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Abstract— Fractional-order systems have applications in the 

areas of Flight Control, Robotics, Missile Guidance, Control of 

Structural Vibrations of Space Platforms and Sensor 

Technology.  Fractional-order transfer functions can 

characterize complex nonlinear dynamics with many fewer 

parameters than integer-order functions.  This paper addresses 

the use of a polymer-electrolyte transistor (PET) for use in 

implementating fractional-order algorithms for signal 

processing. The PET’s advantage over the conventional RC and 

RL circuits is that it can be both functionally scaled and varied 

for dynamic fractional-order parameter controllability. 

 

Keywords: Fractional-Order, Signal Processing, Polymer-

electrolyte transistor, acid/base chemistry, diffusion, 

electrokinetic flow. 
 

1. INTRODUCTION 

Calculus students become quickly familiar with the various 

higher-order derivatives of a function f:  f , f , f … where 

f 
(n)

 denotes the n
th

-order derivative.  Must n always be an 

integer?  Surprisingly, no! Certain functions can be 

considered to have fractional-order derivatives [1].  Consider 

sin(x).  Repeated differentiation gives this general formula for 

the n
th

 derivative: D
n

sin (x) = sin(x + n✍/2).  Here one can 

freely substitute non-integer values for n to achieve a 

derivative of any fractional order.  Conversely, one can also 

speak of fractional integrals. 

 

This obscure branch of mathematics is indeed useful.  

Transfer functions based on fractional calculus have proven 

ideal for characterizing complex nonlinear dynamics [2,11].  

Podlubny et al. have built fractional order controllers using 

RC and LC networks [2].  However, their operation depends 

on near-zero-loss dielectrics, which are difficult to achieve.   

 

Rather than seeking extremely low-loss dielectrics, we 

propose instead to seek materials showing the desired 

fractional-derivative response.  For example, a material with 

loss modulus nearly equal to the storage modulus over a large 

frequency range would yield a device exhibiting a ½-order 

derivative [3].   

We are investigating novel, ionic/organic transistors that, not 

only have good potential for fractional order behavior, but 

also enjoy other advantages over conventional electronics.    

 

Theses devices use charge carriers such as electrolytes to 

conduct a signal.  In contrast, digital electronics employs only 

one signal carrier, i.e., the electron.  Current and voltage 

signals are simply different views of electron flow.  Even the 

positive “hole” flow found in semiconductors consists simply 

of electrons moving in reverse, and may be modeled as such.  

Ionic devices, however, will employ multiple signal types.  In 

addition to electric and light signals, there are ions and mole-

cules that serve as signals by participating in chemical 

reactions.  Such species have unique behavior that varies with 

chemical context.  Unlike electrons, they must maintain their 

unique identities when modeled. 

   

Organic devices are less robust than semiconductors, able to 

endure fewer environmental extremes.  This fragility can 

translate into less reliability, and necessitate redundancy, 

dimensional scalability and error-correction techniques on a 

scale greater than in silicon processing.  

 

This paper focuses on examining the fractional dynamic 

response of the LSL polymer-electrolyte transistor (PET) [5], 

utilizing the modeling program COMSOL Multiphysics. 

 

II. Fractional-Order Signal Processing 

 

Fractional transfer functions can characterize complex 

nonlinear dynamics with only a few parameters, in contrast to 

integer expressions, that even with ten times as many 

parameters, still do not fully model the physical phenomena.  

A. Equivalent Half-Order Models. Many fractional 

algorithms and processes are modeled using LC and RC 

circuits. In the proton exchange membrane fuel cell (PEMFC) 

[3], fractional controllers will be used to control these 

complex systems. The dynamic model of PEMFC, taken from 

Iftikhar [3], uses non-integer derivatives to model diffusion 

phenomena. The fractional order model has the advantage of 

having least number of parameters while being valid on a 
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wide frequency range.  This allows simulating an accurate 

dynamic response of complex diffusion systems [6].  

 

B. Fractional-order Modeling. We have realized that half-

order derivatives and integrals can lead to 3-D physical 

geometric designs that can be modeled using the COMSOL 

Multiphysics program. Once we determine the “best-fit” half-

order expressions from simulations, future designs will 

require only a parametric gain constant variation between 

rectangular and spherical coordinates. These expressions will 

be more functional and less complex than Fick’s laws of 

diffusion [7]. There are several reasons for the 3-D modeling, 

and hence the complexity of the calculations. The first is in 

the attempt to increase the accuracy and complexity of the 

representations of the physical conservation laws. For 

example, in chemical models, increasing the number of 

chemical species increases the number of dependent 

variables. The obvious need for increased independent 

variables comes from the need to represent sensor phenomena 

in two and three spatial dimensions.  

