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Eigenstates of excitons near a surface 
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The exact eigenstates and energies of an electron and a hole of equal effective masses, with an attractive 8-
function interaction and hard-wall repulsion at the surfaces of a solid, are classified and obtained explicitly 
for a solid of arbitrary thickness. Both bound and scattering states of the exciton are significantly quantized
for thin films. 

I. INTRODUCTION 

The present study concerns the effects of col
lisions, with the confining walls of a solid, on a 
Wannier exciton. This is a special case of the 
three-body problem: a composite particle, the 
exciton (an electron and a hole bound by mutual 
attraction) reflected by the one -body forces at a 
surface. Such problems are generally insoluble. 
We obtain an exact solution only for impenetrable 
surfaces, an attractive one-dimensional ii-func
tion two-body interaction and equal masses m. 
= mho Nevertheless, our solution gives insight 
into the physical properties to be expected. We 
indicate the (variational) extension of our results 
to three -dimensions, enabling the more realistic 
Coulomb interaction to be considered; at the same 
time the boundary conditions are respected. With 
applications, calculations, and comparison with 
experiments deferred to a companion paper, 1 the 
present work consists of the construction of solu
tions for two important cases: the semi-infinite 
solid and the finite -thickness film bounded by 
two parallel surfaces. 

The Wannier exciton is described by a Hamilton
ian: 

Instead of the familiar periodic boundary condi
tions, two-particle eigenstates are now subj ect 
to the boundary conditions '1! = 0 when either elec
tron or hole is at the surface. The energy gap 
separating conduction-band electrons from val
ence-band holes is Eg. such that eigenvalues of 
(1) less than Elf are stable (bound) exciton states, 
those greater than Elf are the scattering (unbound) 
states which we do not approximate by plane 
waves, as usual, but we calculate exactly. If 
either of the masses is significantly greater than 
the other, then the adiabatic method may be used 

18 

to obtain the eigenstates suoJecl: 1:0 an error of 
O(m</ m»1/2. This well-known procedure starts 
by fixing the more massive particle (say 1) and 
computing the eigenstates </>n(r 2) and eigenvalues 
En, with the distance Zl from the bounding surface 
beIng a parameter in both [owing to the effects of 
the boundary condition </>n(r2 ) = O.at Z2= 0]. The 
composite wave functions obtained by Pekar2 in 
his original work on the excitons are of the form 

These vanish at Z 1 = 0 but neglect the repulsion, 
prior to impacting the wall, caused by the rise 

(2) 

in the "effective potential" E n(Zl)' The introduction 
of a 90° phase shift into the solution by Ting et al;3 

(3) 

probably overcompensates for this effect. As we 
shall see, far from the surface our exact Bolu
tion satisfies Pekar's ansatz near optical thres
hold, and approaches that of Ref. 3 at higher en
ergies. Near the surface, however, it is more 
complex than either. 

We now turn to the one-dimensional model. As
suming an attractive two-body potential _21/2Xii 
(ze -z,,), the Hamiltonian in the Z direction takes 
the form 

1 a2 1 a2 

H =_--_--_21/2Aii(z -z-)+E. (4) 
z 2m. az.2 2mh azh

2 e h I 

When me and m h are comparable in magnitude, as 
is generally the case in SOlids, 4 an expansion in 
the ratio of the masses must converge slowly if 
at all, so we examine directly the limiting case 
me=mh (denoted m henceforth, for Simplicity). 
One then rotates by 45° in the ze-zh plane to a 
new set of coordinates, shown in Fig. 1: 

'1 =2-1/2(Zh+ Z e) and '2=2-1/2(Zh -z.), (5) 

The physically allowed space occupies the first 
quadrant in the z., Z h plane or, equivalently, the 
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FIG. 1. ze-zh plane. Physical interactions occur 
along the straight-line segments indicated by dash-dot
line, attractive two-body interaction along 45° line and 
infinitely repulsive one-body forces along horizontal 
and vertical axes. Wave-function differs from zero only 
in first quadrant (shaded ragion). Introduction of poten
tials along straight-line segments in other quadrants, 
indicated by solid line, symmetrizes the Hamiltonian 
without affecting eigenstates 

sectors within ±45° of the b1 axis. Thus if we in
troduce an "image" interaction -1I.21/2o(Zh+Ze) 
which vanishes everywhere within the allowed re
gion, there can be no effect on the eigenstates 
except to render the Hamiltonian more symmetri
cal in the new variables and the solution more ob
vious. The suitably augmented H is 

-1 ( a
2 

a2 
) He= -2m ab~ + ab~ -1I.[0(b1)+ 0(b2 )]+E,.. (6) 

This is separable into two identical Hamiltonians 
each of the form 

1 a2 

he"'2m ab2 -II.O(b). 

