The Oth row and column of the matrix
contain the separations between the enabling times of each
enabled rule and a dummy rule . The enabling time of

is defined to be uniquely 0. Each entry in the ma­
trix M has the value m ax(t(enabling(jj) — t(enabling(i))),
which is the maximum time difference between the enabling
time of rule j and the enabling time of rule i. Since the en­
abling time of is always zero, the maximum time differ­
ence between the enabling of rule and the enabling of rule
f 0 (m od is just the maximum time since i was enabled. The
maximum time difference between the enabling time of
and the enabling time of rule () is the negation of the
minimum time since i was enabled. Note that M only needs
to contain information on the timing of the rules that are
currently enabled, not on the whole set of rules. Figure 3(a)
shows a sample geometric region, and Figure 3(b) shows
the corresponding constraint matrix. The region is a convex
polygon defining the relationships between the timers asso­
ciated with the active rules at a given point in the state space
exploration, and the matrix is a concise numerical descrip­
tion of the region. In this case, the region indicates that the
timer , associated with rule , can have a value anywhere
from two to twenty time units, but no more than five time

units greater than . (, and
h - t i < 5.) Similarly, timer £2, associated with rule f 2 can
have a value between zero and fifteen, but must be no more
than two time units less than . (,
and h - h < -2 .) The polygon shown in Figure 3(a)
contains all points which conform to these timing
constraints.

Geometric Region Constraint Matrix

ĉolumn trow < II jM

l0 t1 t2

l0 0 20 15
-2 0 -2

l2 0
5 0

(a) (b)

Figure 3. A geom etric region and matrix.

2.3. Implicit tim ed state space exploration

The explicit enumeration method described above re­
quires too much memory to effectively represent complex
designs. Therefore, it is necessary to explore alternative
methods of storing this information. Since much of the data
compiled during state space exploration consists of sim­
ple bit vectors, we have chosen to use BDDs, which have
been shown to be a highly efficient method for storing and
manipulating Boolean functions [7]. Because geometric
region information is integer-valued, MTBDDs have been
chosen to store the region matrices. MTBDDs are a type of
BDD which allow terminal nodes to contain numerical data,
rather than just the constants TRUE and FALSE. Geomet­
ric region matrices only have entries for currently enabled
rules. However, to make the representation more manage­
able, the matrices are expanded to a canonical form, where
rows and columns representing rules that are not enabled
have been filled with a “not an entry” symbol, the constant
FALSE. MTBDDs collapse paths with common structural
features to the fewest nodes possible. In addition, because
of the nature of BDD implementations, it is possible for
separate geometric regions with similar structures to have
common subregions stored in the same memory location.

The MTBDD for a region is composed of three parts.
First, a BDD is constructed to store the bit vector that indi­
cates which rules are in R m . Second, it is necessary to store
the list of regions associated with each R m set. To represent
this list structure, a numerical index i is used to indicate that
a given matrix is the matrix associated with a given R m

set. Any number i can be viewed as a bit vector and rep­
resented as a BDD. In order to conserve space, precisely
enough bits are used to represent the largest number cur­
rently needed. Finally, the geometric region matrix must be
represented. There are many ways to represent regions, and
on the surface using MTBDDs would seem to be a very in­
efficient method. Methods for representing sparse matrices
have been developed for scientific computing that are much
more efficient at representing single matrices. There are two
major benefits to this approach. First, it allows matrices to
be manipulated within the BDD paradigm, which among
other advantages allows two matrices to be compared for
equality in constant time regardless of size. The greatest
advantage, however, is the capacity to amortize the costs
of storage across many matrices. Many of the matrices en­
countered in practice differ very little from one another. The
BDD storage system used in ATACS allows additional ma­
trices to be added to the database and only consume the re­
sources necessary to represent the new elements. This often
leads to the use of only a few BDD nodes per matrix.

