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Abstract—This paper presents two fast least squares lattice 
algorithms for adaptive nonlinear filters equipped with bilinear 
system models. Bilinear models are attractive for adaptive fil­
tering applications because they can approximate a large class 
of nonlinear systems adequately, and usually with considerable 
parsimony in the number of coefficients required. The lattice 
filter formulation transforms the nonlinear filtering problem 
into an equivalent multichannel linear filtering problem and 
then uses multichannel lattice filtering algorithms to solve the 
nonlinear filtering problem. The lattice filters perform a Gram- 
Schmidt orthogonalization of the input data and have very good 
numerical properties. Furthermore, the computational com­
plexity of the algorithms is an order of magnitude smaller than 
previously available methods. The first of the two approaches 
is an equation error algorithm that uses the measured desired 
response signal directly to compute the adaptive filter outputs. 
This method is conceptually very simple; however, it will result 
in biased system models in the presence of measurement noise. 
The second approach is an approximate least squares output 
error solution. In this case, the past samples of the output of 
the adaptive system itself are used to produce the filter output 
at the current time. Results of several experiments that dem­
onstrate and compare the properties of the adaptive bilinear 
filters are also presented in this paper. These results indicate 
that the output error algorithm is less sensitive to output mea­
surement noise than the equation error method.

I .  I n t r o d u c t i o n

WHILE linear filters and system models have been 
very useful in a large variety of applications and are 
conceptually and implementationally very simple, there 

are several applications in which they will not perform 
well at all. A simple but pervasive situation where linear 
filters will not perform adequately involves saturation 
nonlinearities. Another situation where linear filters will 
seriously fail involves trying to relate two signals with 
nonoverlapping spectral components. This paper is con­
cerned with developing adaptive filtering algorithms for 
nonlinear systems modeled as bilinear systems. System
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analysis using nonlinear structures has several applica­
tions, including those in channel equalization [1], echo 
cancellation [2], [3], noise cancellation [4], [5], charac­
terizing semiconductor devices [6], modeling biological 
phenomenon [4], [7], and several others.

A very common system model that has been employed 
with relatively good success in nonlinear filtering appli­
cations is the Volterra system model [8], [9]. Such models 
express the relationship between the output signal y  (n) of 
the causal discrete-time nonlinear system and its input 
x{n) using a Volterra series expansion in the input signal 
as

OO

y(n) = h0 + Z  h\{m\)x(n -  mx)
m i = 0  

oo oo
+ Z  Z  h2{m], m2)x(n — m^xi n — m2)

mi — 0 w: = 0

OO OO 00

+ • • • + Z  Z  • • • Z  /ip
w i = 0 W2 — 0 mp = 0

■ (m|, m2, • • • , mp) x ( n ' r  mx)x(n -  m2) 

x(n -  mp) + ■ ■  ■ ( 1 . 1 )

where hp( ■ • •) is known as thepth order Volterra kernel 
of the nonlinear system [8], [9]. Several researchers have 
developed adaptive filters based on truncated Volterra se­
ries expansion [2]-[4], [10]-[15]. The main problem as­
sociated with such filters is the extremely large number of 
coefficients (and the correspondingly large computational 
complexity) that is usually required to adequately model 
the nonlinear system under consideration. An alternate 
approach pursued in this paper is to use system models 
involving nonlinear feedback, in which the input-output 
relationship is governed by a recursive nonlinear differ­
ence equation of the type [16]

M
y(n) = Z  Pj[x(n),  • • • , x(n -  N +  1), y(n — 1),

/= i

• • • , y ( n  -  N +  1)] (1.2)

where Pt [ ■ ■ • ] is an i th order polynomial in the variables 
within the square brackets. Just as linear IIR filters can 
model many linear systems with more parsimony than FIR 
filters, there are a large number of nonlinear systems that 
can be approximated by nonlinear feedback models using 
a relatively small number of parameters. In such situa­
tions, one can expect that the corresponding adaptive fil­
ters can be implemented with good computational effi-
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ciency. Perhaps the simplest among the nonlinear 
feedback models is the bilinear system model. The input- 
output relationship is given by the nonlinear difference 
equation

N - 1 N - 1  N - i

y(ri) = X atx(n — i) + X 2  b,:x(n — i)
i = 0 i = 0 j = 1 J

N -  1

■ y(n -  j )  + X C j y ( n - j ) .  (1.3)
j = 1

(It should be noted that the upper limits on all the sum­
mations are the same only for pedagogical convenience. 
The extension to the case of an arbitrary number of non­
zero coefficients in each summation is straightforward, as 
will be seen later.)

The simplicity of the bilinear system model when com­
pared with the Volterra system model in (1.1) is obvious. 
Another attractive feature of the bilinear system models 
is that they can be used to approximate any Volterra sys­
tem with arbitrary precision under fairly general condi­
tions [17]. Because of these advantages, bilinear system 
models have found various applications, including those 
in control systems, population models, biological sys­
tems, economics, etc. An overview of continuous-time 
bilinear system models and their applications can be found 
in [18], [19]. In this paper, we present two adaptive lat­
tice filtering algorithms for bilinear filtering. In spite of 
the potential benefits of such system models, very little 
work has been done on adaptive filters employing nonlin­
ear feedback models. Among the very few published 
works are [20]-[24]. The results in [20], [21], [23] in­
volve direct-form structures and employ the conventional 
recursive least squares adaptation algorithm or its varia­
tions, which are computationally very complex. Fast ver­
sions of such algorithms will almost certainly suffer from 
numerical problems. Reference [24] contains a Kalman 
filter type algorithm for adaptive bilinear filtering when 
the only unknown parameters are the noise statistics. The 
approach in [25] performs a Gram-Schmidt orthogonal­
ization of the data. However, implementing an adaptive 
filter using this method for the structure shown in (1.3) 
requires 0 ( N 4) operations per time instant. Reference [21] 
discusses an algorithm involving the simpler least mean 
square (LMS) adaptive filter. Such algorithms are known 
for their slow and input-dependent convergence rates. 
Lattice structures are attractive because of the existence 
of fast and numerically stable adaptive algorithms. The 
method presented in [22] involves a lattice structure, but 
is useful only for a very special class of nonlinear models. 
We believe that ours is the first successful attempt at de­
riving adaptive lattice filters that is applicable for the gen­
eral bilinear system model. Furthermore, we will show in 
the next section that the methods presented in this paper 
can be very easily extended to more general nonlinear 
output feedback structures.

