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Abstract
A coherent automated manufacturing system needs to include CAD/CAM, 
computer vision, and object manipulation. Currently, most systems which 
support CAD/CAM do not provide for vision or manipulation and similarly, vision 
and manipulation systems incorporate no explicit relation to CAD/CAM models. 
CAD/CAM systems have emerged which allow the designer to conceive and 
model an object and automatically manufacture the object to the prescribed 
specifications. If recognition or manipulation is to be performed, existing vision 
systems rely on models generated in an ad hoc manner for the vision or 
recognition process. Although both Vision and CAD/CAM systems rely on 
models of the objects involved, different modeling schemes are used in each 
case. A more unified system will allow vision models to be generated from the 
CAD database. We are implementing a framework in which objects are designed 
using an existing CAGD system and recognition strategies based on these 
design models are used for visual recognition and manipulation. An example of 
its application is given.
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1. Introduction
Computer vision has been an active research area for over 20 years. In the early days, emphasis was 

on low level processing such as intensity and signal processing to perform edge detection [1,19]. 
Systems were constructed which only operated in very constrained environments or for very specific 
tasks [2,16,20]. It was quickly recognized that higher level concepts of image understanding were 
needed to successfully perform computer vision. More recently, models of objects and knowledge of the 
working environment have provided the basis for driving vision systems. This is known as model based 
vision. The pursuit of the fully automated assembly environment has fueled interest in model based 
computer vision and object manipulation.

The problem we are interested in solving is model based visual recognition and manipulation of objects 
in the automation environment. This involves building a 3-D model of the object, matching the sensed 
environment with the known world and locating objects. Not until the desired object is located and its 
orientation is known can a robot gripperor hand manipulate it.

Our goal is to develop a system which will work in the environment of the automated assembly 
process. This is not intended to provide a general model for the human visual process but rather a 
solution to the problem of visual recognition and manipulation in a well-known domain. The constraint we 
are imposing is one which limits the necessity of modeling the entire world. Rather, the known world to us 
is that of the automated environment in which this system is intended to operate.

Simply stated, our approach is to provide an integrated environment in which the CAGD model can be 
used to generate appropriate recognition and manipulation strategies. A major aspect of this work is the 
successful development of a prototype system combining design, vision analysis and manipulation. In 
this paper, we describe:

1. the design of an object using the Alpha_1 CAGD system,
2. the analysis of 3-D range data to find the object,
3. the recognition of the object using a new multi-constraint discrete relaxation matching 

algorithm.

2. Object Design
The current modeling environment is the Alpha_1 Computer Aided Geometric Design (CAGD) System. 

It models the geometry of solid objects by representing their boundaries as discrete B-splines. It allows 
the construction of simple objects into a more complex object using set operations. It supports several 
modeling paradigms, including direct manipulation of the B-spline surface, creation and combination of 
primitive shapes, and high-level operators such as bend, twist, warp and sweep. By using set operations 
on sculptured surfaces, the modeling task becomes simpler and more complete than with other design 
systems.

The guidelines which are followed in using Alpha_1 are:
1. Analyze the object. Usually a complex object can be divided into simpler parts which can 

be more easily designed. A rule of thumb is "Use the same procedure that people use to
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create the object.” Once the procedure is decided, one can concentrate on each subpart.
2. Measure parameters. Make a precise measurement of parameters. If the design data is 

available, it is best to use it.
3. When the surface patches of each part are designed, make sure that they have the correct 

orientation and set the adjacency information correctly. Otherwise, an object which is not 
valid may be created.

4. Put all subparts in the correct position and orientation. Then use the combiner to perform 
the appropriate set operations.

Now we show the design of the object shown in Figure 1. The object is designed in a sequence of 
steps starting with the main plate, then adding indentations and all the holes. To obtain these, we design 
curves using B-splines first and then various high-level operators for surface construction; e.g., revolving 
a curve about an axis, extruding a curve, and filling in the surface between curves. Threads in the holes 
are designed by filling two surfaces between two twisted curves. The final design is shown in Figure 2.

Figure 1. Green piece

Based on the design information the 3-D features listed in Figure 3 were extracted. These were used for 
matching purposes in the analysis of the 3-D data.



