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Universal Properties of Random Lasers
Randall C. Polson, Mikhail E. Raikh, and Z. Valy Vardeny

Abstract—The design and fabrication of laser resonators is often
difficult. However, random lasers occur in gain media with nu-
merous scatterers and produce coherent laser emissionwithout any
predesigned cavity. The generation of coherent emission frommul-
tiple scattering is quite general and its basic principles are shown
here using twomodel systems, namely -conjugated polymer films
and rhodamine-TiO2 suspensions. Above a threshold excitation in-
tensity, both systems show narrow emission lines ( 0.5 nm), co-
herence that is determined by photon statistics, and a fundamental
cavity length in the disordered material that is revealed by aver-
aging multiple power Fourier transform spectra.

Index Terms—Fourier transform, laser resonator, random
media.

I. INTRODUCTION

R
ANDOM LASING is a blanket term to cover systems

where laser emission is produced from a random col-

lection of scatterers in a gain medium. A diverse number of

systems has shown this behavior including neodymium-glass

powders [1], dye-TiO solutions [2], nanoclusters of ZnO

[3], -conjugated polymer films [4], dye infiltrated opals [5],

dye-TiO polymer films [6], and laser dye within liquid crystals

[7]. Properties normally associated with laser emission are all

present in these random lasers, including coherence and narrow

emission lines. Here, we discuss the properties of random lasers

by summarizing recent work with two model systems, namely

polymer films and suspensions of scatterers with optical gain.

II. LASER EMISSION PROPERTIES

There is a typical progression of the emission characteristic

properties from gain media, from a broad photoluminenscenese

spectrum at low excitation intensities, to a narrow stimulated

emission band at higher excitation intensities, to narrow emis-

sion lines at even higher excitation intensities. Fig. 1 shows these

three stages for a dye-TiO suspension. The inset of Fig. 1 shows

the typical photoluminescence spectrum, which upon higher ex-

citation collapses into a narrow amplified spontaneous emission

spectrum. At even higher excitation very narrow emission peaks

nm appear in the emission spectrum. The characteriza-

tion and origin of these narrow lines is the goal of this paper.

There are several experimental details that are used to observe

the very narrow emission lines from a TiO -rhodamine dye sus-

pension. The dye is at a concentration of 3 10 mole/liter,

whereas the 300-nm diameter spherical TiO particles are at

a concentration of 8 10 particles/cm . The dye suspension
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Fig. 1. Rhodamine 6G and TiO suspension showing narrow emission lines.
The inset is the regular photoluminescence and spectral narrowing due to
amplified spontaneous emission (ASE), shown on a different scale.

Fig. 2. Three laser emission spectra for a dye and scatterer suspension each
excited with a single pulse, shown with an offset for clarity. The inset shows the
averaged spectrum of 100 excitation pulses.

is excited with the second harmonic of a Nd:YAG regenerative

amplifier at 532 nm, with 100-ps pulses, at a repetition rate of

100 Hz. The excitation is sent through a cylindrical lens and the

emission is collected from the long side of the stripe using a

fiber optic; it is then sent to a 0.5-m spectrometer, detected with

a charge coupled device (CCD) camera and recorded with a PC.

The “spiky” spectrum seen in Fig. 1 was the recording of one

excitation pulse. Since the scatterers are in motion in the sus-

pension, each excitation pulse illuminates a different configura-

tion of scatterers. Fig. 2 shows the spectra from three different

pulses; though the spectra are similar they are not the same. If
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Fig. 3. Three laser spectra for aDOO� PPV polymer film with excitation
area of 1 by 100-�m. The inset is a spectrum with a 6 by 100-�m excitation
area.

Fig. 4. Time resolved spectroscopy of rhodamine and TiO scatterers
suspension obtained with a single excitation pulse.

many excitation pulses are collected, then the resulting spectrum

is smooth, as seen in the inset of Fig. 2where the combined spec-

trum of 100 separate excitation pulses is shown. We conjecture

that the recorded spectrum shows more pronounced peaks with

fewer excitation pulses.