The two algorithms presented in this paper differ only 
in the way in which the output feedback is accomplished 
in the adaptive filter. The first approach, which is an

equation error adaptive filter, uses the desired response 
signal directly to compute the adaptive filter output. The 
other method is an output error algorithm and uses the 
past samples of the output of the adaptive filter to obtain 
the current output and results in a suboptimal least squares 
output error adaptive filter. The former technique results 
in biased system estimates in the presence of observation 
noise and is therefore useful when the measurement noise 
level is small. The output error algorithm has the potential 
to reduce the effects of the observation noise. It is impor­
tant to note that our algorithm provides a lattice parame­
terization of the nonlinear relationship between the input 
and desired response signals of the adaptive filter and that 
their computational efficiency will not be useful in appli­
cations where direct form parameters are needed. How­
ever, there are a large number of applications where the 
estimate of the desired response signal or the estimation 
error are of interest (for example, noise cancellation, echo 
cancellation, etc.) and our algorithms are most useful in 
such cases.

The rest of the paper is organized as follows. The next 
section contains the derivation of a lattice structure for 
bilinear filters. In Section III, we will present the recur­
sive least squares algorithms for adaptive lattice bilinear 
filtering. Experimental results demonstrating and com­
paring the properties of the algorithms are presented in 
Section IV. Finally, the concluding remarks are made in 
Section V. The equations for converting a set of lattice 
parameters to those of the direct-form bilinear filters are 
presented in the Appendix.

II. A L a t t ic e  St r u c t u r e  fo r  B il in e a r  F il t e r in g

Consider the problem of adaptively estimating the de­
sired response signal y(n) as the response of a bilinear 
system to its input signal x ( n ) .  We will recursively esti­
mate the bilinear system parameters such that error func­
tion

n
l N(n) = X \ n~k[y(k) -  yn(k)f (2.1)

k=\

is minimized at each instant. In this expression X, 0 < X
< 1, is a constant that controls the memory of the adap­
tive filter, and yn(k) is an estimate of y(k) based on the 
parameters of the adaptive filter at time n.

We will consider two different approaches to solving 
the problem, which differ in the way in which yn(k) is 
evaluated. The first approach is the equation error for­
mulation, in which the adaptive filter output is estimated 
as

N - 1 N -  1 N - 1

y (n) = X a:(ri)x(n — i) + 2  X b;i(ri)x(n — i)
i = 0 i = o j = 1

N -  1

• y(n -  j )  + X Cj ( r i )y(n -  j )  (2.2)
j= i

where a, (n) ,  b ^ i n ) ,  and Cj(n)  are the coefficients of the 
adaptive bilinear filter at time n.  The second approach is
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an output error formulation, in which the adaptive filter 
output is estimated as

N- 1 N— 1 N—1
y„(n) = X  aj(n)x(n -  i) +  £  S  bu(n)x(n -  i)

i = o ; = o j = i
N- 1

‘ S n - M  -  j )  + £  Cj (n)yn . j ( n  -  j ) .  (2.3)
7=1

This formulation results in a suboptimal least squares so­
lution in the sense that the adaptive filter coefficients at 
time n  depend on those at the previous times through the 
estimates y„-j(n — j ) \ j  = 1,2, • • • , TV -  1, as can be 
seen from the above equation. This approximation is a 
reasonable one when X is very close to one. In such cases, 
the coefficients will change very slowly and, therefore, 
the following approximation is valid:

yn(n -  j )  = y„-j(n -  j ) .  (2.4)
Note that the spirit of this approximation is very similar 
to that employed in many gradient adaptive output error 
algorithms for linear HR filtering [26], [27].

A direct solution to the equation error formulation of 
the problem may be found using conventional techniques. 
Let us define the input signal vector, UN(n) (of size TV2 + 
TV — 1), and the coefficient vector, WN{ri), at each time 
instant n to be

UN(n) = [*(«), • ■ • , x(n -  TV + 1), x(ri)y(n -  1),

• • • , x(n — TV + 1 )y(n -  TV +  1),

y(n — 1), • • • , y(n — TV + l ) f  (2.5)

and

WN(n) = [a0(«), • • • , aN_ x(ri), b0 l (n), ■ • • ,

bN . UN_ i ( n ) ,  cx(ri),  • • • , cN _ i ( n ) ] r  (2 .6 )

respectively. In the above, ( -)T denotes the matrix trans­
pose of (•)■ Equation (2.1) can now be written in a com­
pact form using vector notation as

n

ZN(n) =  £  \ n~k[y (k ) -  WTN(k)UN(k)]2. (2.7) 
k = 1

The optimal coefficient vector W*, (n) which minimizes 
£N(n) is immediately seen to be [28]

WUn)  = RNl (n)PN(n) (2.8)

where
n

RN(n) =  £  \ n~kUN(k)UTN(k) (2.9)
k = 1

and
n

PN{n) =  E  \ n~kUN(k)y(k). (2.10)
k = 1

The solution to the output error formulation of the 
problem can be solved only by iterative techniques, i.e., 
one needs to solve for WN(n) at each time. The solution

involves simply substituting %(k) in place of y(k) in (2.5) 
and iterating equations (2.9), (2.10), and (2.8) at each 
time.

Both the solutions involve matrix inversion or equiva­
lent techniques and require a large number of numerical 
operations. The approaches followed in [20], [23] are all 
variations of this direct approach and require at least
O (N4) arithmetic operations per time instant for recursive 
implementation. It is conceivable that one can use fast 
algorithms for solving for W*(n)\ however, such solu­
tions will almost invariably be prone to numerical prob­
lems.

Our approach for developing a lattice structure for bi­
linear filtering is to transform the nonlinear filtering prob­
lem into an equivalent multichannel, but linear, filtering 
problem. This approach is similar to the development of 
the adaptive lattice Volterra filter in [15]. The basic idea 
is to partition the input vector UN(n) into the following 
set of 2N smaller vectors. (Here d(ri) corresponds to y(n) 
or y„(n), depending on whether the equation error or the 
output error approach is employed.)

CH 1: [x(n), x(n — 1), • • • , x(n — N +  1)]

CH 2: [d(n -  1), d(n -  2), • • • , 

d(n -  N +  1)]

CH 3: [x(n — 1 )d(n — 1), x(n — 2) 

d(n — 2 ), • • • , 

x(n -  N  +  1 )d(n — N +  1)]

CH4: [x(n)d(n — 1), x(n — 1 )d(n — 2),

• • • , x(n — N +  2) d(n — N  + 1)]

CH 5: [x(n -  2)d(n -  1), x(n -  3)d{n -  2),

• • • , x(n -  N +  1 )d(n — TV + 2)]

CH 6: [x(n)d{n — 2), x(n — 1 )d(n — 3),

• • • , x(n — N +  3)d(n -  N  +  1)]

CH 2N -  1: [x(n -  N +  1 )d(n -  1)]

CH 2N: [x(n)d(n -  N  +  1)]. (2.11)

Now, we can consider each of the above vectors as 
being formed from successive samples of signals from a 
different input channel. Thus we can translate the bilinear 
filtering problem into an equivalent multichannel linear 
filtering problem with 2N channels.

