
146 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 4, NO.1, MARCH 1996

Self-Timed Design in GaAs-Case Study
of a High-Speed, Parallel Multiplier

V. Chandramouli, Erik Brunvand, and Kent F. Smith

Abstract-The problems with synchronous designs at higb clock fre­
quencies have been well documented. This makes an asynchronous ap­
proach attractive for high speed technologies like GaAs. We investigate
the issues involved by describing the design of a parallel multiplier
that can be part of a floating point multiplier. We first present a new
architecture called the partial array of array (PAA) that is more regular
than a partial tree approach while having the same latency. We then
show how this architecture can be used in a self-timed implementation
in the style of micro pipelines. We next describe how we can design the
final carry propagate adder using a new precharged logic family in GaAs
that we developed as part of this project. We conclude with some general
observations on doiug asynchronous design in GaAs.

Index Terms- Self-timed systems, micropipelines, multipliers, GaAs,
precharged circuits.

1. INTRODUCTION

The speed of digital systems has increased dramatically over
the past few years and this trend is likely to continue for long.
However, increases in speed are also accompanied by problems that
are unique to high-speed systems which often warrant changes in the
design style. The most popular design technique is the synchronous
approach, where a global timing signal coordinates the movement
of data in the system. Problems with this technique at high clock
frequencies are well-documented [1]-[4]. Almost all of the problems
are associated with distributing a global clock signal(s). Self-timed
designs, on the other hand, avoid these problems by doing away with a
global clock signal. In addition, they offer other adavantages [IJ-[3J
as well, such as composability, incremental improvement, possible
lower power, and an average case performance where applicable.

Self-timed designs are particularly attractive in GaAs for the
following reasons. GaAs offers the potential for very high clock
frequencies due to higher electron mobility and very small gate
capacitances. However, as mentioned above, this makes global clock
distribution difficult. In addition, the popular logic families in GaAs
(such as direct coupled FET logic (DCFL) [5]) consume a lot of
power and have poor noise margins. Thus, one could very well
do without large clock buffers and additional sources of noise like
spikes on power buses (caused when clock signals make transistions).
Moreover, GaAs is a logical candidate for computation intensive
applications, where arithmetic circuits are the major building blocks
and highest speeds are desired. It is very likely that there will be a
considerable difference between the average and worst-case times in
these circuits (consider, for example, an n-bit addition) and self-timed
systems, on average, can outperform synchronous designs. Since the
integration levels are not as high in GaAs as CMOS, it is likely
that complex systems will be implemented as MCMsIPCB's which
exacerbate the problems of global clock distribution and make the
self-timed approach an attractive option for GaAs.

From the preceding paragraphs, it is clear that there exists a
synnergism between GaAs as the technology base and self-timed

Manuscript received September 13, 1994; revised May 24, 1995:
V. Chandramouli is with the Advanced Computer Architecture Laboratory,

the Department of Electrical Engineering and Computer Science, University
of Michigan, Ann Arbor, MI 48109 USA.

E. Brunvand and K. F. Smith are with the Department of Computer Science,
University of Utah, Salt Lake City, UT 84112 USA.

Publisher Item Identifier S 1063-8210(96)01875-6.

design as the architectural paradigm. However, other than the Caltech
project [6] we have not found any large self-timed systems in GaAs
in the literature. Therefore, we decided to explore the issues involved
by designing a self-timed integer multiplier that can be part of a
floating point multiplier. Parallel multipliers are large and complex
but on the other hand can be easily implemented using few basic
building blocks in a regular way, Besides, several applications like
DSP, Graphics, etc. require fast area efficient multipliers.

The organization of this paper is as follows. In Section II, we
introduce a new multiplier architecture called the Partial Array of
Array. In Section III, the design details of the multiplier array
are presented. In Section IV, we describe the design of the final
addition of the partial products. In Section V, we make some general
observations on doing self-timed design in GaAs and finally, we
conclude the paper in Section VI.

II. PARTIAL ARRAY OF ARRAY: A. NEW ARCHITECTURE

Throughout this paper, we will be concerned with the IEEE single
precision format for floating point numbers [7]. In floating point
multiply, the multiplication of the mantissas is the critical step (24
b in this case). Any of the integer mUltiplication architectures can
be used for this step. It is well known that a tree based architecture
provides a very low latency but occupies a large area. See. [8J for
the area latency tradeoffs for several tree-based architectures. Array­
based architectures, while being very compact, have a large latency.
Several hybrid schemes have been proposed in the literature that have
area and latency requirements in between the two extremes.