               However, even higher dimensional problems arise 

when the independent variables are not the spatial coordinates 

but are various state descriptions; such as higher-dimensional 

problems common in physics and chemistry. Unfortunately, 

numerical methods that work well in one or two dimensions 

often are unusable in three dimensions. Therefore, increasing 

the degrees of freedom related to 3-D modeling requires non-

integer derivation, where it has already been used to correctly 

model the diffusion phenomenon of magnetic field in 

electrical machines [2]. The resulting parameters of such non-

integer order models have a close link with the physical 

characteristics of the system and are precise, having fewer 

parameters and being valid on a wide frequency range.  

 

 

 

III. PET Model Definition [5] 
 

 
 

Figure 1. A basic PET schematic showing electrolyte migration through the 

emitter “E”, base “B”, and collector “C” under the effect of a voltage 
potential[5]. 

 

 The polymer-electrolyte transistor has a physical 

design similar to a basic bipolar junction transistor. In the 

PET, three separate source regions of ions are connected by a 

polymer gel. This gel acts as a medium through which the 

ions are allowed to diffuse, but there is no direct convective 

path between the three source regions [8]-[9]. 

 Fig. 1 depicts the basic function of the PET, showing 

the device biased such that VE>VB>VC. The ionic species 

present are the alkaline BOH and the acidic HA, where B
+
 is 

a cation and A
-
 is an anion. With the voltage potentials as 

depicted, the EB region is forward biased and the BC region 

is reverse biased. In a forward-biased junction, the anion and 

cation flow into the middle region, and allow for ionic current 

to flow. A reverse-biased junction is one where the H
+
 and 

OH
-
 ions flow into the junction and recombine, leaving very 

few ions to conduct a signal [8]. With the cation flow from 

the emitter, though, there will be a cation concentration in the 

BC junction that will contribute to the total current. 

 

A. Governing Equations. Ionic diffusion in the PET is 

described by Fick’s first law of diffusion for each ionic 

species[7]. This, combined with the flow of ions under an 

electric field, produces the electrokinetic flow equation, 

where the first term governs diffusive flux, and the second 

term governs ionic flux under an electric field: 

 

RVFczcD m ❂✄❾✄❾☎✄ )( ➭      (1) 

 

Where D is the diffusion coefficient (m
2
/s), c is the 

concentration of the given ionic species (mol/m
3
), z is the 

charge number (unitless), �m is the ionic mobility (mol/m
.
s), 

F is Faraday’s constant (C/mol), V is the electric potential 

(V), and R is the reaction, or source, term (mol/m
3.
s). 

 When initially determining the system of equations 

to govern this system, the equation for current flow due to 

electrons in a semiconductor material was investigated. In a 

semiconductor device, flux due to diffusion and drift is 

shown below: 

 

nEqnqDJ n ➭✰✄❂                (2) 

Where J is the flux of electrons (A/m
2
), q is the elementary 

charge (C), n the density of electrons (1/cm
3
), E the electric 

field (V/m), and all other units the same as in Eqn. 1 [8]. 

Interestingly, manipulation of this equation to apply to 

electrolytes moving under an electric field, where the units of 

flux are mol/m
2.
s, simplifies to the equation system of 

equation (1). 

To set up the voltage potentials in the system, 

COMSOL’s conductive media DC application is used. The 

governing equation for this system, shown below, is simply 

Ohm’s law in differential equation form: 

 

jdQVd ✁✂✆✂✝ )(✞ ,       (3) 

 

where d is the thickness (m), ✟ is the conductivity (S/m), V is 

the voltage (V), and Qj is the current (A
/
m

3
). 

 

B. Fractional Control.  The PET has fractional-order 

characteristics that are controlled by concentration,  In this 

case we are using the alkaline source at the emitter 

electrolyte, BOH, as the fractional controller. 
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Figure 2. Block diagram for transfer functions of variable hybrid fractional 
PET structure integral. 