A matrix with integer entries can be viewed as a func­
tion (). With row and column indices
parameterized as binary numbers, this function becomes
{0 ,1 }” x {0 ,1}” Z . The geometric region matri­
ces are thus parameterized and stored as a function which
takes row and column indices and returns the appropri­
ate matrix entry (). MTBDDs are an
ideal way to represent this type of function [10]. Fig­
ure 4 shows the complete MTBDD for the timed state
where , the link value is 2, and the re­
gion is the one shown in Figure 3. When a new timed
state is found, the timed state list MTBDD is extended
by the call:

In this formula,
constructs a BDD for the set,

constructs a MTBDD for the region,
is the list index BDD for this region, and is the if-

then-else operator.
To represent the reachable state space, a predicate on

the vector x is defined which returns true for all states reach­
able in any number of transitions from the initial state. The
vector is , where each variable is in .

The NextState function is a predicate on which
returns true for all the state pairs for which may be
reached from in exactly one signal transition. A compli­
cation arises from the use of timing in generating the RSGs.
As mentioned before, when timing considerations show a
state to be unreachable, it may be removed from the RSG.
If we based our implementation only on the reduced state
graph, the enablings to reach these states would be lost,
and the resulting circuit would be suboptimal. In the FIFO
example, a naive derivation of and results in the cir­
cuit found in Figure 5(a) for S E O U T This generalized C-

(c0), (c0\ ,@\ @ @0 \1 0 / \ l 0̂ \̂1
(0) (20) (FALSE) (15 (-2 | (0) (FALSE) (-2 J (0 Q (FALSE) Q

Figure 4. MTBDD for a timed state.

element circuit may work, but it is a larger and slower gate
than the simple NAND gate shown in Figure 5(b) which is
derived from the correct RSG. This problem is solved in the
explicit system by using a four valued logic system (0, R, 1,
and F as described above). However, in the implicit method
the use of bit vectors makes this less attractive, as it would
double the necessary length of the vectors.

~EOUT

~FOUT_

FIN

EOUT

(a) (b)

Figure 5. G ates for SEOUT..

The basic problem can be illustrated using the famil­
iar diamond shown in Figure 6. The original speed-
independent graph is shown in Figure 6(a). For the timing
specified in the TEL structure in Figure 6(b), the signal
always rises before , so the state (1R) is removed from the
graph. If the correct enablings are not maintained, the less
concurrent graph shown in Figure 6(c) is produced. The en­
abling of is now delayed by the time necessary to fire ,
and each cycle of the circuit is slowed by that amount. In
other words, the improperly pruned graph loses the fact that

was the enabling event, and actually represents the TEL
fragment in Figure 6(d). The total time necessary to tra­
verse this graph from state to state should be 10
time units, but instead it increases to 15 time units. This less
concurrent circuit may not only be slower, but it may also

FIN

SEOUT

(a) (b) (c) (d) (e)

Figure 6. “G host sta te” exam ple.

be incorrect if it violates the original timing assumptions.
To maintain the correct enablings, the relation is pop­

ulated with a transition for every enabled signal, even if the
target state is not reachable. Such a “ghost transition” can
be detected by the fact that the target state is not contained
in the relation. This ghost state consists of the same val­
ues as the original state, except that the enabled signal has
changed phase.

Figure 6(e) shows an example of a “haunted” graph: the
state (1R) has been reinserted as a “ghost state” with a tran­
sition from (RR). This path is never taken, but it is essential
that it be represented.

2.4. Results

We have implemented the implicit timed state space ex­
ploration procedure and tested it on a number of examples.
Since most timed circuit examples are quite small due to
previous memory limitations of synthesis tools, we have
parameterized our asynchronous FIFO example in order to
demonstrate the effectiveness of implicit methods. This
FIFO is very concurrent when parameterized and generates
an extremely large number of geometric regions which cor­
respond to the number of regions necessary to synthesize a
large complex design. The POSET timing method for state
exploration discussed in [3] is used to generate the timed
state space. The examples shown were run on a 400 MHz
PentiumII with 384Mb of memory.