The most important manner in which this multichannel 
characterization differs from traditional multichannel, 
adaptive linear filters is that the number of coefficients 
associated with each channel varies from channel to chan­
nel. Channel 1 has TV coefficients associated with it while 
channels 2 ,3,  and 4 have TV -  1 coefficients. The number 
of coefficients for the (2k — l)th and 2Ath channels is TV
— k +  1 for k > 3 .
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To simplify the notations, let jc, («); i = 0, 1, • • •
1 be defined as

x0 (n) = [*(«)]

xx (n) — [d(n — 1), x(n — 1 )d(n — 1),

• x(n)d(n — l)]r 

*2 (ri) = [x(n — 2)d(n — 1), x(ri)d(n — 2)\T

N x h2(ri) = [xl(n -  2), x\(n -  1), *[(«)]7

xN_ x(ri) = [x(n — N + 1 )d(n — 1), x(ri)

• d(n -  N  + I)]7-.

> C\,N~2 (n),

denote the coefficient vector of the adaptive filter at time 
n in the present multichannel formulation. Then, the out­
put signal yn (n) can be written as

yn(ri) = Cl(n)XN(ri). (2.16)
Once again, note that

CN(n) = LNWN(n). (2.17)

The first task involved in developing a lattice structure 
for bilinear filters is to obtain a Gram-Schmidt orthogo- 
nalization of the input data. The orthogonalization can be 
carried out in an appropriately defined inner product 
space. In our case, this space will be defined by the input 
signal corresponding to each coefficient, and the expo­
nentially weighted least squares optimization criterion that 
we are employing throughout the paper. While there are 
several approaches for performing the Gram-Schmidt or­
thogonalization, our method follows the technique in [29] 
very closely. The development of the lattice structure de­
pends critically on two different partitions of the input 
vector XN(n). The first partition divides the elements of 
XN(n) into N “backward” input vectors as follows:

*o (ri) =  [*o(«)l

■x -̂i (ri) = [xl(n -  N + 1 ) ,x ] (n N + 2),

(2.18)

Let bm (n) be the optimal estimation error vector (in the 
least squares sense) when x bm(ri) is estimated using 
xl  (ri), x b(n), ■ ■ ■ , x bm _ , (n) (Note that b0(n) = x hn(n) by 
definition). It is well known that the “backward predic­
tion” residuals {bm(ri)\ m = 0, 1, • • • , N — 1} form an 

(2.12) orthogonal decomposition of xf(n); i = 0, 1, • •

The above representation is useful since all the chan­
nels belonging to each subset have the same number of 
delays. In particular, the channels inx, (n) have N — I —
i delays associated with them. We can now express the 
input vector in terms of the multichannel representation 
as

XN(ri) = [xl(n), • • • , x l(n -  N + 1), xj(n),  ■ ■ ■ , 

xl (n -  N  + 2), • • • , x TN_ x(n)?.  (2.13)

All the elements of the input vector XN(n) are the same 
as those of UN(ri). The two vectors differ from each other 
only in the sense that their elements are ordered in differ­
ent ways, i.e.,

X^(n) = Ln UN{n) (2.14)

where LN is an appropriate permutation matrix. Let

Cw(w) =  [Co,o(«)> ’ ' ’ ’ C0,N-\(ri),

m —
1. Once this decomposition has been achieved, we can 
estimate y (n) as a linear combination of the elements of 
the “backward prediction” error vectors.

Just as in any lattice filter formulation, efficient com­
putation of “backward prediction” residual vectors re­
quires knowledge of the “ forward prediction” error vec­
tors. For understanding the notion of “ forward 
prediction” in our context, we have to introduce the sec­
ond type of partitioning of the input data. For defining the 
wth order “ forward prediction” error, we partition the 
elements of the first m + 1 “backward” input vectors in 
(2.18) (which is the same as the elements of Xm (n)) as

x fm:o(n) =  [x l(n  -  m)]

•*4 :i (n) L*o(n ~  m +  1), x\ (n  — m + 1)]T 

n — m + 2 ), x\ (n  

xi (n — m + 2)]t

*m:2 (n) = [x l ( n — m + 2), x\(n — m + 2),

x fm,m(ri) = [xl(n), x{(n), x Tm(n)]T. (2.19)

The mth order “ forward prediction” error vector fm(ri) 
is defined as the estimation error when x fm m (n) is esti­
mated as a linear combination of all the elements of 
x fm.0(n), x fmA(ri), ■ ■ ■ , x fm,m-  | (n). As usual we will de­
fine fo(n) to be the same as x0:o (n).

We can now proceed to develop the order update equa­
tions for the “forward” and “backward” predictors of 
the lattice. Notice that

, / ,(«) =
J \-.m- I-  \(n)

xm (ri)
(2.20)

and

x m(n) =
x m-\(n -  1)

-Xm (n)

Similar to the partitioning in (2.20) and (2.21), let

7m (ri)

(2.21)

and

x bi(n) = [xl(n -  1), *f(rt)]7

fm(ri)

K ( n )  =

L/Lm>(«)J

bm(n) 

lb%\ri)\

(2.22)

(2.23)



BAIK AND MATHEWS: ADAPTIVE LATTICE BILINEAR FILTERS 2037

where fm (n) and bm (n) correspond to the prediction error 
vectors in the estimation of :m _ ] (n) and x bm_ x(n — 
1), respectively. Note that £>,(n — 1); i =  0, 1, • • • , m
— 1 form an orthogonal decomposition for xf(n — 1); i 
= 0 , 1, • • • , m — 1 (or, equivalently, the elements of 
the input vector Xm(n — 1)). Furthermore, fm _ : (n) is the 
optimal “ forward prediction” error when i(n)
is estimated using fc,(n — 1); i =  0 , 1, • • • , m -  2 
(which is an orthogonal decomposition of the elements of 
Xm_, (n — 1)). It follows immediately that any possible 
improvement in the forward prediction of , :m_ , («) 
using Xm (n) can be obtained by making use of the addi­
tional information contained in £„,_, (« -  1). Thus the 
mth order “ forward prediction” error can be obtained re­
cursively as

frn(n) = L - x ( n ) ~  K fJ(n)bm_ , (n -  1) (2.24)

where K̂ m(n) is the optimal coefficient matrix that esti­
mates in) using bm- i ( n  -  1). For m >  2, 
x { , _ 1:m_, («)  and bm_i(n — l ) h a v e 2 (m -  1) elements 
each and, therefore, K fm(n) is a matrix with 2 (m — 1) x  
2{m — 1) elements whenever m > 2. For the first stage, 
the corresponding coefficients are scalars. Let 