One such hybrid scheme has been proposed recently in [9]. This
is an array of array based scheme and has area requirements close to
that of an array multiplier and a latency of O(.fN), for an n x n
~ultiplier. Refer to Fig. lea) for a general layout of the architecture.
It consists of a number of small array type submultipliers. Suppose
we are multiplying n x m numbers. Then the m-bits of the multiplier
are partitioned into k + 1 subarrays of sizes 16, h, ... ,lk such that
2:1, = m. All the sub-arrays work in parallel thus making efiicient
use of hardware. Fig. l(b) shows the scheme for an 8 x 8 multiplier.
For the 24 x 24 case, which we are interested in, the array of
array design would occupy an area a little larger than the regular
array multiplier but the latency is improved to nine carry save
adder (CSA or (3, 2) counter) delays which is more than twice the
speed up compared to the array case. As compared with the tree
based approach, which gives the fastest possible speed of 7 CSA
delays at an area that is about three times as large, this scheme
is highly competitive. Similar to Santoro's [10] modification of a
tree based approach, we modified the array of array to an iterative,
pipelined architecture. We can reduce eight partial products per
iteration and iterate three times to get the full 48 b product. The
resultant architecture called the partial array of array (PAA) is shown
in Fig. 2. This has a latency of (2 + 2 + 2) + 2 + 2 = 10 CSA
delays. As compared to the full AA based approach, this occupies
only one-third the area for a small penalty in latency. Each pipe stage
has two CSA delays (ignoring latch delays) leading to a balanced
pipeline.

We did an area-latency analysis of the various multiplier archi­
tectures [11] and found that both the partial tree and the PAA
schemes are competing scheIIfes. However, we chose tl).e PAA scheme
because it offered more regularity in the routing of the multiplier and
multiplicand than the tree based approach. Moreover, it qm be easily
extended to handle Booth encoding for future extentions.

1063-8210/96$05,00 © 1996 IEEE

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 4, NO.1, MARCH 1996 147

m+n carry save products

.eral scheme
(a)

..
A 8X8 multiplier

(b)

,...1----y4

i"II---y5

""---y6
..... 1----y7

Fig. 1. An array of array scheme. (a) General scheme (b). An 8 x 8 multiplier.

III. DESIGN OF TIlE MULTIPLIER ARRAY

We implemented the PAA architecture in the style of Mi­
cropipelines [3] using a bundled datapath1 as shown in Fig. 3.

Pipelining is a natural choice for iterative structures like the PAA.
While one could argue that the bundled datapath approach always
entails waiting for the worst case where as a dual rail datapath
could be done in a delay insensitive manner giving an average case
performance, in this case it was not clear if the average case time
was significantly better to warrant the extra investment in routing
resources, entering new dual-rail logic cells into our CAD tool library
etc. Moreover, since each pipestage has similar delays, the design of
control for each stage is simpler. GaAs DCFL was chosen for circuit
design. A restriction of using DCFL is that we are limited to using
only NOR gates. Though it is functionally complete, this constrains
the circuit design.

In order to minimize delays through latches, all latches were
implemented as Earle latches by merging the latch with the logic.

I In this design style, both the data and the ready signal are "bundled"
together. Care must be taken (by inserting additional delays if necessary) that
the ready signal is not asserted before the data is ready.

Thus, new custom laid out (3, 2) and (4, 2) [12] cells were added
to the cell library, with and without latches. We also needed to
modify the latch designs so that they can be used in a transition
signaling environment. The modifications were similar to the ones in
the asyncronous implementation of the ARM chip [13].

As can be seen in Fig. 3, we have used variable delay elements in
our design. The use of variable delay lines gives us the flexibility of
modifying the delays so that bundling constraints are met, once the
design is fabricated . .This is similar to adjusting the clock frequency in
synchronous systems to meet timing constraints. An 8 x 24 (actually
8 x 8 slice, that can do 8 x 24 using three iterations) bit slice was
laid out. It occupied an area of 0.7 sq. mm.

The whole circuit was extracted from the layout and simulated
using spice. Buffers were added on the latch control lines since they
have to drive across the whole array. It was expected that these lines
would be buffered every eight stages if one were to build a 24 x 8
array. The capacitance values were suitably modified to mimic a 24
wide array. Based on these simulations (done at 25°C under typical­
typical (tt) process comer), it was found that we could initiate a new
multiply every 13 ns giving us a throughput of 76 Million Floating

148 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEQRATION (VLSI) SYSTEMS, VOL. 4, NO.1, MARCH 1996

r-----~------~~-~
M-_yl

~--~------------~

+-I---y2

M--y3

--~----~~------~

Fig. 2. A pipelined PAA scheme.

iOOII --y5

iOOIIl---- y 6

iOOII---y7

Point Multiplies Per Second (MFLOMPS). The latency for a single
multiply was measured to be 17 ns.