Figure 7 shows the memory usage pattern of the state
space exploration for 4 stages of the timed FIFO for both the
explicit and implicit methods. The x-axis shows the num­
ber of regions explored and the y-axis shows the maximum
memory used to that point in the state space exploration.
The solid lines represent the implicit method and the dashed
lines represent the explicit method. The graphs show that
the implicit method not only yields a significant overall im­
provement in memory usage, but also that the memory us­
age trends for the implicit method are much better. As the
number of regions grows very large, the amount of mem­
ory used by the implicit method approaches an asymptotic
value. This occurs since once the BDDs get mostly full,
adding additional regions does not add significant memory
due to the node sharing behavior of BDDs. When the BDDs
get large and a new region is added, most of the nodes
needed for this state are already in the current BDD, and

very little new memory is necessary. With explicit meth­
ods, on the other hand, each new region throughout the
state space exploration requires a new allocation of mem­
ory, causing the memory usage of the explicit method to
grow linearly with the number of regions.

Maximum Memory Usage for a 4-Stage FIFO

Figure 7. FIFO memory performance.

3. Synthesis

The synthesis stage starts with a reduced state graph
(RSG) implicitly stored as described in the previous section
using two BDD structures: , the reachable state space, and
N , the next state relation.

3.1. Excitation regions and quiescent states

In order to obtain an implementation, the state space is
first decomposed for each output signal into a collection of
excitation regions. An excitation region for the output sig­
nal is a maximally connected set of states in which the
signal is enabled to change to a given value (i.e.,
or). If the signal is rising in the region (i.e.,

), it is called a set region, otherwise the region is
called a reset region. The excitation regions for each signal
transition are indexed with the variable and the exci­
tation region for a signal transition is denoted ER ,
where “*”indicates “ ” for set regions and “ ” for reset re­
gions. We also define a set of excited states , which
is the union of the excitation regions for a given signal tran­
sition, i.e.,

For each signal transition, there is an associated set of
stable, or quiescent, states QS . For a rising transition
x f , it is the states where the signal is stable high (i.e.,
QS), and for a falling tran­
sition, it is the states where the signal is stable low, i.e.,
QS(x 4.) — {« £ $ | s(x) — 0}).

Given the BDD , the BDD representations of ES and
QS are straightforward to find. For instance, the set of ex­
cited states for would be found by applying the fol­
lowing formula: .
And the quiescent states can be found in a similar manner:

.
The function is defined to be the existen­

tial quantifier of the variable in the function . This is
equivalent to , and is used to return the portion of
the predicate which can return TRUE for any value of a;.
This function is extended to iteratively operate on a vector
of variables , and results in a new function which does
not depend on the variables in .

The excitation regions would then be found by dividing
each excited set into connected regions. To do this, the al­
gorithm merely picks a seed state at random and iteratively
adds all excited states reachable in one step from the region.

3.2. Timed circuit im plem entation

The circuit is implemented by creating a function block
for each output signal, consisting of a C-element with a
sum-of-products (SOP) stack each for the set and reset (see
Figure 8). Each product block in the SOPs for each func­
tion implements a cover for a single excitation region. Note
that while depicted as a simple AND gate, in order to guar­
antee hazard-freedom, this “product” block may need to be
a more general function block. The circuit may be imple­
mented using a standard C-element (SC) structure using dis­
crete gates, as shown in Figure 8(a). It may also be created
using a complex gate known as a generalized C-element
(gC) [12]. Figure 8(b) shows a transistor-level gC design
using a weak feedback staticizer, and Figure 8(c) shows a
fully static design. If a gC only has one pullup and one
pulldown stack, it can be depicted as shown in Figure 5(a).
Note that a signal labelled with a “+” is only used in the
pullup stack, and a signal labelled with a “-” is only used in
the pulldown stack.