(n) denote the optimal prediction of 
JCm-i:m-i(«) using the elements o f b,(n — 1); * =  0 , 1,
• • • , m — 2. Then,

Xfm-\-.m-\{n) = . f £ - I : m - l  («) +  /„ ,-,(« )•  (2.25)

Since bm(n -  1) is orthogonal t o 1 -.m- 1 (n)> K fmin) is 
also the optimal coefficient matrix that estimates fm _ , (n) 
using bm-\ {n  — 1). Consequently,

K fm(n) =  R ' t ^ n  -  1)Am(n) (2.26)

where Rbm _ i (n) is the least squares autocorrelation matrix 
of bm _ , (n) and Am in) is the corresponding crosscorrela­
tion matrix forf m-\(n)  and bm_ x(n — 1). These quan­
tities as well as methods for efficiently updating them re­
cursively are discussed in Section III.

Similar to the above development, we can also show 
that

bm (/i) =  bm _ , (n -  1) -  K hJ (n)fm _ , («) (2.27)

where K bm (n) is the appropriate predictor coefficient ma­
trix. In analogy with usual lattice terminology, we will 
refer to the coefficient matrices K fm (n) and K m (n) as re­
flection coefficient matrices.

It is also not very difficult to develop an order recursion 
for and b{™](n) as follows:

f%\n)  =  /Lmi  . («) -  K i m)T(n)bm_ , ( / i -  1) (2.28)

b {: \ n )  =  /Lmi  , (n) -  K * m)T(n)fm_ , (n) (2.29)

where/^m)(n); k = 0, 1, • • •  , m — 1 are auxiliary pre­
diction error vectors in estimating xm (n) using the vectors 
•**:o(«), • • • , •*{;*-1 (n), and K%m)(n) and K%m)(n) are 
the auxiliary reflection coefficient matrices at mth stage. 
Similar to the discussion surrounding the reflection coef­
ficients, we can see that the auxiliary reflection coeffi­

cients are matrices with 2 x 2 m elements at the mth stage 
for m > 2. / [ m)(n) can be obtained recursively as

f ' r  (n) = f i ml , (n) -  K fir Tbk _ , (n -  1);

k = 1, 2, • • • , m — 1 (2.30)

with/om)(/i) = xm(n).
The joint process estimation error eN(n) is the error in 

estimating y(n) using the input vector XN(n) and is given 
by

eN(n) = yin) -  C TN(n)XN(n). (2.31)
As discussed earlier, since the elements of the “back­

ward prediction” error vectors b0(n), • • • , bN_ , (n) span 
the same space that is spanned by the elements of input 
vector XN(n) and since bm(n) is orthogonal to the space 
spanned by b0(n), • • • , bm _,(«), we can compute the 
joint process estimation error in an order recursive man­
ner as

m
em(n) = yin) -  E  k?kr(n)bk  ̂\{n)

k = 1

= <?„_,(«) -  k ŷ (n)bm „ | (n) (2.32)

where k ym in) is the appropriate coefficient vector and e0 in) 
= yin). Note that k ymin) has 2m elements for m > 2 and 
that it is a scalar when m = 1.

The lattice equations corresponding to the structure de­
veloped are given in Table I, and the structure is depicted 
in Fig. 1. The procedure for converting from lattice pa­
rameter to direct-form bilinear filter parameters is derived 
in the Appendix.

Remark: The extension of the lattice structure to gen­
eral recursive polynomial systems described in (1.2) is a 
straightforward task. In fact, the only difference between 
the general case and the bilinear case is how the input 
vectors x0in), x x in), ■ ■ • , xN _ i in) are defined. Suppose 
that we can partition all the terms in the polynomial sys­
tem model as belonging to M channels. Let Nm be the 
delay associated with the mth channel. Note that Nm be­
longs to the set 0, 1, • • • , N — 1 since we have restricted 
the number of delay elements in (1.2). We will now de­
fine xiin) as the vector formed by the most recent ele­
ments of all the channels with N — 1 — i delay elements. 
Once these vectors have been defined, the rest of the de­
rivations will apply to general recursive polynomial 
models also. Note that the above discussion will apply to 
bilinear system models where the number of coefficients 
associated with each summation in the definition of the 
system model is not restricted to be the same as in (1.3). 
In the rest of the paper, we will concentrate on the model 
in (1.3) because of the simplicity of presentation it pro­
vides.

III. L e a st  S q u a r e s  L a t t ic e  A d a p t iv e  B il in e a r  
F il t e r in g  A l g o r it h m

Once the lattice structure has been developed, deriving 
the adaptation algorithm is fairly simple. The develop­
ment is closely related to that in [29]. The key idea is that
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TA B LE I 
Lattice  B ilinear  F ilter

In itia liza tion

f 0 (n) = b0 (n) =  x{n)

[d(n  -  1), x (n  — 1 )d (n  -  1), x (n )d (n  -  l ) ] r  

[x (n  -  p )d (n  -  1), x (« )d (n  -  p )]T \  

eQ (n) = y{n).

P =  1 

p  = 2, 3, • • • , N  -  1

Itera tion  procedure  
D o (T -1 .4 )-(T -1 .7 ) , fo rm  =  1, 2

/,„(*) = 

bm(n) =

, N -  1

/ m-i(n ) -  KfJ(n)bm^,(n -  1)

-  K T T(n)bm-x(* ~ D
-  1) -  K bJ ( n ) f m. , ( n )

_/n,(n) -  tf£m)7(«)/„-,(")
Do (T -1 .6 ), f o r p  =  m + 1, m  + 2 , • • • , N  — 1

f {£ \ n )  =  / i f L  i (n) -  K fJ,p)T(n)bm _ , (n -  1)

em(n) = e,„ _ , (n) -  k i f ( n )b m-  , (n)

eN(n) = eN_ ,(n )  -  k .t f (n )b N- ,(n ).

fF o r  equation  e rro r fo rm ulation , d (n )  = y (n ) .
F or output e rro r form ulation , d (n )  =  y (n )  — eN(n).