F ig u re  2. CA G D  D esig n  of G re e n  p ie c e

% Model definition for Model-1

(setf ModelGP 
(MakeModel 
(Model-Name 'ModelGP) 
(Model-Origin '(0.0 0.0)) 
(Model-Feature-Instance-List

((Hole865 H1 2.000 2.000 0.0)
(Hole575 H2 0.375 0.375 0.0)
(Hole575 H3 0.375 3-625 0.0)
(Hole575 H4 3.625 0.375 0.0)
(Hole575 H5 3.625 3-625 0.0)
(Hole330 H6 2.000 3-835 0.0)
(Hole250 H7 1.250 1.750 0.0)
(Hole250 H8 1.563 2.563 0.0)
(Hole250 H9 2.438 2.563 0.0)
(Hole250 H10 2.700 1.750 0.0)
(Hole250 H11 2.000 1.250 0.0)))))

Figure 3. 3-D Features Extracted from Model

3. Object Recognition
The system we are developing is based on the notion of specialization. This means that we take 

advantage of any particular information that can be culled from the CAGD shape model. This knowledge 
is then encapsulated in a special package which provides for the recognition of an object or part of an 
object. Thus, instead of using a general recognition technique on ali parts to be recognized (i.e., a weak 
method), we produce specially packaged code (i.e., logical sensors) for recognition. These are then 
instantiated independently as needed, and controlled as logical sensors.
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The approach consists of three phases:
1. Design. The object is designed using a CAD modeling system (the Alpha_1 CAGD system 

in our case). This aspect was explained in the previous section.
2. Derivation of Intrinsic Features. The recognition strategies are based on matching 

intrinsic features of the object’s shape with those of unknown shapes. A set of intrinsic 
features are derived from the CAGD system, and includes such features as: genus, surface 
points, number and placement of holes, color, texture, surface normals, surface curvature, 
etc. See Henderson and Bhanu [12] for more details on our approach to the use of intrinsic 
features as the interface between CAD and computer vision systems.

3. Synthesis of Object Recognition Strategies. Given a set of intrinsic features for a 
specific object and knowledge of the representation chosen in the CAGD system (e.g., 
Constructive Solid Geometry, Generalized Cylinders, or Boundary Representation), plus 
knowledge of the available recognition techniques and feature detectors, the system will 
choose and hook together the appropriate recognition code. This is currently done by 
means of parameters, but eventually will require more expertise in using the knowledge that 
the system has available.

A straightforward method which we use for generation of recognition strategies is parameterization. 
The user is required to fill in the blanks for the sensors and algorithms for the particular object, or class of 
objects, modeled. Obviously, a more automated system is desired for this task and is under 
investigation [5, 6,7, 9,10,11,12,13,14]. The methodology provides a means for abstracting the 
specification of a sensor from its implementation along with providing transparency of hardware and 
software above the implementation level. Alternatively, we are also investigating how to embed 
knowledge of the algorithms and sensors in the system and to provide a rule base for the decision 
process. This requires a complex expert system (see [8] for a description of a preliminary system). In 
either case, the system will eventually be composed of multiple sensors and recognition methods.

4. Split-Level Relaxation Matching
The final part of the system is the matching component. We have recently introduced the notion of 

"split-level" relaxation [15], and we have applied it here to the problem of labeling 3-D features. One of 
the first steps in locating an object is to locate its features. We can recognize objects on the basis of 
global features, like number of holes, size of various segments, total area of the segments, perimeter, etc. 
Alternatively we can also use local features to locate objects: e.g., corners, holes, etc. We look for certain 
structure with respect to these local features in the image, and if we can find such a structure then we can 
locate the object.

Both methods have their advantages and disadvantages. A system based on global feature matching 
is prone to mistakes, particularly when the object is occluded or even partially defective. On the other 
hand, if the object is completely isolated in the scene under consideration then the method is very 
straightforward and efficient.

