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Low-dimensional dynamical model for the diversity of pressure patterns used in canary song
|  |  o _ |

Leandro M. A lonso, Jorge A. Alliende, F. Goller," and Gabriel B. M indlin
sDepartamento de Fisica, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pah. I  (1428) Buenos Aires, Argentina 

‘Department o f Biology, University o f UtahSalt Ixike City, UT 84112 USA 
(Rcccivcd 6 February 2009; revised manuscript received 23 March 2009; published 30 April 2009)

During song production, oscinc birds produce large air sac pressure pulses. During those pulses, energy is 
transferred to labia located at the juncture between the bronchii and the trachea, inducing the high frequency 
labial oscillations which arc responsible for airflow modulations, i.e., the uttered sound. In order to generate 
diverse syllables, canaries (Serinus canaria) use a set of air sac pressure patterns with characteristic shapes. In 
this work wc show that these different shapes can be approximated by the subharmonic solutions of a forced 
normal form. This simple model is built from identifying dynamical elements which allow to reproduce the 
shape of the pressure pattern corresponding to one syllabic type. Remarkably, integrating that simple model for 
other parameters allows to recover the other pressure patterns used during song. Interpreting the diversity of 
these physiological gestures as subharmonic solutions of a simple nonlinear system allows us to account 
simultaneously for their morphological features as well as for the syllabic timing and suggests a strategy for the 
generation of complex motor patterns.
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I. INTRODUCTION

The developm ent o f song in songbirds is a prim e biologi
cal model for understanding the interaction between nature 
and nurture. Just as in hum ans, oscine birds, parrots, and 
some hum m ingbirds require experience with a tutor to even
tually develop species-typical song [1], For these reasons, in 
the last years many disciplines have converged in their- ef
forts to unveil the m echanism s behind vocal learning in  these 
birds. A  com plex neural architecture has been described to be 
responsible for generating the patterns o f activity, which are 
transduced into specific physiological com m ands controlling 
the vocal peripheral system [2],

Physics has participated in this collective effort by inte
grating a large body o f experim ental work with the expected 
basic m echanical processes involved in birdsong production. 
Through this integrative approach a more com plete picture 
starts to emerge about the respective roles and synergies o f 
different m uscles used by a singing bird [3], The physical 
models have therefore helped put in perspective the role of 
different muscles in the generation o f specific rhythm ic and 
m elodic features o f the song. The program has been particu
larly successful in understanding production o f tonal song in 
some oscines, as for example cardinals and canaries [4,5],

For these cases, experim ental work and theoretical analy
sis have highlighted the physiological role played by differ
ent m otor patterns. Activity of ventral syringeal muscles, for 
example, is fundam ental in  the frequency control o f the syl
lables [5-7]. Dorsal syringeal muscles, on the other hand, 
play a m ajor role in closing the syringeal valve and thus 
regulate airflow. But the process o f vocalizing itself does not 
start until the bird generates respiratory pressure sufficiently 
high for airflow to turn on labial oscillations (see Fig. 1), in 
a process sim ilar to the way in which hum ans vocalize 
voiced sounds. In this work we focus on this last m otor pat
tern; the one responsible for the air sac pressure pulses.

Canary song is hierarchically structured; brief, stereo
typed tonal syllables are repeated many tim es, to form

“phrases.” These are com bined in a variable order to form 
songs [8]. Typically, different phrases consist o f syllables 
repeated at a characteristic syllabic rate. In  term s o f the air 
sac pressure, different syllabic types are uttered with differ
ent pressure patterns [9]. For example, the fastest syllable 
repetition rates (30-60  Hz) in canary song are generated with 
a sustained expiratory pressure pulse with small oscillations. 
Low er syllable repetition rates (< 3 0  Hz) are typically gen
erated with short expiratory air sac pressure pulses which 
alternate with short inspirations (mini-breaths).