(T -1.1) 

(T -1.2) 

(T-1.3)

(T-1.4)

(T-1.5)

(T-1.6) 

(T-1.7) 

(T -1.8)

Fig, 1. B lock d iagram  o f  the b ilinea r la ttice structure fo r N  = 3. T he num ber o f  lines going  into and out o f  any com ponent 
represents the num ber o f  inpu t channels and ou tput channels , respectively , o f  tha t com ponent.

the orthogonalization of the data makes it possible to con­
sider each stage separately and the recursions defining the 
adaptive filter can be developed independently for each 
stage. Let us consider the process for updating K fm(n). 
The derivation that follows is typical of every other case, 
and only sketches of the derivation will be given for the 
other variables. The complete set of recursions for the 
least squares lattice adaptive bilinear filter is given in Ta­
ble II.

As discussed in Section II, K fm(n) is the optimal coef­
ficient matrix for estimating as a linear combi­
nation of the elements of bm _ j (n — 1) and is given by

K fm(n) = R l)Am(n) (3.1)

where
n

R i - d n )  = £  ,,„(*) (3.2)*= i

and
n

Am(n) = £  \ n~kbm_ Un(k -  \ ) f Tm^ , n(k) (3-3)
k= 1

are the least squares autocorrelation matrix of bm- hn(ri) 
and the least squares cross-correlation matrix of bm _ x „ (n
— 1) and/m_i „(n), respectively. In the above equations 
the second subscript n for the prediction error sequences 
explicitly indicates that the prediction errors are com-
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TA B LE II
T he R ecursive  L east Squares A daptive  L attice  B ilinear F ilter

Time in itia liza tion
D o (T -2 .l ) - (T -2 .2 ) , fo rm  =  0 , 1,

D o (T -2 .3 )-(T -2 .2 1 ), for n =  1 , 2 , -  
O rder in itia liza tion  
Do (T -2 .3 )-(T -2 .7 ) , fo r n =  1, 2 , • •

■ , N  -  1 

am(0) = 1

RU 0) = K (  0) =
s,

&hm + 2 ’
if  m  = 0 

otherwise

a 0 (n) =  1

R fp(n) = R%(n) =  XRf0(n -  1) +  x ( n f  

/o (« ) =  M « )  = x(n )

[d(n -  1), x (n  -  1 )d (n  -  1), x(r i)d (n  -  l ) ] r 

[-t(n -  p ) d (n  -  1), x (n )d (n  -  p ) ] r t , 

eQ(n) = y (n ).

/ ! / »
P =  1 

P = 2, 3, , N  -  1

Itera tion  p rocedure  
Do (T -2 .8 ) - (T -2 .19) fo rm  =  1, 2, , N  -  1

A m(n) = \ A m(n -  1) +  * „ ,_ ,(«  -  l ) f l  -  , (n ) /o tm _ , (n -  1)

A £ m,(n) =  XA £ m)(n -  1) +  bm_ {(n -  l ) / ^ i r , ( n ) / a m _ , (n -  1)

4 j" ’w  = XA«"’(» -  1) + /m- i ( « ) / r r, («)/«„-,(« -  1)
/ „ _ , ( « )  -  A l ( n ) R ~ t  ,(n  -  l ) * m_ ,( n  -  1)

/!„"■»,(«) -  -  1).
-  1) -

/m(«)

M«) =

Do (T -2 .1 3 )-(T -2 .1 4 ), for p  = m +  1, m +  2 , , N  — 1

A ^ p)(n) =  XA - ^ ’(n -  1) +  -  l ) / ^ ,  ( « ) / a m _ , (n -  1)

/ ? ( « )  =  /if- i («) -  A{,,',)7' ( « ) R ^ 1(« -  l ) b m^ ( n  -  1)

A y„(n)  =  XA }m(n -  1) +  b „ _ ,(n )  e,„ _ , ( « ) / a m_ ,(« )  

em(n) == e „ - i ( n )  -  A yJ ( n ) R ~ t , (n) _ , («) 

otm(n) =  <*„,_,(«) -  b Tm.  x(n )R mh.  x(n )bm.  x(n)

\ ~ 2R ~ f (n -  \ ) f m( n ) fU r i) R ~ f (n -
R ~ f (n) =  \ - ' R ~ f (n -  1) -  

R mb (n) =  R ~ b(n -  1) -

1)
<*m(n -  1) +  X ' f Tm( n ) R j ( n  -  1 ) / m(n) 

\ ~ 2R ~ h (n -  \)b ,„ (n )bT„ (n )R „ h (n -  1)

a m(n) +  bTm(n )R mh(n -  1 )b„ (n )  

A J,(n) =  X A v(«  -  1) +  bN _ \ (ri)eN -  {(n) /  a N -  ^(n) 

e«(n) =  <?jv-i(h) =  A f ( B ) / i ; ' . i ( i i ) 6 , _ i ( » ) .

tF o r  equation  e rro r form ulation , d (n )  =  y (n ) .
F or output e rro r form ulation , d (n )  = y (n )  -  eN(n).

(T-2.1) 

(T-2.2)

(T -2 .3) 

(T-2.4) 

(T-2.5)

(T-2.6) 

(T -2.7)

(T-2.8) 

(T-2.9) 
(T -2 .10)

(T -2 .11) 

(T -2 .12)

(T -2 .13) 

(T -2 .14) 

(T -2 .15) 

(T -2 .16) 

(T -2 .17)

(T -2 .18)

(T -2 .19)

(T -2 .20) 

(T-2.21)

puted using the optimal coefficients at time n. bm{n) and 
f m (n) defined in Section II are related to the above quan­
tities as

bm(n) =  bm n(ri) (3.4)

and

Lin)  = (3.5)
In the rest of the paper, we will avoid the second sub­

script for the prediction error sequences, since this causes 
no confusion. It is shown in [30, sect. 9] that the cross­
correlation matrices and autocorrelation matrix can be up­

dated as

Am(n) = XAm(n -  1) + bm_ x(n -  l ) f l - , («)/am_i

• (n -  1) (3.6)

R bm- X(n) = Xi?* _,(« -  1) + bm^ ( n ) b Tm_ x

■ ( « ) / « » - i ( » )  (3.7)
where

= «m-i(«) = b l _ l (n)R~lLl (n)bm_.l (n). (3.8) 
a m(n), of course, is the familiar “ likelihood” variable for
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TA B LE III
Com putational  C om plexity  of the A daptive  L attice  B ilinear  F ilters

Equation
N um ber

N um ber o f  M ultiplication 
and D ivision

Equation
N um ber

N um ber o f M ultiplication 
and D ivision

(T-2 .4) 2 (T -2 .1 4 )n n„ lp
(T -2 .6 ) 2 (N  -~ 1) (T -2 .15) 2 n„, +  1
(T-2.8) 2 nl, +  n,„ ♦ nl,
t (T -2 .16) n,„
(T -2.9) 2n,„ L (T -2 .17) nm
(T -2 .10) 2 ■L (T- nl, +  n,„lm