In [9], a parametrized family of decompositions of high-
fanin gates is investigated at one time by adding additional

00̂ Rrl0^r —s00 si
01—̂

00—c|pn"r10 —cj[
01—̂pnr11—o|Q
30 —1[~ s10—1|_
31HCsi

(a) (b) (c)

F ig u re 8 . C -e le m e n t c i r c u i t ty p e s .

variables. We extend this idea to synthesis by represent­
ing our covers by a series of implications of the form

. These implications are
ANDed together to produce a BDD which represents ev­
ery possible potential single cube cover of the correspond­
ing ER: C0(x * ,k) = A ^ o , w h e r e to = [(xi,o ^

. We then apply restriction operators
to this BDD, to remove covered states which violate our re­
quirements for a valid cover. Any satisfying assignment of
the remaining BDD is a valid implementation: if a vari­
able appears in the positive phase, the implied variable must
appear in the cover; if it appears in the negative phase, the
variable cannot be included; and if it does not appear at all,
it may or may not be used, at the designers discretion.

Occasionally an excitation region is found which can­
not be covered by a single cube. Our algorithm creates
a SOP block to represent this region, instead of a simple
“AND” function. To accomplish this, the algorithm tests
each cover BDD to see if it is identically FALSE. If this
occurs, a second (or third, etc.) initial cover is created,
and ORed together with the preceding initial cover (i.e.,
C — CoVCi V.-.Cto). The resulting BDD is passed through
the same filters, producing a multicube implementation.

3.3. Correct cover formulation

In order to create a valid timed circuit implementation, it
is necessary to define the states a cover must include, may
include, and may not include. Each cube of the implemen­
tation must include the entire corresponding excitation re­
gion. In order to minimize the logic, it may also include any
unreachable state, and may include some additional reach­
able states. Inclusion of some reachable states, however,
can cause incorrect behavior. These disallowed states vary,
depending on the type of circuit chosen. In a gC imple­
mentation, any state where the signal is enabled in the same
direction or stable at the final value may be included. In a
SC circuit, some of those states may need to be excluded to
guarantee hazard-freedom. The correctness constraints dis­
cussed here were developed in [1] for speed-independent
circuits and extended to timed circuits in [14].

In a gC implementation, the allowed growth regions in­
clude the remainder of the excitation space and the en­
tire quiescent space for the corresponding signal transi­
tion. In other words, correct covers must satisfy the fol­
lowing covering constraint: .
The boolean equation for this restriction is the following:

. That is, the cover may not include
any reachable state not in the quiescent or excited spaces.
This prevents the gate from being pulled up and down si­
multaneously.

In a SC implementation, additional internal signals are
introduced by the use of discrete gates. In order to pre-

s00
s01

vent the introduction of hazards, additional restrictions are
placed on the states allowed in the cover. The purpose is
to ensure that each cover makes a single monotonic tran­
sition when it is actively changing the output and makes
no other transitions at any other time. To guarantee this,
we need a modified covering constraint and an entrance
constraint. This ensures that the transition of the gate is
acknowledged. The covering constraint is the following:

In other words, the cover must
include the entire ER, and may only include states from the
ER or the corresponding QS. The resulting boolean equa­
tion is: . This ensures that only one
AND block is on at a time, so the transition can be acknowl­
edged by a transition on the output. In addition, the cover
may only be entered through the excitation region. This is
to guarantee a single monotonic transition, with no unac­
knowledged glitch in the function block. The entrance con­
straint is
and the resulting boolean equation is

. The
final boolean equation for the violations is: .

The valid cover BDD, VC, is constructed to include all
implementations that do not include any violating states and
completely cover the corresponding excitation region. In
other words, we filter the cover BDD with the follow­
ing conditions: (1) , and (2) .
The combined boolean equation is

The function imple­
ments the universal quantifier. This is equivalent to f x A f^x,
and returns the portion of the predicate that is independent
of the value of x. This can be extended to iteratively oper­
ate on the vector x. The resulting BDD represents all valid
covers of the signal.