IV. SUMMING THE PARTIAL PRODUCTS AND ROUNDING OF THE RESULT

We need a fast carry propagate addition (CPA) stage where the
partial products, which are in the carry save form, are converted back
to the binary representation. At the same time, this stage should not be
very area intensive. As a compromise, we decided to implement this
stage using the carry completion sensing (CCS) [14] adder which
uses delay-insensitive signalling. We can achieve an average case
performance of O(log n) by using the CCS adder, with an area of a
little more than that required by the carry-ripple adder.

However, there was no satisfactory way of building DCFL com­
patible delay-insensitive circuits. In order to address this problem, we
developed a new dual rail logic family [15] that bears a superficial

To Final CPA and RIJunding

Fig. 3. A self-timed PAA.

Fig. 4. "Done" generation.

similarity to CMOS CVSL [16]. We designed precharged full adders
using our new logic family. A comparison between the precharged
full adder and an equivalent DCFL adder was made by doing a
composite layout, extraction from the layout, and spice simulation
of each circuit. The simulations used the parameters obtained from
the Vitesse GaAsIII 1.0/1 process [17]. These simulations showed that
adders designed using our scheme consumed about 73% less power
than the DCFL case, for comparable delays.

We can use the rounding algorithm developed in [10] along with
the final CPA. The circuits implementing this algorithm can be
implemented easily in GaAs DCFL with some modifications [1l].
However, we need a fast, area efficient way of doing a carry propagate
addition of the higher order 25 bits of the partial product. We designed
a precharge~ carry skip CCS adder rather than a simple ripple CCS
adder, to improve the speed. We also designed a novel circuit for
detecting' when the addition was completed which is shown in Fig. 4.
The "sum" and "sumb" signals are generated from each bit of the
adder.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (YLSI) SYSTEMS, VOL. 4, NO. I, MARCH 1996 149

TABLE I VI. CONCLUSION
A COMPARISON OF Two MULTIPLIERS

Characteristics AT&t/Sandia proposed multiplier
Function IEEE single prec. same (only 1 rounding mode)
Fab. Process HFET 1.01' m Vitesse 1.01' m
Architecture (4,2)based full tree Partial Array of Array
Clocking scheme Synchronous Asynchronous
Logic family SFFL DCFL
Latency 9.25ns 24ns
Throughput NA 13ns (76MFLOMPS)
Area 76 sq.mm ::;25 sq.mm
Power 6.22W 3-3.5W

Table I shows the comparison between the proposed multiplier and
an existing one, fabricated by AT &T/Sandia. The area and the power
estimates for the 24 x 24 case were obtained by extrapolating the
figures obtained from the 8 x 24 case and the characterized values of
our CAD cell set. The area advantages of our approach is obvious.
The difference in speed is both technological and architectural. The
existing multiplier uses an experimental heterostructure process with
a different logic family (SFFL) that is faster and more consumptive
in power than DCFL. On the architectural front, their design uses
a full tree approach which is known to have the smallest latency
at a considerable investment in area whereas ours is an iterative
array based design. Finally, we must point out that we did not have
a sophisticated CAD tool set and instead had to rely on our own
internally developed CAD tool.

V. OBSERVATIONS ON ASYNCHRONOUS DESIGN IN GaAs

We make the following observations based on our experience
designing the multiplier.

• By using DCFL, we are constrained to using only NOR gates.
This means three gate delays for important circuits like XOR
(in the worst case) which are widely used in the control path of
asynchronous cicrcuits. The added fan in and fanout restrictions
makes circuit design harder.

• In two phase transition signalling, it is only the transition that is
important and not the level. The nonavailability of the p device
added circuit complexity to ensure uniform behavior when the
signal is low.

• The asymmetrical rise and fall times in GaAs DCFL, which
is characteristic of a ratioed logic family, means the bundling
constraints must be met for both rising and falling edge of the
signal.

• In spite of these problems, DCFL offers superior power-delay
product than most other logic families and is widely used. More
research needs to be done exploring other logic families for
asynchronous designs.

• We have not come across a suitable logic family that can be
used for building dual rail datapath and 4-phase signaling within
the 0-2 V framework. We have proposed a new logic family to
overcome this and the initial results have been very encouraging.