In this w ork we test the hypothesis that a unique dynam i
cal mechanism underlies the diversity o f pressure gestures o f 
different syllables. We write a low-dim ensional system of
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FIG. 1. Sound (a) and air sac pressure (b) for a canary uttering 
four calls. Notice that during silent respiration, the air sac pressure 
oscillates around zero. During the vocalizations, the air sac pressure 
is increased. Each uttered sound is associated with a large expira
tory pulse. The amplitude of these pulses is several times larger 
than the expiratory fluctuations during silent respiration.
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FIG. 2. The experimental 
record of the ;iir sac pressure re
corded in a canary (bird number 
1) during a complete song (a). The 
close return plot corresponding to 
the same time series data (b). The 
horizontal lines denote the exis
tence of recurrencies. A synthetic 
air sac pressure obtained by inte
grating the equations of the model 
described in the text. The values 
of (A. 9. a>) were changed so that 
the different pressure patterns 
pressure could be well approxi
mated. and kept constant during 
the time in which a syllable was 
being repeated (c). The close re
turn plot of the displayed syn
thetic solution (d).

Time (s)

equations whose different solutions are sim ilar to the experi
mental tim e traces. We test the hypothesis fitting the param 
eters o f a very sim ple dynamical system (a forced normal 
form), and showing that the synthetic solutions can fit both 
the shapes o f the pressure patterns, as well as the relative 
tim ing o f the m odeled syllables.

This w ork is organized as follows. The data are presented 
in Sec. II, while the mathematical model being proposed is 
written in Sec. III. This model was written so that the pres
sure pattern of one particular syllable could be reproduced. 
Remarkably, changing the forcing param eters allows us to 
recover the shapes of the pressure patterns associated with 
the other syllables. M oreover, when the relative tim ing be
tween syllables is reproduced, so are the different pressure 
patterns. This material is presented in Sec. IV. Section V 
presents a discussion and our conclusions.

II. DATA

Three adult m ale canaries (Serinus canaria)  were used in 
this study. They were given seed and water ad libitum, 
housed in individual cages (3 0 X 2 5 X 3 0  cm), and m ain
tained in a 14:10 h light:dark cycle. They were bought from 
different local breeders and therefore had different learning 
experiences. In front o f each cage a m icrophone was placed 
in order to record the produced song with a multichannel 
sound card (MAYA 1010, 44.1 kHz sample rate) directly 
onto a computer. Simultaneous recordings of sound and sub- 
syringeal air sac pressure were made. The tim e series corre
sponding to air sac pressure was registered by the insertion 
of a cannula (venisystem sAbbocath-T) through the abdom i
nal wall ju st posterior to the last rib, so that it extended a few 
millim eters into a thoracic air sac. The free end of the can
nula was connected to a m iniature piezoresistive pressure 
transducer (Fujikura model FPM -02PG), which was m ounted 
on the b ird’s back [7]. The signal was amplified and m odu

lated in order to record it onto a com puter with the same 
sound card used to record sound. The insertion of the can
nula was made with the bird anesthetized with intram uscular 
injection of ketam ine/xilazyne. Birds usually started singing 
1-2  days after the surgery. In this way, we generated time 
traces corresponding to pressure in arbitrary units sam pled at 
44.1 kHz. Each data file included at least a com plete song, 
w ith each song lasting approxim ately 10 s [10,11].

Figure 2 displays a pressure record during a typical song
(a). The existence of recurrencies is easy to recognize from a 
first inspection of the data, where the term recurrencies de
notes the existence of a pattern that alm ost repeats itself. In 
the field of nonlinear dynamics, there is a particularly appro
priate technique to investigate temporal recurrencies. It is 
called the close return plot, which is a graphical representa
tion of the recurrencies present in the signal. In order to build 
these plots, the tim e series under analysis is stored in a vector 
i>[/], for / = I , . . . , « ,  with n the num ber of samples. Then, the 
distance d ( i ,p )  between the values stored at u[/] and v[i 
+ p \  is com puted as d ( i ,p ) = a b s ( v [ i ] - v [ i+ p ] ) ,  for pairs of 
integer values ( i ,p ) .  W henever the distance is sm aller than a 
threshold value e, a point is displayed at coordinates ( i ,p).  In 
this way, an alm ost periodic signal will be reflected in the 
close return plot as a straight line, with a length proportional 
to the tim e that the sound signal remains almost periodic.