Figure 9 shows two possible timed circuit implementa­
tions for the FIFO controller. The circuit shown in Fig­
ure 9(a) is the one found using explicit logic synthesis.
While the first circuit is also found during implicit logic
synthesis, the circuit shown in Figure 9(b) is selected as
it uses a simple NAND gate rather than a generalized C-
element to implement EOUT . Both of these gates have the
same cost (2 literals for the reset region), so either may be
selected arbitrarily by the explicit method. In fact, we are
lucky to have only one generalized C-element as SEOUT_
and FOUT also have equal cost generalized C-element im­
plementations. We do not know until after the logic opti­
mization step whether the gate can be reduced to a com­
binational gate, so ending up with a combinational gate is
simply a matter of luck. However, the implicit technique
efficiently keeps track of all possible implementations al­
lowing the technology mapping step to pick the one that
leads to the best optimized circuit implementation. One last
interesting note is the circuit shown in Figure 9(b) is exactly
the one found by hand in [13].

Figure 9. Timed FIFO Circuit.

3.4. Results

The complete BDD timed circuit synthesis procedure has
been automated within the CAD tool ATACS. This algo­
rithm has been applied to the design of numerous timed
circuit designs. Synthesis results are shown in Table 1.
The first column shows the number of gC style solutions
found using the BDD synthesis procedure that can be im­
plemented within the stack size limits. (A set of simple
filters have been employed to extract the set of solutions
having reasonable implementations in CMOS technology.)
Most of the examples have a huge number of possible im­
plementations with four or fewer transistors in each stack
(“need decomp” is used to indicate that there is no valid im­
plementation using only four-stacks). However, since they
are stored implicitly, keeping track of this many solutions is
not difficult and is useful for technology mapping. The sec­
ond column shows the number of solutions for each exam­
ple where each transistor stack has its minimum size. Some
of these have only one minimal solution, but several have
multiple minimal solutions which are not found if explicit
synthesis methods are used.

The numbers in this table represent the number of po­
tential implementations for the entire circuit. This number
is the product of the possible covers for each individual ex­
citation region. For example, in the gC implementation of
the SPDOR, the set region for a; has 8 solutions, the reset
region has , each of the two set regions for has 8 so­
lutions, and the reset region has which makes a total of
8 x 2 x 8 x 8 x 8 — 8192. The SC implementation is
more restricted so it only has possible solutions. The
use of implicit methods not only improves memory perfor­
mance for large specifications, they also allow a parame­
terized family of solutions to be produced. Possibilities for
component sharing between functions are also increased by
the capacity to consider all valid solutions in parallel.

4. Conclusions and future work

This paper presents a design tool for the synthesis of
timed circuits. This tool utilizes BDD based algorithms and
data structures to allow the synthesis of larger timed circuit
implementations. We formulated a MTBDD representation

FOUT FOUT

Table 1. Ex jerimental results.
of Solutions

Examples < 4 min
spdor 8192 1
spdand 512 1
cnt 614656 1
mmuoptSV 1.3 xlO23 405
mmuopt 3.7 xlO9 4
slatch 1.3 xlO15 2
elatch 9.4 xlO12 4
SELopt need decomp 4
tsbm need decomp 4
scsiSVT 3.2 xlO9 18
lapb 16384 1
lapb2 1.2 xlO9 1
lapb3 6.1 xlO15 2
lapb4 2,2 xlO22 4
fifo 1.7 xlO11 4
fifo2 1.9 xlO27 16
fifo3 2.1 xlO43 64

for the timed state spaces during timed state space explo­
ration. We also described a BDD representation of the re­
duced state graph which is derived alongside. We use ghost
transitions to preserve accurate signal enabling information.
We have developed BDD formulations and algorithms for
both standard-C and generalized C-element implementation
styles. These algorithms find all valid covers for each exci­
tation region (if necessary, by transparently finding minimal
multicube covers).