A method based on local features uses only constraints between nearby features. This is useful in 
many circumstances, when the object is partially occluded and chances are that some of the features 
would be visible and they can be used to identify the object. However, there are instances when it would



be very useful to have global constraints also. And in certain instances it is necessary to use global 
constraints to identify an object. For example, the object in Figure 4(a), as seen in Figure 4(b) can never 
be identified using local features alone since all the holes are occluded. However, by using global 
constraints like the parallelism and perpendicularity of sides, we can easily identify the object.

The approach used here is based on discrete relaxation. However, there are some major philosophical 
differences. As explained later, we distinguish between different types of constraints during the process 
of relaxation. Many approaches based on relaxation make use of only the local constraints as opposed to 
global constraints. They tend to ignore the global constraints because occlusion sometimes prevents 
their use as well as the high cost of analyzing graphs with high vertex degree. We argue that they can be 
useful, and under certain circumstances they may be extremely advantageous. The model proposed in 
this paper uses both types of constraints. Also, with the advent of parallel computers it is imperative to 
look at the problem again and see if the approaches are suitable for parallel processing or not. This is 
especially important in light of the fact that the problem at hand has an exponential growth rate. For an 
example of the use of multiple semantic constraints with stochastic relaxation, see Faugeras and 
Price [4],

After an image is acquired, the different feature instances are extracted from it. After that all the 
computation and analysis is bases on these extracted features. Now the main problem is to associate 
these feature instances with the features of some model. The features thus obtained from the image are 
related to each other in various ways. For example, the image may have two holes and a corner, and we 
can have constraints like abov^Comer.Hole,), or bigger(l-iole1lHole2). Obviously we could form many 
relations, each with different different physical meaning to relate these features. However, we choose 
only those which are used to define the constraints between the features in the models.

So, the scene can be represented as:

S = ( Fs, C8 ), where

F8 is the set of features in the image and

CS = (R8,R8.......R8}, Rf c  F8 X F8.

There is a direct correspondence between the two sets Cm and C8. For each relation R8 in Cs there is
an equivalent relation R™ in Cm which has the same physical interpretation, although the domains of both 
relations are different.

4.1. Scene Analysis as CLP
Now we formulate scene analysis (SA) as a Consistent Labelling Problem (CLP). The set of units 

which needs to be labelled is the set of feature instances found in the image. For simplicity in analysis 
here, we assume that the domain of each of these units is the union of the features in all the models. In
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practice, however it would be the set of features in all models which are of the same type as the unit 
(feature instance). For example, if the given feature instance is of type hole, then only those features in 
the models of type hole can be in its domain. Obviously, the constraints in the models should be included 
in the constraint set for the CLP. We also have to include the constraints in the image since they also 
constrain the labelling process.

Features can have the same name in different models. To disambiguate them each feature in the 
model is prefixed by the model name. For example, feature Hole in model Part will be referred to as 
Part_Hole. We assume that no two models have the same name and the set of features Fl11 for each 
model is augmented to remove ambiguities, if any. So, the scene analysis problem in terms of a CLP is: 

SA = ( U, D, R ), 
where,
U = Fs, D = u"=1F^, R = (u,n=i C,m)uC ,.

4.2. Network Model fo r Relaxation
In this section we briefly describe a graph/network model which is the underlying basis for the 

relaxation process. This is similar to the network model used by Mackworth [17] and others in the sense 
that the nodes represent the units to be labelled and the constraints are represented by the arcs in the 
graph. However, there are several differences.

Instead of one graph, we have a set of graphs, one for each of the relations in the image. We also 
have a set of graphs, corresponding to the object models. This set of graphs is used to represent the 
constraints in the model. Let Gm, be the composite graph to represent the set of model graphs and Gs, 
denote the same for the image graph.

4.2.1. Model Graphs
Gm = { G™, G™......... G™}, where n is the number of models being considered. Each of the Gj11 also

consists of a set of graphs corresponding to the various relations in the constraints.

Gj11 = { G™, G|"2........ G,™}, where k, is the number of relations in Cj11.

Each G™ is a graph and can be represented by: G™ = < Fj11, E™ >, where edge (x,y) is in E™, iff (x,y) e
C™. The nodes of the graph are the features in the image which need to be labelled and the arcs 
represent a relation.