In Fig. 2(a) we display the air sac pressure o f one of the 
individuals studied during singing. In Fig. 2(b) we display 
the close return plot corresponding to the tim e series in Fig. 
2(a). As it could be expected from a sim ple inspection to the 
tim e series data, there are tim e intervals in which the pres
sure behaves alm ost periodically. Less obvious is that the 
repetition tim e o f the different syllables does not seem to be 
com pletely arbitrary. For exam ple, the repetition tim e during 
the second syllable displayed in Fig. 2(a) is three times larger 
than that of the first syllable.

Just as there is stereotopy in the rhythms across different 
individuals, the pressure patterns tim e series corresponding
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to different syllables display features which are found across 
different individuals. For example, in the songs of all the 
individuals which we studied these patterns have been found: 
simple, almost harm onic oscillations, high frequency fluctua
tions around a dc level, oscillations presenting wiggles, and 
long lasting pressure pulses. M oreover, birds subjected to 
different learning experiences presented pressure patterns 
with sim ilar shapes.

A parsim onious hypothesis is that the diversity of respira
tory m otor gestures emerges from  an equally diverse and 
com plex system. Alternatively, the diversity could be ac
counted for by the different solutions that a unique nonlinear 
system can present for different parameters. If the latter 
m odel is the case, the set o f diverse solutions is severely 
constrained by the geom etric m echanism s involved in its 
generation. Here we test this hypothesis.

III. MODEL

In order to generate the precise pressure patterns needed 
to produce a song, an oscine bird uses a com plex neural 
architecture. The “songbird m otor pathway” is a set o f inter
connected neural nuclei (each one com posed of a few thou
sand neurons) which are indispensable for birdsong genera
tion. The electrical pattern of activity em erging out o f this 
physical substrate eventually is transduced into activity of 
the appropriate muscles controlling the respiratory gestures. 
A ttem pts have been m ade to implement “com prehensive” 
[12] models for these neural systems [13]. Yet, the large 
num ber of neural units involved and the com plexity of its 
connectivity make experim ental exploration difficult. In or
der to test the hypothesis that despite the large amount of 
degrees of freedom  in the problem , the m easured patterns are 
the solutions of a low -dim ensional dynam ical system, we 
followed a different approach. We built a simple dynam ical 
system whose solutions can reproduce the m easured patterns. 
This dynam ical system  is, in a sense, minimal: it is the 
forced norm al form  of a linear singularity.

In order to build our model, we started inspecting the 
pressure pattern displayed in Fig. 3(a). This pattern is found 
in every song, of every bird analyzed. It consists o f a long 
expiratory pulse, associated with the syllables uttered at the 
lowest syllabic rate. The pressure starts at the average value 
of the nonsinging regim e, rapidly increases until it reaches a 
large value, staying close to it for a certain amount o f time 
(typically of 200 ms), to finally return to the initial pressure 
value.

We will call the initial value of the pressure the “o f f ’ 
state, the high value approached during the vocalization as 
the “on” state, and conjecture that the searched dynam ical 
system has both states as different fixed point attractors for 
different parameters. In other words, in the dynam ical sce
nario that we propose, the system  was initially in a stable 
equilibrium  of the searched dynam ical system  (the off state). 
At a given time [represented by (1) in Fig. 3(b)], the param 
eters of the m odel were changed in such a way that the off 
state ceased to exist, and the system  evolved to a different 
attractor [the on state, represented by 2 in Fig. 3(b)]. A fter a 
while, we conjecture that the param eters o f the m odel were

(a) (b)

(c)

a

FIG. 3. (Color online) The parameter space diagram of the au
tonomous model proposed in the text (c). The two curves converg
ing at a cusp are saddle node curves. Bounded by these curves two 
attractors exist, separated by a saddle fixed point. The third curve in 
the figure is a Hop!' bifurcation curve. The arrows indicate a path 
followed in the parameter space in order to generate the experimen
tal record displayed in (a). Integrating the model with the time- 
dependent parameters represented by the arrows in part (c), we 
synthesize the time series shown in (b).