The two major advantages of the implicit synthesis
method is that larger timed systems can be designed and
a parameterized family of solutions is found while ear­
lier algorithms merely found a single solution. Consider­
ing all possible valid implementations will greatly facili­
tate technology mapping. In the future, we plan to ex­
tend BDD based technology mapping algorithms for speed-
independent circuits to timed circuits.

References

[1] P. A. Beerel, C. J. Myers, and T. H.-Y. Meng. Au­
tomatic synthesis of gate-level speed-independent cir­
cuits. Technical Report CSL-TR-94-648, Stanford
University, Novermber 1994.

[2] W. Belluomini and C. J. Myers. Timed event/level
structures. In collection of papers from TAU’97.

[3] W. Belluomini and C. J. Myers. Efficient timing anal­
ysis algorithms for timed state space exploration. In
Proc. International Symposium on Advanced Research
in Asynchronous Circuits and Systems. IEEE Com­
puter Society Press, April 1997.

[4] W. Belluomini and C.J. Myers. Verification of timed
systems using posets. In International Conference on
Computer Aided Verification. Springer-Verlag, 1998.

[5] B. Berthomieu and M. Diaz. Modeling and verifica­
tion of time dependent systems using time petri nets.
IEEE Transactions on Software Engineering, 17(3),
March 1991.

[6] M. Bozga, O. Maler, A. Pnueli, and S. Yovine. Some
progress in the symbolic verification of timed au­
tomata. In Proc. International Conference on Com­
puter Aided Verification, 1997.

[7] R. E. Bryant. Binary decision diagrams and beyond:
Enabling technologies for formal verification. In IC-
CAD. IEEE Computer Society Press, 1995.

[8] J. R. Burch. Modeling timing assumptions with trace
theory. In ICCD, 1989.

[9] S. M. Burns. General condition for the decomposi­
tion of state holding elements. In Proc. International
Symposium on Advanced Research in Asynchronous
Circuits and Systems. IEEE Computer Society Press,
March 1996.

[10] E. Clarke, M. Fujita, and X. Zhao. Application
of multi-terminal binary decision diagrams. Techni­
cal Report CMU-CS-95-160, Carnegie-Mellon Uni­
versity, 1995.

[11] D. L. Dill. Timing assumptions and verification of
finite-state concurrent systems. In Proceedings o f
the Workshop on Automatic Verification Methods fo r
Finite-State Systems, 1989.

[12] A. J. Martin. Programming in VLSI: from commu­
nicating processes to delay-insensitive VLSI circuits.
In C.A.R. Hoare, editor, UT Year o f Programming In­
stitute on Concurrent Programming. Addison-Wesley,
1990.

[13] Charles E. Molnar, Ian W. Jones, Bill Coates, and Jon
Lexau. A FIFO ring oscillator performance experi­
ment. In Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems. IEEE
Computer Society Press, April 1997.

[14] C. J. Myers, T. G. Rokicki, and T. H.-Y. Meng. Au­
tomatic synthesis of gate-level timed circuits with
choice. In Proc. 16th Conf. on Advanced Research
in VLSI, pages 42-58. IEEE Computer Society Press,
1995.

[15] Chris J. Myers. Computer-Aided Synthesis and Verifi­
cation o f Gate-Level Timed Circuits. PhD thesis, Dept.
of Elec. Eng., Stanford University, October 1995.

[16] T. G. Rokicki. Representing and Modeling Circuits.
PhD thesis, Stanford University, 1993.

[17] T. G. Rokicki and C. J. Myers. Automatic veri-
ficaton of timed circuits. In International Confer­
ence on Computer-Aided Verification, pages 468-480.
Springer-Verlag, 1994.