4.2.2. Image Graphs
Unlike the model graphs, we have only one composite image graph, since we are concerned with only 

one image at a time. However, the composite image graph, Gs, is again composed of a set of graphs, 
one for each of the relations in the image. So,

Gs = { G®, G |, .......Gj! }, where ks is the number of relations used in the image graphs.8 ^
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G® = < F5, Ej5 >, where edge (x,y) is in Ef, iff (x,y) e Rj*.

Although the standard relaxation process works fine for non-occluded scenes, it doesn’t work well if the 
scene is occluded. The basic reason is that if a constraint is missing in the image, it doesn’t mean that 
the constraint actually doesn’t hold. It is possible that a constraint is not satisfied because some or all of 
the associated units are occluded. So the constraints don’t have the same discriminating power in 
occluded scenes. In unoccluded scenes, we use the boundary edges directly to describe the constraints, 
but this can’t be done in occluded scenes.

Also, some of the constraints have to be used or interpreted differently. For example, if a boundary 
edge X is longer than another edge Y in the model, it doesn’t follow that the corresponding edge for X in 
the image will be longer than the corresponding edge for Y. In fact, if a boundary edge W is longer than 
another boundary edge Z in an image, no definite conclusion can be made about them from this 
information alone.

However some of these constraints can be used under certain circumstances. For example, if there 
are only a few boundary edges which are longer than some absolute amount and we find an edge in the 
image which is longer than this threshold, then it has to be one of the above edges. But this doesn’t 
constrain the problem enough to reduce the solution set of the other labels.

One way to get around this problem, is to only use local constraints between features like holes, 
corners, etc. Instead of using constraints between the sides (or boundary edges), we use constraints 
between the lines between the locations of features. We refer to these vectors as inter-feature vectors (or 
iv's). The advantage of using these iv’s instead of the sides is that, unlike the sides, they are either 
present or absent; i.e., they cannot be partially missing or broken up into different parts because of 
occlusion. If both the features constituting an iv are present in the image, then the iv is defined, otherwise 
it is not. We can use the same constraints as before, but now they are between these iv’s instead of the 
sides. Before they were binary constraints, but now they are essentially 4-ary constraints.

However, the constraints still don’t have the discriminating power to drive the relaxation process, since 
the constraint set in the image is incomplete. Initially each unit has all the labels of the model in the 
label-set. We delete a label at a node if a certain constraint is not satisfied. But now we are not sure if 
the constraint is unsatisfiable, or is just not satisfied because of occlusion. So, in order to drive the 
relaxation process we need to seed the label-set of some units and then let relaxation take over. The 
goal is to get some positive information from the scene and then propagate it. The next two subsections 
describe how the iv’s are created and how the initial seeding is done.

E ac h  of th e s e  g r a p h s  c o r re s p o n d s  to  a  re la tion  in th e  im ag e . T h e re fo re ,



4.3. Creation of Inter-Feature Vectors
An inter-feature vector is defined to be the vector between two feature locations. The magnitude of the 

vector is the distance between the two feature locations. If there are N features under consideration, then 
there could be as many as N * (N-1) iv’s. This could be too large to be manageable, particularly in an 
image where there could be a large number of features. To avoid this problem, we connect only the 
features which are within a certain distance of each other. This distance is not arbitrarily chosen, rather it 
is computed for each model separately so as to keep the number of iv's small.

4.4. In itia l Seeding of Label-Sets
The goal of the seeding process is to reduce the label-sets of some units, drastically if possible so that 

it will the drive the relaxation engine. This means we need to find the peculiar properties of some 
features, their locations or their relationships. Since we are using the iv’s as the basis for the constraints, 
we look for peculiarities among these iv’s. Two such quantities are used here and we found them very 
useful for the seeding process. They are:

• The magnitude of the inter-feature vector (or the distance between the corresponding two 
feature locations).

• The angle between two inter-feature vectors. The two iv’s are chosen such that they have 
exactly one common end point, i.e., they share one feature.