changed back to their original values; the on state ceases to 
exist, and the system  returns to the original fixed point rep
resenting the off state. One way to write a dynam ical system 
capable of displaying this behavior is to build it in such a 
way that it presents a cusp bifurcation [see Fig. 3(c)]. In this 
codim ension two bifurcation, two saddle node curves collide 
at a point in param eter space. For some region of the param 
eter space, three points exist: two attractors and a saddle. 
Outside this region, only one attractor is present. Assuming 
that our dynam ical system  is close to a cusp, and initially at 
the param eters where only one fixed point exists (the off 
state), it can jum p to a different attractor as the parameters 
are m oved across the three fixed point region of the param 
eter space. The on state is born together with a saddle, which 
collides with the off state when the param eters are further 
m oved away from  the three fixed point region of the param 
eter space. Yet, a one-dim ensional dynam ical system  present
ing a cusp bifurcation would not be suitable for reproducing 
the observed dynamics. Notice that w hen the pressure in
creases its value toward what we call the on state, it displays 
a couple of small amplitude, dam ped oscillations. We con
jecture then that the searched dynam ical system  should be at 
least two dimensional, and moreover, the on state should be 
an attractor somewhat close to a H opf bifurcation. In a tw o
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dimensional param eter space, the H opf bifurcation line and 
the saddle node curves should meet. Therefore, our starting 
param eters are chosen as the ones at which one o f the saddle 
node curves m entioned above, and the H opf curve meet. We 
build the normal form for this linear singularity as

x  = v,

2 1 2  / 1 \ v = x  -  xy  -  x~ -  x  y , (1)

which is the normal form for the Takens-Bogdanov bifurca
tion. We included third-order terms in our normal form in 
order to allow three fixed points to exist. The signs in the 
normal form guarantee the existence of super critical H opf 
bifurcations, and the existence of two stable fixed points in 
its unfolding. We claim that the different states displayed by 
our system are reached as the systems param eters are varied. 
Therefore, unfolding this bifurcation with tim e-dependent 
param eters leads to

x  = v,

y  = a(t) + (3(t)x + x2 -  a t  -  x } -  x 2y . (2)

In Fig. 3(b), we display the numerical integration o f our 
dynamical model as the param eters are m oved along the tra
jectory displayed in Fig. 3(c). The system is originally in a 
region o f the param eter space where a fixed point attractor 
exists, then the param eters are m oved toward a region where 
a different fixed point solution with imaginary eigenvalues 
and real part sm aller than zero exists, and finally, the param 
eters are returned to their initial values. The observed pres
sure in our model is represented by p(t) = 2 - x ( t )  where x(t) 
is a solution of Eq. (2).

In order to generate the different pressure patterns, we 
drive the system using a particular form o f a(r) and (3(t), 
namely,

x  = v,

y  = a 0 + A cos(0)cos(d>r) + [(30 + A  sin(0)cos(wf)]x

+ a*2 — xy  — x~ — x 2y . (3)

We fixed a 0= l ,  /?o= 3 and we applied a rescaling of time t 
= 35t .  These param eters are the same for all birds analyzed 
in this work. Param eter A represents the am plitude of the 
forcing, w is the frequency, and 0 is the direction o f the 
forcing in the (<x,0) plane as shown in Fig. 3(c).

If  we were to synthesize pressure patterns where this b a 
sic gesture is repeated, as it is usually the case during song, 
we can repeat this basic driving. Yet, the model is nonlinear, 
and therefore the range o f frequencies for which the system 
will display this simple behavior is bounded. For higher forc
ing frequencies, the system can display subharmonic solu
tions.

We will test the hypothesis that all the pressure patterns 
found in the generation o f canary song can be fitted with this 
sim ple m odel, changing the forcing parameters. In this way, 
the distinctive shapes of the pressure patterns used to gener
ate different syllables would not be arbitrary: syllables o f a 
given syllabic rate should present particular shapes.

TV. FIT T IN G  PARA M ETER S

A typical result is illustrated in Fig. 2, in which we show 
both the experimentally recorded time series data o f the air 
sac pressure (top panels), and the synthetic time series ob
tained by numerical integration of the forced normal form 
presented in Sec. III. In order to generate the synthetic time 
series em ulating the behavior of a com plete song, a set of 
numerical sim ulations of the forced normal form [Eq. (3)] 
was carried out. We used different sets o f param eters in order 
to synthesize the different pressure pattern types. In this sec
tion we describe the procedure followed in order to select 
these sets o f parameters.