2 .1 8 ) t t
(T -2 .1 l ) n n;„ + n j „ (T -2 .19) 2 n2m + i +  3n,„ + , +  2

(T-2 .12) 2/7,',. + n,„ (T -2 .20) 2 nN +  1

(T -2 .13) 2 n j „ +  lp (T -2 .21) nN Wn

N -  1
S  (4nl, + i +  6n,„ + i +  6 + 6nl„ +  5 n,„ + /„, +  5)

Total N -  1 .V - 1
+  s  s

m = 1 p -  m + 1
(3 +  /,,) -  n2N + 2N  -  1

= 4 6 /3 N -’ +  10/V2 -  1 / 3 N  -- 5 0 ;  N  > 2

« , „ = r  m=1/ 2m, m =  2, 3, • • • , N  — 1

_  3, p =  1 

’ (_2, p  =  2, 3, • ■ • , N  -  1

tC a lcu la tio n  o f ( « ) / “ ,„ -  i (« -  1) in (T -2 .9 ) and (T -2 .10).
^C alculation  o f  , (n )b m _ , (n).

-  1) in (T -2 .1 1) and (T -2 .14) is ju s t a delayed  version o f i  (n). 
t |(T -2 .1 8 )  need not be com puted  fo rm  =  N  — 1.

the mth stage and it is relatively easy to show that [30]

0 < a m(n) <  1. (3.9)

The inverse of the autocorrelation matrix can be recur­
sively updated using the matrix inversion lemma as [28]

R~b(n) =  \ ~ xR~b(n -  1)

_  -  1 )bm(n)bTm{n)R~h(n -  1)
a m(n) +  X-1 b l ( n) R~h(n -  1 )bm(n) '

(3.10)

The recursions for K hm(ri) can be derived in a similar 
fashion by simply recognizing that K hm(n) is the optimal 
(in the least squares sense) coefficient matrix for estimat­
ing bm^x{n — 1) as a linear combination of elements of 
f m~i(n).  The relevant equations appear in Table II as 
(T-2.8), the top part of (T-2.12), and (T-2.17). The aux­
iliary variables K^,p)(n) and can also be similarly 
updated. Note that K ^p\n )  turns out to be the optimal 
coefficient matrix when f (p)_ , (n) is estimated using 
frm_i(n — 1) and that K b̂m)(n)is the optimal coefficient 
matrix that estimates /J^ i \ (n) using elements of f m _ , (n).

The derivations of the recursions for joint-process es­
timation are also similar to earlier derivations. Note that 
the orthogonality of bm(n); m = 0, 1, • • • , N — 1 im­
plies that estimation of y(n) using bm (n) will give the same 
result as estimating em _ , (n) (the error in estimating y  (n) 
using ba(n), b \ (n), • • • , bm _ \ (n)). It is now straightfor­
ward to see that (T-2.16)-(T-2.19), (T-2.20), and

(T-2.21) in Table II describe the set of recursions for up­
dating the joint-process estimator coefficient vectors and 
the joint-process estimation error sequence.

The number of multiplications and divisions associated 
with each recursion is tabulated in Table III. The count 
of other arithmetical operations is comparable to that 
shown for multiplications and divisions. The computa­
tional complexity corresponds to 46/3A?3 + 10N2 -
1 /37V — 50 multiplications and divisions per iteration for 
N > 2. This complexity is substantially smaller than the 
0 ( N 4) complexity algorithms that were previously avail­
able. This statement is especially true for large values of 
N.

The initial conditions for this algorithm are the same as 
those for conventional recursive least squares lattice al­
gorithms [30] and are given by

Am (0) = A ^ ( 0 )  = (0) = A >m(0) = 0 

8, m = 0
r £(0) = r U0) =

a«(0) = 1

S/r m = 1,2,

(3.11)

, N -  1

(3.12)

(3.13)

where b is a small positive constant and I, is a I x / iden­
tity matrix. Exact initialization is possible; however, we 
did not incorporate exact initialization techniques in our 
experiments.
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IV. Experimental Results

Several experiments for identifying an unknown bi­
linear system from measurement of its input and (a noisy 
version of) the corresponding output were conducted to 
evaluate the performance of the two algorithms. Perfor­
mance comparisons were also made with several algo­
rithms with 0 ( N 4) computational complexity. The input 
signal x(n) to the adaptive filter was obtained as the out­
put of a low-pass filter with transfer function

when its input was a white, zero-mean and pseudorandom 
Gaussian noise. The input signal variance was adjusted 
such that the filter output had unit variance. The desired 
response signal y(n) was obtained as a noisy measurement 
of a bilinear system with coefficients as given in Table 
IV. The measurement noise signal was an additive white, 
zero-mean and pseudorandom Gaussian process and was 
uncorrelated with the input signal. The adaptive filter was 
run with the same number of coefficients as the unknown 
system. All of the results presented are ensemble averages 
over 50 independent runs.

Figs. 2 and 3 display the mean-squared estimation error 
associated with the equation error and output error meth­
ods, respectively, when X = 0.995. Three different noise 
levels corresponding to output signal-to-noise ratios 
(SNR’s) of oo, 30, and 20 dB were considered in the ex­
periments. Note that both algorithms have very good con­
vergence speeds. The time averages of the ensemble-av­
eraged mean-squared error during the interval from n =  
4001 to n = 5000 are given in Table V.

The tabulations in Table V indicate that the output error 
algorithm performs better than the equation error algo­
rithm in the presence of measurement noise. The differ­
ence in performance is evident in a more dramatic form 
when the mean coefficient trajectories are compared for 
different noise levels. The mean trajectories of a, (n), 
C](n), and b2,2 (n) are plotted in Figs. 4-6, respectively, 
for different noise levels and X = 0.995. The ensemble 
averages were obtained by averaging the coefficients of 
the direct-form bilinear filter realizations after converting 
the lattice parameters to direct-form parameters using the 
results in Table VII. Table VI contains time averages of 
the coefficient trajectories over the last 1000 samples. We 
can observe that the coefficients converge to values dif­
ferent from those of the unknown system in the equation 
error method when the output measurements are noisy. 
The mean behavior of the coefficients in the output error 
adaptive filter appears to be much less sensitive to mea­
surement noise. Note also that the coefficients corre­
sponding to the nonlinear terms are more sensitive to noise 
in both algorithms.