We group these quantities and try to find quantities which are unique. In our case we say a quantity is 
unique, if it doesn’t occur more than a certain number times in the above groups. We determine this by 
histogramming. Figure 5 gives a brief outline of how this process works. It should be noted that all these 
things (threshold-distance, inter-feature vectors, histogramming, etc.) are done for the models 
beforehand. This computation is performed only once.



procedure ComputeSpecialDistances;
begin

Compute the threshold-distance-, 
for i:= 1 to No-of-Features do 

for j:=i+1 to No-of-Features do
If distance(feature[i], feature[j]) <= threshold-distance then 

iv = Make-inter-feature-vector(feature[i], featured);
Append(IVs, iv) 

endif;
size := GetSize(IVs, error)
H := Make-histogram(IVs,size) 
for i:=1 to size do 

if H[i] <= Nunique then
Append(Special-Length-List, details(i));

endif;
Store the Special-Length-List in Model;

end;

Figure 5. Computation of Special Distances

Function details collects some more information about the inter-feature vectors which correspond to the 
ith histogram entry (for example, the associated features, etc.). Function GetSize computes the size of 
the histogram. It is computed such that two consecutive entries in the histogram are at least error apart. 
All the special distances are collected in a list and become a part of the model. Special angles are also 
computed by a similar procedure and are stored in the model. A special-distance is actually not a single 
quantity, but it has a range associated with it. The idea is that if the distance between two units in the 
image is in this range, then the two units should correspond to the two features in the model.

We have found that there are a few special lengths and angles for each of the models that are fairly 
unique in the sense that there is practically no other quantity which is close to these special quantities in 
terms of their magnitude. This information can be used to seed the label-set of units in the image.

4.5. Labelling Process
The process of labelling starts with type-checking. Initially each unit (primitive) in the image is given all 

the labels of the desired model. Then, if the types of the unit and any of its labels are not consistent then 
those labels are removed from the label-set. The next step is the seeding process. Before the actual 
seeding can be done, the inter-feature vectors and the angles are constructed for the image. The 
distance used is the threshold-distance used by the model. After the lengths and the angles are 
constructed, they are searched for the special angles and lengths. If any of the distances (or angles) 
match a special distance (or angle) for the model, then the label-sets of the associated units are updated.
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Then control is passed on to the relaxation process, and finally to the backtracking operator. Due the 
changed nature of the problem, the structure of the relaxation process has been changed considerably, 
too. In the next section, we give the motivation and the structure of the new version of the relaxation 
process.

4.6. Split-Level Relaxation Process
The main reason to change the structure of the relaxation process is that there is no way to use 

positive information in relaxation. For example, if during the seeding process we infer that the primitive X 
can be either A or B, then we really canl use this information in any way more than if the label-set of X 
had A and B without seeding. Relaxation treats all the nodes equally and is not able to use the 
information from seeding, which is very powerful and positive information. As a matter of fact, it is 
possible for node X to lose all its labels, during relaxation just because it lacks support at some other 
primitive which may not even belong to the model.

We divide the nodes (primitives) into two groups. The nodes whose labels are fixed during the seeding 
process, are called the strong nodes and others are called weak nodes. The strong nodes signify positive 
information. The strong nodes, always remain strong, while the weak nodes may be elevated to strong 
status. During relaxation, a strong node can affect the label-set of another (either strong or weak) node. 
This prevents the nodes which are not really a part of the model from affecting the label-sets of other 
nodes. Those units which survive the first iteration, i.e., whose label-set is not empty at the end of the 
iteration, are then changed to strong nodes. Those nodes which do not survive the first iteration, are not 
considered further and are not considered to be not part of the model. After that, the relaxation process 
works as usual.

4.6.1. A Second Approach
Another way to solve the problem of weak nodes deleting the labels of strong nodes is to allow a label 

at a node to remain, if there is at least one support for it from any one other node. (In standard discrete 
relaxation, a label remains iff it has support from all neighboring nodes.) This is motivated by the fact that 
some of the constraints may be unsatisfied due to occlusion. It should be noted, however, that there has 
to be support for the label in each of the possible graph types. This is fairly effective, but takes more time, 
since the labels are deleted after all the constraints are processed. The effect of change can only be 
perceived during the next iteration. In split-level relaxation, we delete a label once it is determined that 
there is no support, and the change can be used by the next constraint during the same iteration.