The top panel o f Fig. 2(a) shows the experimental pres
sure pattern recorded for one experimental subject. Figure 
2(b) shows the close return plot of the time series above 
[14,15], The nearly straight horizontal lines suggest recur
rence in certain segments of the song. For a given segment of 
the time series presenting recurrent behavior, the height of 
the lowest horizontal line (vertical axis) appearing in its 
close return plot indicates the time of the recurrence (i.e., its 
approxim ate period). Suggestively, the different heights of 
the horizontal lines corresponding to different segments dis
playing recurrency are not com pletely arbitrary. For ex
ample, the heights of the two first segments are in a 1:3 ratio. 
This behavior would be consistent with the hypothesis that 
these recurrences are different subharm onic responses to a 
periodic driving with sim ilar frequencies.

Each experimental time series was then divided into 
smaller segments for which the close returns plot displayed 
nearly horizontal lines. Each one of these segments corre
sponds to different pressure pattern types. In this way, each 
segment o f the recorded pressure pattern is alm ost periodic 
and they were fitted using different periodic solutions o f the 
model.

The fitted param eters were those corresponding to the 
forcing terms, and a scaling factor o f the synthetic pressure 
pattern. The forcing is determ ined by its am plitude A, its 
frequency w, and its direction 0 in the (<x,f3) plane [see Fie. 
3(c)].

As was m entioned in Sec. Ill, the vector field used to 
model our experimental results was inspired by one specific 
orbit type. We explored num erically the different solutions 
that arise as the forcing param eters were swept over a wide 
range. A systematic study of the solutions showed that many 
m orphological features found in the experimental orbits 
could be recovered. O ver open sets o f the param eter space 
we could find solutions which looked like harm onic oscilla
tions, small oscillations m ounted on a dc level, as well as 
orbits presenting small wiggles. This is a rem arkable finding. 
N onlinear systems can be classified according to the topo
logical organization of its period orbits [16]. In other words, 
not every dynamical system can present a range of periodic 
solutions that can reproduce a set o f arbitrary shapes. The 
fact that fitting one particular solution allows us to eventually 
find (for the adequately chosen parameters) the rest o f the 
experimental patterns builds confidence in the simple pro
posed model. M oreover, it leads us to implement an algorith
mic procedure for fitting the param eters o f the forcing. In 
order to fit a particular segment o f the time trace which pre-
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(a) (b)

100 ms

FIG, 4, (Color online) An illustration of the steepest descend 
method applied to tit the model. With initial parameters giving rise 
to the synthetic time traces displayed in the panels (a) and (b), we 
start a search for the parameters minimizing C, the cost function 
that measures, for each set of parameters, the difference between a 
synthetic solutions integrated with those parameters, and the experi
mental data. Panel (c) illustrates the solution obtained by the opti
mal parameters, which approximates the experimental record dis
played in panel (d).

sented a clear recurrent behavior, the first step was to choose 
a set o f param eters for which the vector field presented so
lutions w ith sim ilar m orphological features. Then, an algo
rithm was run in order to obtain the param eters that would

minim ize a function m easuring the difference betw een the 
synthetic signal and the data.

We define a cost function o f the system C(p)  as
cT . .

C (P ):
L e x p  J  0

f [X(p,t) -  E(t)] dt, (4)

where E(t) stands for the experim ental time trace, p 
= (A ,0,£tj) (the param eters o f the forcing), 7exp is the dura
tion in seconds of the pressure pattern being analyzed, and 
X ( p j )  is a solution of the system 3 integrated with param 
eters p and fixed initial conditions. Texp ranges from 1 to 4 
sec depending on the pattern being analyzed. O ur aim was to 
find local m inim a of this function to determine the set of 
param eters that best fits each pattern. A ll the m odel gener
ated patterns shown in this work correspond to local m inim a 
o f this function.

Since the hypothesis to be tested is whether subharmonic - 
ity is responsible for the diversity o f m easured patterns, we 
started the algorithm ic procedure by choosing a region in the 
param eter space such that subharmonic solutions displaying 
shapes similar- to the observed ones were present. O ur sim u
lations showed that the param eter 0 was critical: some sub
harm onic solutions would not be present outside a small 
range of this parameter. Once 6 takes a value such that the 
desired subharmonic behavior was found, we im plem ented a 
gradient descend m ethod to find local m inim a of the cost 
function. Once a minimum was found, we checked that the 
synthetic pattern would reproduce the basic m orphological 
features described in the previous section.