We classify the eigenstates of (7) according to 
parity. The odd states, Uq(b) unaffected by the 
interaction, are 

Uq(b)=sinqb, with energy €q=q2/2m 

(7) 

(8) 

(unnormalized). The even-parity states include 
the ground state, 

go(b)=e-~mlel, withenergY€0=-tmIl.2 , (9a) 

and the scattering states, 

gq(b)=COS(qlbl+9q), with€q=q2/2m, (9b) 

the phase shifts 9q being given by 

9q = tan-1(mll./q) , (10) 

limited to the interval -t1T ~ 9q ~+ t1T. Note the 
limiting behavior, g - sinq b at small q, and -cosq b 
at large q in conformity with one or the other 
ansatz of Eqs. (2) and (3). 

II. ONE SURFACE AT z = 0 

In the b coordinates, the single surface is located 
at b2=±b1 (see Fig. 1). The obvious choice of'l' 
as a Slater determinant forces the wave function 
to vanish along b2 = b1 • The second boundary con
dition can be satisfied only if the one-particle 
functions chosen to make up the determinantal 
function are both even or both odd. Thus the 
bound -state excitons belong to the even -even 
family: 

'l'Oq = (2I1.m/L)1/2[go(b1)gq(b2) -go(b2)gq(b1)] , 

(11) 

with energy EOq=€o+€q+Et • The scattering states 
belong either to the odd-odd family 

'l'u,q", = (2/L 2)1/2[Uq(b1)u'" (b2 ) -Uq(b2)uq' (b1)) ; (12a) 

or to the even evens family 

'l',.,qq' = (2/L 2)1/2[gq(b1)gq, (b2) -gq(b2)g", (b1)] , (12b) 

both having energy Eqq' = €q + €", + E,. ~ Et ; the 
normalization constants were obtained assuming 
the length of the solid L _ co. 

The continuum of states (11) overlaps the scat
tering states continuum (12) for €o+€q>O, Le., 
for q2>(mll.)2. In this high-energy range the bound 
states are unstable against decomposition into a 
free electron-hole pair by any perturbation such 
as an impurity atom or lattice vibration. This 
threshold also yields a unit of distance Lo = 21/2/ mil.. 
A traveling-wave exciton will not measure less 
than O(L o)' therefore if the length L of the solid 
is comparable to L o, interference between scat
tering at the front and back surfaces can not be 
neglected. This is an important consideration in 
the study of the recently developed heterostruc
tures5 consisting of layered films 50-100 A in 
thickness, and we therefore turn now to this 
quantum interference effect. 

III. TWO SURFACES AT z = 0 AND z = L 

In the ze-zh plane the physically admissable co
ordinates lie within the square O<ze<L and O<Zh 
< L, with 'l' = 0 on the four sides of this square. It 
is therefore permissible to augment the interac
tions in (6) by periodic extensions lying outside 
this region, creating what is in effect a two-di
mensional Kronig-Penney model, illustrated in 
Fig. 2. In the b1 -b2 plane the interactions are 
along the lines of a grid 21/2L apart. The eigen-
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FIG. 2. For a finite thickness film with ze or zh ex
tending over the interval O-L the physical space is the 
shaded area indicated. Extensions of the interactions 
to the solid lines at 9 ± 45 0 creates a two-dimensional 
Kronig:"Penney model. The boundary conditions in the 
text are designed to make the determinantal wave func
tions vanish along the ze = 0 and L lines and along the 
Zh = 0 and L lines (and on their peri9dic extensions). thus 
maintaining the exciton within the physical square. 

functions of the suitable augmented Eq. (6) still. 
factor, and in either variable (;I are eigenfunctions 
of 

(13) 