4.7. Implementation
Most of the above ideas were implemented in PSL (Portable Standard Lisp) [18]. The compiled code 

was run on a VAX-8600. The actual runtimes can be vastly improved if implemented on a lisp machine 
like the Symbolics 3600.

The system works in two phases. In the first phase, all the models are input and the threshold
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distance, special lengths and angles are determined and stored in the model structure. This is only a 
one-time cost and is similar to the training phase of Local Feature Focus [3]. The input is at a somewhat 
intermediate level of description. What is input to the program is a list of local features, their locations and 
the constraints between them. The different types of constraints used are parallel, perpendicular, 
adjacent, bnger-than, etc.

In the second phase, an image description is given along with the set of constraints associated with the 
local features in it. We also give a model to be searched for in the image. We only check for node and 
arc consistency. The AC-3 algorithm as defined by Mackworth [17] is used for enforcing the consistency. 
Although, we look for a single object in an image, it would be be a straight-forward extension to look for 
multiple objects in the same image. The image description is similar to that for the models.

At the end of relaxation process, control is passed on to a backtracking procedure which does further 
consistency checks and lists out all the solutions. The output is a listing of local features in the image and 
the corresponding features in the object. If the label-set of a primitive is empty, it is labelled as unknown.

5. An Example
Figure 6 shows a range data view of an actual milled version of the piece modeled in Section 2. The 

features extracted from that data are given in Figure 7. These were fed to the split-level relaxation 
matcher and the results are shown in Figure 8.
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%% Output for Split-level Relaxation
Input File is params.sl
Model definition file is modelgp.sl
Model constraints file is modelgpC.sl
Image definition file is imgp.sl
Image constraints file is imgpC.sl
Optimal distance = 1.10105
Initial statistics 

Total Number of Nodes = 10 
Number of nodes with one label = 1 
Average number of labels/node = 3.0

Iteration Number = 1 Time = 51 ms 
Number of nodes with one label = 3 
Average number of labels/node =2.5

Iteration Number = 2 Time = 1122 ms 
Number of nodes with one label = 5 
Average number of labels/node = 1.5

Iteration Number = 3 Time = 238 ms 
Number of nodes with one label = 6 
Average number of labels/node = 1.4

Iteration Number = 4 Time = 238 ms 
Number of nodes with one label = 6 
Average number of labels/node = 1.4

Total time for ARC Consistency = 1683 ms
There is only one labelling for the above

Primtive = HOLEIO : Label = H2
Primtive = HOLE9 Label = H3
Primtive = HOLE8 Label = H7
Primtive 3 HOLE7 Label = H8
Primtive = HOLE6 Label = H11
Primtive = HOLE5 Label = H1
Primtive = HOLE4 Label = H9
Primtive = HOLE3 Label = H10
Primtive = HOLE2 Label= H5
Primtive = HOLE1 Label= H4

F ig u re  8 . M atch ing  R e su lts
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6. Conclusions
This approach to model-based 3-D data analysis shows great promise. Moreover, the inherent 

capability to automate the generation of recognition and manipulation code will make systems such as the 
one discussed here a very important tool in the automation industry.

Clearly the success of the method depends on the special-lengths and angles. If they are occluded, 
then the method may take a longer time than usual. During the process, it might lose all the labels in 
which case it would not recognize the object. Or it may reduce the label-sets of some nodes and leave 
the rest of the work to the backtracking procedure, which can be expensive.

However, if there are enough special distances and angles, then even if some are missing, the method 
will work very well. Our experience is that this will work fine, if the label-sets of two or three nodes can be 
reduced to about 2 or 3 labels. Also, it is not unusual to find about 4 or 5 special distances and angles. If 
they are not enough, we could increase the threshold distance (for connection) to include more inter
feature vectors, thereby increasing the possibility of finding more special distances and angles. Of 
course, this increases the cost of computation, both for the model and the image. The positive side of 
this is the fact that, these computations can be done ahead of time, more than once if necessary to arrive 
at an optimal set of special distances and angles. Once this is done, it is a part of the model of the object 
and need not be recomputed.

Also, this takes care of a certain amount of error in both the model and the image. As pointed out 
before, the special distances have a range associated with them. So, if there is any error the initial 
seeding is not affected. This makes the system more robust.
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