In all our searches, the initial conditions corresponded to 
an “o f f ’ state. No transient was elim inated in our- num erical 
simulation. Therefore, fitting the right recurrent experim ental 
patterns required not only being able to find a periodic solu
tion w ith the right shape, but also finding it stable enough so 
that an off state would rapidly converge to the desired pat
tern. This requirem ent allows us to reproduce synthetically 
long songs consisting of several different pressure patterns, 
as in Fig. 2(c) w ith a unique initial condition. For simulating 
a long song, we only had to change at the right times the 
features of the forcing, w ithout resetting the initial condi
tions. It is im portant to realize that some patterns can be

FIG, 5, (Color online) The experimental 
record (a) and synthetic solution (b) for bird num
ber 2. The parameters were changed in this nu
merical experiment at each time there was a 
change in the experimental pressure pattern type.
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FIG. 6. (Color online) The experimental 
record (a) and synthetic solution (h) for bird num
ber 3. The parameters were changed in this nu
merical experiment at each time there was a 
change in the experimental pressure pattern type. 
The numbers in the upper panel (a) indicate the 
type of pattern. Pattern type 5 is treated sepa
rately, since it is the one used to build the model

fitted with different solutions. For exam ple, a given pattern 
can be fitted as a period 3 solution with a forcing frequency 
u)j = u)/3, or as a period 1 solution with a forcing frequency 
u)j = u). In those am biguous cases, the solution m inimizing 
the cost function was chosen.

Once a suitable starting zone in param eter space was 
identified, we com puted

G; = C(p + dPi) -  C(p),i  = 1 ,2 ,3 , (5)

where dp, was chosen as d p ,= 0.000001. This quantity can be 
thought o f as the gradient o f the cost function. We m oved in 
param eter space in such a way that in each step, the param 
eters would lead to lower values of the cost function. This 
was achieved by changing p in the direction of the gradient 
by an am ount k X  G,- with £=0.001. The algorithm ends when 
G j < e  with e=0.000001 and thus guarantees that a dp-, per
turbation of the solution X (p ,t)  yields higher values of the 
cost function. In Fig. 4 we display several trajectories in 
param eter space during our fitting procedure. For a diversity 
o f initial parameters, we show the evolution of the cost func
tion. A local m inim a is found where the synthesized pressure 
gesture resem bles the experimental one [see panels (c) and 
(d) in Fig. 4], In Figs. 5 and 6 experimental and synthesized 
pressure gestures for two different birds are presented. Pat
terns were synthesized as describe before, without changing 
the initial conditions.

In Table I we show the param eters found when fitting 
three experimental recordings corresponding to com plete 
songs of three different birds. In Fig. 7 we display the fitted 
values in the (A , 6 , a>) space. There is a clustering of the 
param eters when grouped by pattern type. The lines in the 
figure sketch the boundaries o f the contiguous regions of the 
param eter space where the fitted equations display different 
subharmonic solutions. These regions are the three
dimensional version of what in the literature of forced oscil
lators are known as Arnold tongues. Their com plex structure 
does not allow to recognize the clustering of the point types 
if only one fitted param eter is inspected at the time. In the 
figure, the pattern types 1 and 4 are drawn together since 
both correspond to period 1 solutions of our forced dynam i
cal system. Remarkably, the different birds, which were not 
contem porary in the laboratory, and were bought as adults 
from different breeders (therefore, they were exposed to dif

ferent tutors), present pressure patterns which can be fitted 
with the same dynamical system, with well clustered param 
eters.

V. DISCUSSION AND CONCLUSIONS

A low-dimensional system of coupled differential equa
tions was proposed to model the pressure patterns in the air

TABLE I. Parameters found when fitting three experimental re
cordings corresponding to complete songs of three different birds. 
The reference for pattern types is depicted in Fig. 6. The parameters 
are sorted by ascending 9.