Let the Bloch function solutions cp({;) of (13) be 
labeled according to inversion symmetry s = ± (cor
responding to g or u of the preceding analysis) and 
lattice-translational symmetry t, cp({;+ 21/2L) 
=tcp({;), as well as the energy eigenvalue, thus 
CPe,s,tU;). Because the translation and inversion 
operators do not commute, they can not share a 
complete set of states. One easily verifies that 
the general eigenvalues t = el<X are incompatible 
with inversion symmetry unless· a = 0 or 1T • 

We next construct the Slater determinants as 
in Eqs. (11) and (12), ensuring that \If = 0 on the 
z ~ = 0 boundary. Imposition of the requirement 
Sl =s2=±1 (denoted gg or uu inSec.II)ensuresthe 
vanishing on the Z e = 0 boundary. A requirement 
t1 = t2 = ±1 for the translational quantum numbers 
allows \If to vanish on the remaining two edges 
of the square. Thus the allowed states of the ex
citon, both bound (E<E,) and unbound (E>E,), 
are quantized according to the following set of 
rules: the eigenstates are 

\If "l'e2, s, t = C el' "2' 8. t [CPei' 8. t( (;l)CP "2.8. t( (;2) 

-cp"lI So t({;2)CP e2' So t({; 1)] 

(s=±l,t=±1) (14) 

having energies E = E:l + E: 2+ E g , with C a suitable 
normalization constant. Aside from normaliza
tion, the individual functions CPI and energies E:I 
are given as follows: the odd functions are 

CPq._l.t(l:)=sin({;n1T/21/ 2L), (15) 

where q = n1T /21/2 L, t = ( -1)" and E: q =~2 /2m. The 
even functions belong to two distinct categories: 
those with t=+ 1 have an extremum at l:=±2-1I2L, 
those with t = -1 vanish at those points. Either t 
labels one bound state and a complementary set 
of scattering states, viz.: 

(
1l:1-2-1/ 2L) 

CP.a.+1. +1 (l:) = cosh· a+ ' E: 0.+1 = -tma! , 

where 

(16a) 

gives the bound state for t = + 1 as a function of L, 
and 

CPq.+l.+1({;)=cosq(I{;I-2-1/ 2L), E: q .+1 = q2/2m , 

where 

(16b) 

yields the allowed values of q for the scattering 
states of t = + 1. 

For t = -1, the equations for the bound state are 

. (I l:1 _2-1
/

2L) 
CP.o,+1._1(l:)=smh a_ ; E:0._1=-tma~, 

where 

(l/a.) coth(2-1/ 2L/a.)=mA (17a) 

have a solution only for L> 21/2/mA; but for all 
values of L there is always a full complement of 
t = -1 scattering solutions: 

CPq.+1.-1(l:) = sinq( I l: I - 2-1/ 2L), E: q ._1 =q2/2m, 

where 

(17b) 

The speGtra of exciton energies, both bound and 
unbound, is calculated using the above equations. 
Numerical results are given in the companion 
paper.l 

IV. SOME APPLICATIONS 

We have verified that a product function, 

41 =\If(Ze,Zh)eIK<rrrhl/2R(re -rh), (18) 

where r=(x,y) and K=(Kx,Ky ) is the center of mass 
wave vector, with\lf given by (11) or (14), a func
tion of A, can reproduce the ground-state energy 
for the Coulomb potential numerically to satisfac
tory accuracy. Such functions may be viewed as 
trial functions in the variational solution of Eq. 
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(1) which satisfy the appropriate boundary condi
tions, with A, i.e., the size of the orbit, the vari
ational parameter. The two-dimensional function 
R(re -rh ) may be obtained either as a solution of 
the effective Schrodinger equation, or more sim
ply, may be taken as Gaussian or exponential func
tions with a characteristic length to be optimized. 

The theory of size effects in excitons has im
portant applications to the optical properties of 
semiconducting thin films and heterostructures. 
Conservation of momentum would ascribe to the 
optical spectrum associated with the exciton bound 
states extremely narrow linewidths, therefore 
explanations of the observed linewidths have in-
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(heavy holes). Thus me""mh for light-hole excitons, 
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voked such momentum relaxing processes as 
scattering by impurities and phonons, or the decay 
of the electromagnetic inten,sity within the sam
ple. We find that the effects of the boundary con
ditions alone are sufficient to produce a sUbstan
tial linewidth. In the companion paper, 1 we com
pute these various applications, and compare with 
several approximate methods in the literature'.6 
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