We conducted several experiments to compare the per­
formance of our algorithm with those of two of the com­
putationally more expensive, direct-form techniques dis­
cussed in [23], Figs. 7 and 8 display the mean behavior

TA B LE IV
C oefficien ts of the  U nknown B ilinear System  U sed 

in the  Experim ents

aB = 1.0 a, = 1.0 a2 = 10
io .i =  0 .3  fe, , =  - 0 . 2  b 2A =  0.1
b02 = 0.1 fc, . 2 =  - 0 . 2  b 2 j =  0 .3

c, =  0 .5  c2 =  - 0 . 5

Time
Fig. 2. L earning curves fo r the equation  e rro r algorithm .

0 1000 2000 3000 4000 5000
Time

Fig. 3. Learning  curves for the ou tput erro r algorithm .

TA B LE V
T im e-A veraged M ean Squared E rror O ver the L ast 1000 D ata 

Samples

E quation E rror O utput E rro r

0.995 0 .99 0 .995 0 .99

OO
30 dB 
20 dB

0 . 104£-9 
0 .136E-2 
0 .118£-1

0 .5 7 7 £ -1 0  
0. \21E -2  
0 .109£ -1

0 ,137£-9  
0 .9 4 2 £ -3  
0 .9 4 1 £ -2

0 .7 1 4 £ -10
0 .8 8 7 £ -3
0 .886£-2

of c | (n) obtained using the extended least squares (ELS) 
algorithm and the recursive prediction-error method 
(RPEM), respectively. Similar to some of the results in
[23], the behavior of the coefficient obtained using the
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I------ 1____ I____I____I i I i I i I
0 1000 2000 3000 4000 5000

Time 
(a)

Time
(b)

F ig . 4 . M ean tra jecto ries o f  coefficient a , (n) fo r different ou tpu t S N R ’s: 
(a) E quation e rro r a lgorithm , (b) O utput e rro r algorithm .

ELS algorithm is very erratic. This may have been caused 
by the poor numerical properties of the ELS algorithm. 
RPEM performs the best among all the 0 ( N 4) complexity 
algorithms discussed in [23]. Its performance seems to be 
slightly less noisy than the output error lattice bilinear fil­
ter of this paper. It is interesting to note that the output 
error version of our algorithm performs almost as well as 
the RPEM even though it has only C>(N3) computational 
complexity.

V. C o n c l u d i n g  R e m a r k s

This paper presented an adaptive least squares lattice 
structure for bilinear filtering. Two closely related algo­
rithms of 0 ( N 3) complexity were introduced. This com­
plexity is an order of magnitude better than algorithms of 
0 ( N 4) complexity that were previously available. It is 
possible to develop 0 ( N 3) algorithms for direct-form re­
alizations of adaptive bilinear filters by making use of the 
ideas in [13]. The advantage of the lattice filters that we 
presented over such algorithms is that they are numeri­
cally stable, whereas the “ fast,” direct-form algorithms 
will almost certainly have poor numerical characteristics.

Time
(a)

Time
(b)

Fig. 5. M ean tra jecto ries o f  coefficient c ,(n )  fo r different ou tpu t S N R ’s: 
(a) E quation e rro r a lgorithm , (b) O utpu t e rro r algorithm .

We believe that the computational efficiency and good nu­
merical properties make the introduction of our algo­
rithms a significant development in the area of adaptive 
bilinear filtering.

The equation error algorithm has the advantage that the 
adaptive algorithm will converge to a unique minimum. 
However, this minimum will not correspond to the coef­
ficients of the unknown system in the presence of mea­
surement noise in applications involving system identifi­
cation. The effect of measurement noise on the 
performance of the equation error algorithm was clearly 
evident in the experimental results presented in Section 
IV. The output error algorithm was designed to reduce the 
effect of output measurement noise on the performance of 
the adaptive filter. Results of our experiments indicate that 
the output error algorithm is far less sensitive to measure­
ment noise than the equation error technique. Even though 
we have not attempted a theoretical performance analysis 
of the output error algorithm, we believe that the results 
in [31] can be directly applied to our case.

One significant problem that we have hot addressed in 
this paper is that of the stability of the identified bilinear
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Time
(a)

Fig.

Time
(b)

6. M ean tra jecto ries o f  coefficient b2,2(n) fo r different ou tput S N R ’s: 
(a) E quation erro r a lgorithm , (b) O utput erro r algorithm .

N -  1

+ £
i= i

Cj + £  b,jX(n — i) y ( n - j ) (5.1)

A p p e n d i x

C o n v e r s i o n  F r o m  L a t t i c e  t o  D i r e c t  F o r m  

Conversion from the lattice parameterization to direct- 
form parameterization is a relatively straightforward task. 
We believe that the derivation presented here is much 
simpler than the one presented in [27] for the two-channel 
case. Before proceeding to the derivations, we need to 
define a few quantities related to the direct-form realiza­
tion of bilinear filters. We define permutation matrices Tm 
and Sm as

and

TmXm(n) =

SmXm(n) =

• * m - l : m - l  ( « )

Xm- i  (« -  i)_

rm -  1 («)
_xbm-\{n)  J

(A.l)

(A. 2)

Note that Tm and Sm are orthogonal matrices, i.e., Tm =  
TTm and 5 “ ‘ = S Tm.

Let Am (n) and Bm (n) be the coefficient vectors corre­
sponding to the mth order “ forward” and “backward” 
predictors defined earlier. That is

fmin) = x fm.m{n) -  ATm{n)Xm(n -  1)

= [/, - A Tm(n)\Tm+lXm + i (n) (A. 3)

and
bm{ri) = x bm{n) -  B Tm(n)Xm(ri)

= [ ~ B Tm{n), I]Sm + iXm + i (n). (A.4) 

Let us further partition the coefficient matrices as

system. In general, it is impossible to derive stability con­
ditions for bilinear systems that are independent of the 
characteristics of the input signal. Since one can rewrite 
the input-output relationship of bilinear systems as

N -  1

y(n) = £  diX(n -  i)
i = 0

and

Am(n) =  lAm(n),

Bm(n) = [Bm(n), B%\n)]

so that

fmin) = x fm-\-.m- \in) ~ A Tm{n)Xm{n

f T ( n )  = x j n )  -  A%)T(n)Xm(n -  1) 
h

1)
r(m) |

K(n)  = x°m _,(« 1) -  B ‘m{n)Xm(n)

one may almost always be able to find a bounded input 
sequence that can drive a given bilinear system to insta­
bility. There are several results in literature available for 
(mean square) stability of bilinear systems for given input 
signal statistics [32]-[34], While these results or their 
variations can be applied to check the stability of the bi­
linear systems, on-line implementation of such checks is 
a very costly proposition. One of the problems that the 
authors are currently working on involves the develop­
ment of the computationally efficient stability checks that 
can be implemented on-line and incorporated into our al­
gorithm.