Bird number A 9 CO Pattern type

1 55 0.02 4.89 1
1 30 0.03 3.08 1
2 35 0.09 3.1 1
3 35 0.09 4.55 1
3 30 0.1 3.51 1
3 45 0.15 5.72 4
1 42.98 0.16 5.61 4
1 43.03 0.35 4.08 4
3 40 0.5 5.52 2
2 24.88 0.5 2.87 4
2 25.9 0.68 2.13 1
3 14.97 0.72 3.46 3
2 10.85 0.78 2.69 3
1 12.4 0.79 3 3
3 36 0.8 5.69 2
3 36 0.81 5.69 2
1 36.05 0.88 5.67 2
1 23.45 0.92 4.83 3
1 30.4 0.93 5.66 3
2 9.55 0.99 2.44 3
2 9.98 1 2.55 3
1 19.96 1.02 4.4 3
2 15.95 1.07 3.8 3
2 16.1 1.07 3.81 3
2 15.4 1.1 3.69 3

041929-6



LOW-DIMENSIONAL DYNAMICAL MODEL FOR THE, PHYSICAL REVIEW E 79. 041929 (2009)

FIG. 7. (Color online) The fitted parameters listed in Table I. in 
the {A. 8 .co) space. The different point types are associated with 
different pressure pattern types. They are found within regions of 
the parameter space where the model presents different subhar
monic solutions. The continuous lines sketch the boundaries of 
those regions. The pattern types 1 and 4 are drawn in the same 
regions since both correspond to period 1 solutions of our forced 
dynamical system.

sacs of Serinus canaria during song production. Despite the 
com plexity exhibited by these patterns, we were able to find 
solutions of this model that resem ble the m ain features. In 
order to propose this model, we analyzed one particular 
simple pattern and engineered a transition between simple 
dynamical states which would give rise to a time series sim i
lar to the experimental patterns. The proposed dynamical 
system was a normal form presenting these dynamical ele
ments. Remarkably, when the system was numerically ex
plored for different sets of parameters, solutions sim ilar to 
the other pressure patterns were found.

The agreem ent was qualitative and quantitative. In  fact, 
we im plem ented a simple gradient descend m ethod to fit the 
parameters in our dynamical system. By doing so we 
checked that different birds presented patterns which could 
be fitted by well clustered parameters. Actually, the main 
reason for this clustering is that the different patterns are 
approxim ated by the model w ith subharm onic solutions of a 
nonlinear driven system. The different subharmonic solutions 
exist in bounded regions of the param eter space (Arnold 
tongues), and therefore the clustering of the different syllabic 
types is associated with this bounding.

N ot every set of time series data can be approxim ated by 
the solutions of a unique low-dimensional dynamical system. 
Dynamical systems can be classified by the topological or

ganization of its solutions [16], In a three-dimensional non
linear dynamical system, the linking organization between 
different periodic solutions, the self-linking of a unique orbit, 
or its knot type [15] have to satisfy a specific set o f condi
tions. Therefore, the existence of a low-dimensional model 
for the different pressure patterns used in phrases by singing 
canaries suggests that despite the com plexity of the neural 
architecture used to generate these physiological instructions, 
they have to act collectively in a way that ultim ately trans
lates into a low-dimensional instruction. It is w orth pointing 
out that despite this reduction of dimensionality, the diversity 
between the shapes is surprising, and suggests a strategy for 
achieving diverse behavior: the use of subharmonicity of a 
nonlinear neural substrate.

Previous works have suggested that the pressure patterns 
behaved as subharmonic [17,18], Yet, these efforts explored 
m athem atically rate models for the activities of specific neu
ral architectures w hich could be responsible for generating 
the instructions. D ifferent architectures could display this be
havior. In this work, we perform ed a systematic fitting of the 
diversity of pressure patterns present in all the songs of three 
birds, using a dynamical model. The dynamical elements that 
were necessary for building that system (which being a nor
mal form, is in a sense minimal in com plexity) have to be 
present in the mathematical im plem entation of any neural 
model proposed to account for the observed behavior.

N ot every oscine bird has a song consisting of repeated 
syllables. A nother well studied songbird, the zebra finch 
(Taeniopygia guttata) builds its song with a stereotyped se
quence of syllables presenting a wide range of acoustic prop
erties, and therefore the strategy for generating its pressure 
patterns seems different as the one described in this work. 
Yet, it is worth exploring w hether other species building 
songs w ith phrases of repeated syllables could use subhar
monicity in order to generate diversity w ith minimal nonlin
ear substrates.
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