Very similar emission spectra characteristics are observed

with a -conjugated polymer film. The specific polymer was

poly(dioctyloxy) phenylene vinylene, . The same

experimental setup was used as with the dye scatterers suspen-

sion, but the polymer film is in a dynamic vacuum to prevent

photodegradation. Since the polymer is a solid medium, one

location on the film produces the same reproducible spectrum.

To observe the narrow emission spikes, the trick is to look

at the small excitation area. Fig. 3 shows the spectra of three

different locations on the polymer film. The excitation area is

approximately 1 mm by 100 m. The inset is the same polymer

film but the excitation area is 6 mm by 100 m. We observe

that the narrow peaks are apparently lost.

There is a parallel between the number of pulses for the dye

scatterer suspension and excited area with polymers. Observa-

tion of narrow emission lines occurs with a small value for each.

Larger amounts lead to a recorded emission with apparently

smoother emission curves. A small area in the polymer film cor-

responds to few excitation pulses in the dye scatterer suspen-

sion. The smooth curves result from the superposition of many

narrow emission lines.

It is tempting to call the very narrow lines laser emission.

The best way to identify the nature of the emission is to use

photon statistics [8]–[10]. During a short time, one counts the

number of photons arriving at the detector. This measurement

is repeated for many observations and the resulting counts are

placed in a histogram. If the observation time is short enough,

then coherent light has one type of photon distribution whereas

incoherent light has another [8]. These distributions are given as

follows:

incoherent (1)

coherent (2)

where is the probability of observing photons with

a mean number . The incoherent distribution of (1) is a

Bose–Einstein distribution function, whereas the coherent

distribution of (2) is a Poisson function. The most probable

value for the Poisson distribution is the mean value , whereas

the most probable value for the Bose–Einstein distribution

is zero. A very narrow range in both time and wavelength is

necessary since an incoherent distribution can give a Poisson

distribution for a long observation time [8].

The experimental setup was altered for photon counting. A

streak camera was inserted between the spectrometer and the

CCD camera. The streak camera changes a signal in time to a

signal in space. The input emision spectrum is now recorded on

the CCD array as wavelength versus time. Fig. 4 shows the time

resolved spectrum for a single excitation pulse on the dye-TiO

suspension. A narrow time interval from 62 to 100 ps and a

wavelength window of 0.15 nm is used to produce a histogram

of photon counts. The one centered at 560.6 nm is a “valley,”

the other at 560.2 nm is an emission peak. Fig. 5 shows the re-

sulting histograms for two locations in the time resolved spec-

trum. Fig. 5(a) is for 560.6 nm, shown with a theoretical fit for

incoherent light. Fig. 5(b) is for 560.2 nm, shown with a fit for

coherent light. The same set of data produces both distributions;

this is a good check that the time used for the histograms is not

too long. We thus conclude that the narrow emission lines are

coherent radiation.

Similar photon counting experiments have been performed

for the dye-TiO polymer system [6], the -conjugated polymer

film [11], and the zinc-oxide nanoclusters [12]. The results are

the same; the very narrow emission lines from the random sys-

tems are coherent radiation.

III. FOURIER TRANSFORM

Since the narrow emission lines have been shown to be co-

herent, the natural question of feedback arises. This question

can be answered with the help of the Fourier transform (FT).

The FT is often used to look at the frequency domain given

time domain data. When the FT is applied to laser emission

spectra, the fundamental resonator length is recovered [13].
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Fig. 5. Photon counting for two regions in Fig. 4. (a) A “valley” centered
at 560.6 nm. (b) A “peak” centered near 560.2 nm. The lines through the
data are fits using incoherent disrtibution of (1) and coherent distribution (2),
respectively.

The units of the emission spectrum need to be in wavenumber

(1/length) so the units in the FT are in length. The expected FT

consists of equally spaced harmonics with decreasing ampli-

tude [13]. The actual separation of harmonics for a Fabry–Perot

resonator is where is the index of refraction and

is the mirror separation. The FT procedure works for a

ring configuration as well [14], [15]. For the ring, the mirror

separation is replaced by half a circumference and the resulting

FT harmonics appear at multiples of , where is the

ring diameter.