and

b (,Tin) = xm(n) -  BT (n )X m{n).("!)/

(A. 5) 

(A. 6)

(A.7) 

(A. 8) 

(A.9)

(A. 10)

Similarly, let us also define the direct-form coefficient 
matrix and vector, A (p) (n) and Cm (n) for the auxiliary 
prediction and joint-process estimation problems, respec­
tively, using the following definitions for the correspond­
ing error vectors

= xp(n) -  A (mp)T(n)Xm(n -  1);

p = m + I, m + 2, • • •  , N — 1 (A. 11)
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TA B LE VI
Time-Averaged Coefficients over the Last 1000 Data Samples

\ S N R

E quation  E rro r O utput E rro r
O ptim al

Coefficient00 30 dB 20 dB 00 30 dB 20 dB

«o 1.0 0 .997 0.993 1.0 0 .998 0 .994 1.0
a, 1.0 1.146 1.757 1.0 1.005 1.036 1.0
a i 1.0 1.003 0 .808 1.0 0.997 0 .9 9 0 1.0
bo, 1 0 .3 0 .3 0 6 0.309 0 .3 0 .305 0 .315 0 .3
bo,2 0.1 0.095 0.091 0.1 0 .0 9 6 0 .086 0.1
b  1.1 - 0 . 2 - 0 .2 1 5 - 0 .2 7 7 - 0 . 2 - 0 .2 1 0 - 0 .2 3 3 - 0 . 2
* 1.2 - 0 . 2 -0 .1 7 1 - 0 .0 7 7 - 0 . 2 -0 .1 9 3 - 0 .1 7 6 - 0 . 2
b i. 1 0.1 0 .0 9 0 0.116 0.1 0.108 0 .127 0.1
b i . i 0.3 0 .313 0.311 0.3 0 .294 0.281 0 .3
Cy 0 .5 0 .436 0 .203 0 .5 0 .499 0 .4 8 9 0 .5
C2 - 0 . 5 -0 .4 7 1 -0 .3 2 3 - 0 . 5 -0 .4 9 9 - 0 .4 9 4 - 0 . 5

T A B L E  V II 
Conversion from Lattice to Direct Form

In itia liza tion

A ,(n )  =  [* { (« ) ,  * { ' » ]

B,(«) = [**(«), K‘«[,(n)]
A \" \n )  =  K ^ ' i n ) -  p  =  2, 3, • • • , N  -  1

C, (n) =  k  f (n)

Itera tion  Procedure
Do (T-A.5MT-A.8), for m  =  2 , 3, • • • , N  -  1

-  fl,„ - ,  (n -  \ ) K fm(n), / ( <"L , (n) -  * „ _ , ( «  -  1) AT (n) 

_ * £ ( « )  „ 

K i( n )  K * m'(n ) "

i(« -  1) -  /Ci,(n) -  Am̂ (n)KT\n)_
D o (T -A .7 ), for/> =  m +  1, m +  2 , • ■ ■ , N  — 1

' e , ( » )  -  5m_,(n -  DK^'ini

A M  = SJ 

fl,„(«) = Tl

A{£\n) = 

Cm(n) =  5 ^  

Ĉ {n) — Sjj

KfJ,p,(n)
Cm_ ,(n )  -  Bm. , { n ) k im(n) 

k i ( n )

CN_ ,( n )  -  Bn _ , (n )k  yN(n) 

k K n )  _

(T -A .l) 

(T -A .2) 

(T-A. 3) 

(T-A .4)

(T-A. 5) 

(T-A. 6)

(T -A .7) 

(T-A. 8) 

(T-A .9)
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Fig. 7. M ean tra jecto ries o f  coefficient c, (n) fo r different output S N R ’s 
fo r the ELS algorithm .

Time
Fig. 8. M ean tra jecto ries o f  coefficient c, (n) fo r different output S N R ’s 

fo r R PE M .
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and

em(n) = d(n) -  C Tm(n)Xm(n). (A. 12)

Now we are ready to develop a set of recursions that 
relates the direct-form coefficient matrices at stage m to 
the direct-form coefficient matrices at stage m — 1 and 
the reflection coefficient matrices at stage m. Substituting 
(A.3) and (A.4) into (2.24) results in the following:

7m(«) =fm - \ (n)  -  K fJ(n)bm- X(n -  1 )

= * 4 - i : m - i («) -  -  1)

= K Z m - B l - i b i  -  \ ) , I ]SmXm(n -  1)

Xm-\(n  — 1)

x bm -\(n  -  1)J

Am(n) = Si

+

A^in)  = S Tm

+

K fm(n) \ .  (A. 14)

Am - 1 (ri)
_ 0

—Bm- \ {n ~  1)
_/ .

Similarly, substitution of (A. 11) and (A.4) into (T-1.6) 
results in the following equation:

1 (n)

_ 0

- B m_,(n -  1)

I .

p  = m, m + 1, • • • , N — 1.

K f̂ ( n )

(A.15)
In a similar way, we can obtain the order update equa­

tions of Bm (n) and Cm (n) as

Bm(ri) = Tj
0

Bm- i (n  -  1)_

1 a KUn}Am — i (n) _

B™(n) = Trm
0 "/

1

Isi

+ 1 X 2 1 r—
v s,

(A. 16)

K T \ n )  

(A. 17)

Cm(ri) = S i  

+

and

Cm - 1 (n) 

0

Bm- i ( n )
k ym(n) (A. 18)

Since the first-order realizations of the lattice and di­
rect-form bilinear filters are exactly the same, the recur­
sions in (A.14)-(A.18) can be initialized as

A,(n) = K{  (n)

X m — 1 : m — 1 ( )̂ \Am — j (ft), 0]

- K fJ ( n ) [ ~ B Tm_,(n -  1 ) , I ]SmXm(n -  1)

=  x fm -i-.m -\ (n) ~  {[^m-l(«),0]

+ K fJ ( n ) [ - B T„„ , (n -  1), /]} SmXm(n -  1)

(A. 13)

where 0 is a matrix of appropriate dimensions with all 
zero entries. Comparing the above equation with (A.7) 
and equating coefficients of Xm(n — 1) gives the follow­
ing equation:

(A. 19) 

(A. 20) 

(A.21) 

(A.22)

(A.23)

Bx(ri) = K\(n)

A\p)(n) = K ft p\n)- p  = 1, 2, • • • , JV -  1 

*<,>) = K\w (n) 

and
C\ (ri) = k\(n).

The complete recursions are given in Table VII.
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