 

Consider the fractional integral equation
1
 

 

                                                                        (4) 

 

and the inferred differential equation 

 

                                                                         (5) 

 

The concentration BOH in the fractional calculus can take on 

any real (or complex) value.  The question is asked,  What is 

a desirable definition for the fractional integral when BOH  

is allowed to vary either with t or y?  More specifically, What 

is an appropriate model  definition for Equation 6?  

 

                                                                           (6) 

 

From Equation 6, fractional analysis provides the key for 

telling us how nonlinear systems respond to prescribed 

changes. The non-integer derivative of the physical quantity 

Q(t) can be manipulated algebraically and the results can be 

interpreted to provide information about the physical 

processes involved in the flux equation (Eqn. 2). The 

fundamental quest of fractional analysis is this: If physical 

phenomena are dimensionally homogenous, the flux equation 

can be reduced to a relationship among non-integer products 

of system variables and fractional parameters. The fractional 

products should be graphically interpreted from the 2-D 

multi-physics modeling. The term )()( tQD tBOH

t

❾  does not 

depend on the fundamental units of measurement, but on 

differential non-integer rate-of-change, somewhat similar to 

the hybrid-pi models parameters used in electronics.  Fig. 3 

shows the envisioned hybrid PET device as a fractional-order 

feedback device for an Op-Amp. The differential equations 

involving fractional-order derivatives  provides the (1/n)
th
  

fractional derivative, and can be designed and fabricated to 

cover the frequency range and functional type required by  a 

specific application [10,11]. 

                                                           
1
 A integral is simply a negative-order derivative. 

 
Figure 3   Half order derivative that will be implemented by the PET for 

variable hybrid control 

 

This poses the following questions of: What fractional-order 

forms a complete model set for the PET device equivalent 

circuit model of Fig. 3? How is the fractional-order 

controlled? These questions will be answered by looking at 

the following PET simulation example [5]. 

 

C. PET 2-D Model. The 2-D model created in COMSOL 

Multiphysics consists of three source regions of electrolytes, 

separated by a polymer, shown in Figure 4. As modeled in 

2D, the device is 4.5 mm long in the x-direction, by 2.3 mm 

wide in the y-direction.  

 

D. Varied Electrolyte in the Base Region.  Injection of 

charge carriers into the base region of the PET results in a 

noticeable change in the steady state currents in Fig. 4. This 

was accomplished by adding additional salt electrolyte 

concentration to the base region, and observing its effect on 

the total current change from initial to steady state. Voltage 

values in the device were held constant at VE = 3.5 V, VB = 

2.0 V, and VC = 0V. 

 
Figure 4. PET 2-D Model showing the mesh in COMSOL (top) and the 

different regions colored for clarity (bottom). 

 

From Fig. 4, the currents through the BC region of the device 

grow more positive with additional salt, while the currents in 

the EB region become more negative. This property of the 

)()( )( tQDty tBOH

t

�
❂

)()( )( tyDtQ tBOH

t❂

)()( tQD tBOH

t

�
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PET to add additional charge carriers to specific regions can 

be exploited to modify the fractional characteristics of the 

device, and is relatively simple to accomplish. 
 

 
Figure 5. Steady-state current plot for the different regions of the device 

versus an increase in the concentration of salt electrolyte added to the base 
region of the PET. 

 

E. Emitter Region “Doping”. The concentration of the 

alkaline source in the emitter of the PET was varied from 0.1 

M to 0.4 M, and the transient current response of the device 

was plotted for the BC and the EB channel. From Figs. 5, 6 

and 7, the currents show an inverse relationship to the 

increased emitter doping. For increasing doping values, the 

BC channel current becomes more negative, while the EB 

channel current grows more positive. 

        

 
Figure 6. Plot of current in the BC channel versus time for different 

concentration doping of the alkaline source at the emitter. 

 
Figure 7. Plot of current in the EB channel versus time  

 

IV. Summary 

 

The three dimensional diffusion equation was simulated for 

the ionic Polymer-Electrolyte Transistor (PET) to determine 

fractional-order model characteristics. Fractional-order 

analog capacitive element circuits have been addressed by 

many researchers, but the development of a variable 

controlled non-integer fractional-order device, such as the 

PET, was not reported in the literature before this article.  The 

PET material parameters depend on thermal, ionic, electric 

and magnetic fields, where the multi-physical equations are 

nonlinear, allowing its use as a “variable” fractional-order 

feedback controller element for hybrid signal processing. 

Determination of the fractional-order parameters for the PET 

can be determined by the use of the COMSOL simulation 

package.  
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