Fig. 6 is the power Fourier transform (PFT) of the three

spectra of the dye-TiO suspension from Fig. 2. All of the PFT

spectra have many peaks, but none seem to have a sequence of

regularly spaced peaks. The large components near zero cor-

respond to a “dc-offset, ” meaning that the emission spectrum

has only positive values.

A remarkable thing happens when the many individual PFT

are averaged. If the laser emission spectra are averaged for 100

excitation pulses, then the resulting spectra is the smoooth spec-

turm seen in the inset of Fig. 2. On the contrary, if the average

of 100 separate PFT are averaged, then one gets Fig. 7. On the

average, PFT harmonics are more regular than for any indi-

Fig. 6. PFT spectra of the three-emission spectra shown in Fig. 1.

Fig. 7. Average power fourier transform spectra of 100 random laser emission
spectra of dye-TiO suspension (broken line) and the �-conjugated polymer
(full line).

vidual PFT. In fact, four harmonics are easily visible in Fig. 7.

The PFT is complicated by the fact that there are two cavities,

one at m and the other at 31 m. Taking the

index of refraction to be that of methanol, namely ,

a Fabry–Perot cavity would have a distance of 58 or 73 m,

respectively, between the mirrors. If the resonance cavity is cir-

cular, then the microring type resonators have diameters of 37

and 47 m, respectively.

The same process of averaging PFTs of laser emission spectra

was applied to the polymer film. Instead of different pulses,

the PFT were averaged over different illuminated 1 by 100- m

areas. One fundamental cavity length of 16.5 m emerged from

the average PFT [16]. The prominent peaks in the curve of the

PFT in Fig. 7 are the second and third harmonics. With a index

of refraction of 1.8 for the polymer, a Fabry–Perot mirror sep-

aration of 29 m or a circular cavity with diameter of 18 m

could be calculated. The polymer film has been imaged and

bright spots with diameters less than 50 m have been observed

[16]. The size of the bright spots corresponds to the dominant

cavity in the average PFT.

The very regular harmonics in the averaged PFT indicates a

strong selection process for random lasers that selects a pre-
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ferred resonator length within the gain medium. The following

plausibility argument was proposed to explain the selection

process [16]. For any laser, the gain must exceed the total

loss to achieve lasing. For a disordered gain medium the total

gain is proportional to the length traveled. There is a critical

length , where lasing begins. We assume that the probability

of traveling back to the start of a random walk through the

scatterers and gain media after traveling a length decreases

exponentially: , where is the mean-free path

in the medium [16]. Closed loops are necessary to achieve

coherent emission. Any closed loop with will not lase.

There are strong cutoffs on both sides of . On the small

side, round trips with these lengths have insufficient gain to lase.

On the large side, there are paths with higher gain, but exponen-

tially fewer in number. The pathlengths that lase are selected to

be very near , and therefore they are nearly identical. This is

one of the main properties of random lasers.

The dye-TiO suspension shows two fundamental lengths

that may contradict the above explanation. The polymer film

thickness is about 1 m and the emission wavelength is about

0.6 for the illuminated area of 1 by 100 m; thus this is

almost a two-dimensional system. In this system, there is a

single dominant resonator length. On the contrary, the dye-TiO

system is a liquid and is thus three-dimensional. Layers of

liquid closer to the surface have a greater excitation since

they very efficiently absorb the excitation and leave less for

deeper layers. The gain in directions parallel to the surface

and perpendicular to it is likely anisotropic. It may be that one

cavity length is parallel to the surface of the cuvette and the

other is perpendicular, with each direction having a different

gain coefficient. It is also possible that deeper suspension layers

with different gain give rise to different resonators.

In summary, the coherent narrow emission from random sys-

tems can justifyable be called random lasing. Feedback occurs

for closed loops with a round trip length within a narrow range

of the minimum length required to achieve lasing.
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