• The fact that each pipe stage had uniform delays and the use
of variable delay lines ensured that not much time was lost in
implementing system timing. Further, the use of a CCS adder
using precharged circuits ensured that that the final CPA worked
in an average sense. In a synchronous design, on the other hand,
significant analysis would be required to ensurc no skews and
avoid the high frequency clock distribution problems. To make
the final CPA fast, more complex schemes like carry lookahead
would be used, increasing the area. Further, since each pipe stage
in the array has a very small delay in comparison to the CPA unit,
system timing would be more complicated to achieve maximum
speed. In an asynchronous design, each unit can operate at its
maximum speed.

In this paper we investigated self-timed design in GaAs and
described the design of a floating point multiplier. A new area
efficient architecture called the partial array of array was presented.
A new family of precharged circuits for doing delay insensitive
asynchronous designs in GaAs was also mentioned. A test chip
containing a precharged adder was fabricated and found to be
functional. Based on spice simulations, we expect our multiplier to
have a latency of 24 ns and a throughput of 76 MFLOMPS with a
power dissipation of 3-3.5 W. The area is expected to be at most 25
sq. mm. Finally; we made some observations on doing asynchronous
design in GaAs.

Our research thus far raises a number of interesting problems.
Future projects in this direction could be to build the full multi­
plier as outlined here and test the chip, use Booth recoding with
the PAA scheme for a IEEE double precision implementation and
compare with commercial multipliers, do a synchronous design
in GaAs and compare the issues, implement our design in sub­
micron CMOSlBiCMOS and compare the differences beween an
asynchronous MOS and GaAs implementations and finally use our
precharged circuits to build complex delay insensitive circuits. We
also did not address any testability issues here. An interesting problem
would be to investigate the testability of an asynchronous multiplier.

ACKNOWLEDGMENT

The authors would like to thank N. Michell and G. Gopalakrishnan
for their helpful discussions and pointers to the literature.

REFERENCES

[I] E. Brunwand, "A cell set for self-timed design using actel FPGA's,"
Dep. Comput. Sci., Univ. Utah, Tech. Rep. UUCS-91-0l3, Aug. 1991.

[2] C. L. Seitz, "System timing," in Introduction to VLSI Systems. Read­
ing, MA: Addison-Wesley, 1980, ch. 7.

[3] I. E. Sutherland, "Micropipelines," Commun. ACM, June 1989.
[4] V. Akella, "An integrated framework for high-level synthesis of self­

timed circuits," Ph.D. dissertation, Dep. Comput. Sci., Univ. Utah, Dec.
1992.

[5] S.1. Long and S. E. Butner, Gallium Arsenide Digital Integrated Circuit
Design. New York: McGraw-Hill, 1990.

[6] A. J. Martin et at., "Asynchronous circuits in gallium arsenide," Dep.
Comput. Sci., Califomia Inst. Technol., Tech. Rep. Caltech-CS-TR-91-
10, Nov. 1991.

[7] IEEE, IEEE Standard for Binary Floating-Point Arithmetic, ANSIIIEEE
Std. 654-1985, 1985.

[8] P. J. Song and G. D. Michelli, "Circuit and architecture tradeoffs for
high-speed multiplication," IEEE J. Solid-State Circuits, vol. 26, pp.
1184--1198, Sept. 1991.

[9] G. J. Hekstra and R. Nouta, "A fast multiplier architecture," in Int.
Symp. Circuits Syst., 1992.

[10] M. R. Santoro, "Design and clocking of VLSI multipliers," Ph.D.
dissertation, Comput. Syst. Lab., Standford Univ., Oct. 1989.

[11] V. Chandramouli, "Design of a self-timed, pipelined, floating point
multiplier in gallium arsenide," Master's thesis, Dep. Comput. Sci.,
Univ. Utah, Mar. 1994.

[12] D. T. Shen and A. Weinberger, "4-2 carry save adder implementation
using send circuits," IBM Tech. Disclosure Bulletin, vol. 20, no. 9, Feb.
1978.

[13] D. Edwards, "A micropipelined microprocessor," private communica­
tion, 1993.

[14] K. Hwang, Computer Arithmetic: Principles, Architecture, and Design.
New York: Wiley, 1979.

[15] V. Chandramouli, N. Michell, and K. Smith, "A new, precharged, low­
power logic family for GaAs circuits," IEEE J. Solid-State Circuits, vol.
30, pp. 140-144, Feb. 1995.

[16] L. G. Heller et at., "Cascode voltage switch logic: A differential CMOS
logic family," in IEEE Int. Solid-State Circuits Conj, Feb. 1984.

[17] G. Lee et at., "A high density GaAs gate array architecture," IEEE
Custom Integr. Circuits Conj, 1991, pp. 14.7.1-14.7.4.

