
Using FPGAs to Prototype a Self-Timed Floating Point Co-Processor

Joe H. Novak Erik Brunvand*

Dept. of Computer Science, University of Utah
Salt Lake City, UT 84112

Abstract

Self-timed circuits offer advantages over their syn­
chronously clocked counterparts in a number of situations.
However, self-timed design techniques are not widely used
at present for a variety of reasons. One reason for the lack
of experimentation with self-timed systems is the lack of
commercially available parts to support this style of design.
Field programmable gate arrays (FPGAs) offer an excel­
lent alternative for the rapid development of novel system
designs provided suitable circuit structures can be imple­
mented. This paper describes a self-timed floating point
co-processor built usinx a combination of Actel Field Pro­
grammable Gate Arrays (FPGAs) and semi-custom CMOS
chips. This co-processor implements IEEE standard single­
precision floating point operations on 32-bit values. The
control is completely self-timed. Data moves between parts
of the circuit according to local constraints only: there is
no global clock or global control circuit.

1 Introduction

Self-timed circuits are distinguished from clocked syn­
chronous circuits by the absence of a global synchronizing
clock signal. Instead, circuit elements synchronize locally
using a handshaking protocol. This protocol requires that
a circuit begin operation upon receipt of a request signal
and produce an acknowledge signal when its operation is
complete. Self-timed circuit techniques are beginning to at­
tract attention as designers confront the problems associated
with the speed and scale of modem VLSI technology [1].
Many of the problems associated with large VLSI systems
are related to distributing the global clock to all parts of
the system. In addition to avoiding these clock distribution
problems, self-timed circuits can be faster, more robust, and
easier to design than their globally clocked counterparts.

As part of our ongoing investigation into the suitability
of self-timed design in a variety of application domains, we
have designed a completely self-timed IEEE single precision
floating point unit (FPU) [2] using a combination of FPGAs
and semi-custom CMOS. The FPGAs' quick tum around

"This woric: is supported in part by NSF award MIP-9111793

time was essential to timely completion of the project, and
the self-timed circuit style allowed the FPGA and CMOS
circuits to cooperate without concern for the relative speeds
of the different technologies. The floating point unit con­
sists of an adder, fabricated in semi-custom CMOS, and
a multiplier and divider, implemented with Actel FPGAs.
Because we are interested in exploring the benefits of self­
timed control, simple algorithms are used for the floating
point arithmetic operations. However, also due to the self­
timed nature of the circuits, more sophisticated algorithms
could easily be used to upgrade the FPU after the prototype
is evaluated. For testing and performance evaluation, the
self-timed floating point unit was interfaced to a commer­
cial computer, the Atari ST. This particular computer was
chosen not for its speed, but because its cartridge port allows
convenient asynchronous communication between the CPU
and an external device, the FPU in this case [3]. Because the
FPU is self-timed, we are able to use even a slow (8 Mhz)
personal computer as a test platform for the prototype.

2 Self Timed Circuits

A self-timed, or asynchronous, circuit does not have a
globally distributed clock signal to synchronize events. In­
stead, events are initiated locally between parts of the circuit
using handshaking signals. Synchronization of events is
controlled by these local handshaking protocols. Self-timed
protocols are often defined in terms of a pair of signals:
one that requests or initiates an action, and another that ac­
knowledges that the requested action has been completed.
One module, the sender, sends a request event (Req) to an­
other module, the receiver. Once the receiver has completed
the requested action, it sends an acknowledge event (Ack)
back to the sender to complete the transaction.

Although self-timed circuits can be designed to imple­
ment their communication protocols in a variety of ways.
the circuits used to build the FPU use two-phase transi­
tion signalling for control and a bundled protocol for data
paths [1]. Using two-phase signalling [4], also known as
transition signalling or event logic, every transition on a
control line, either from low to high or from high to low,
causes an action to be taken or an event to occur. Bundled

5.4.1 85
IEEE 1994 CUSTOM INTECRATED CIRCUITS CON]<'I<:RENO: 0.7803-1886-2/94 $3.00 © 1994 IEEE

data paths are a compromise to complete self-timing in the
data path. Associated with each set of data wires is a pair of
transition control wires encoding a Req <Uld Ack signal. The
hundled protocol requires that the data he valid at the re­
ceiver bef()re theReq tnUlsition is seen by the receiver. This
single-sided local timing constraint is similar to, but weaker
th<Ul, the equipotential constraint described by Seitz [4).

A variety of control circuits have been designed to be
used with the Actel FPGAs [5. 6J. They include:

Merge The "OR" function for transitions, implemented by
an XOR gate. The merge's output makes a transition
in response to a transition on either of its inputs.

Join The "AND" function for transitions, implemented by a
C-element. The C-element's output changes state only
after both of its inputs change state. It is useful for
synchronizing events.

Call A module that acts as a hardw<rre subroutine call al­
lowing multiple access to a shared resource. The Call
module routes the Req signal from a client to the sub­
routine, lUld after the subroutine acknowledges, routes
the Ack back to the appropriate client. The requests
must be mutually exclusive.

Select A module that steers an input trlUlsition to one oftwo
outputs based on the value of a Boolean select signal.
The select signal is a bundled data signal with respect
to the input transition.

Q-select A module like a select, except the select signal is
not bundled ,Uld may be changing even when the Q­
select IS sampling that signal. Thus, it requires some
way of sampling the select signal reliably. Because
smnpling changing signals reliably requires analog cir­
cuits, this module is approximated in the FPGA imple­
mentation using metastability information found in the
Actel databook [7, 5). A Q-select can be used in loops
to act as an arbiter for concurrent events.

Toggle A module that routes input tnUlsitions alternately
between two outputs.

Latch A module that latches bundled data signals upon
receipt of transition control signals.

Carry Completion Adder A form of adder that reports
when the addition is complete by sensing when the
carry chain is complete.

Using these modules, algorithms can be implemented
directly in hlU'dwlU'e. This allows for an intuitive design
methodology somewhat different than st<'U1dlU'd state ma­
chine design. Rather than designing a global control state
machine, the algorithm is mapped directly to the circuits
that implement it. Control, in the form of signal transitions,

is passed from one part of the circuit to the next in accor­
dance with the desired sequence of events. Each step in the
algorithm starts with receipt of a Req signal, takes as long
or as short a time as it needs to complete its task, ,md then
acknowledges with an Ack signal to start the next phase of
the algorithm.

Because of the self-timed organization, the functional­
ity of the individual circuits is seplU'ated from their per­
formance. Thus, circuit pieces in a prototype system may
be constructed from technologies that have different per­
formance characteristics. In our FPU, for exmnple, al­
though the multiplier and divider lU'e implemented using
Actel FPGAs, the floating point adder is implemented us­
ing a similar cell set in a MOSIS CMOS technology. If a
faster overall system is desired, a new algorithm or a faster
technology can easily be substituted for the existing im­
plementation [8]. For exmnple, to speed up the FPU, the
FPGAs could be replaced by CMOS chips withoutretiming
the system.

3 Adder

The adder is a semi -custom CMOS chip. It was fabricated
in 2.0 micron CMOS through the MOSIS service and was
designed using the PPL integrated circuit design soflw,rre
developed at the University of Utah [9]. There are six steps
in the addition algorithm used in the FPU, shown in Figure 1.
This is also the block diagrmn of the adder because the
algorithm is implemented directly in hardware. The direct
implementation was made possible because of the self-timed
design paradigm.

The first step is 10 unpack the 32-bit input words to extract
the signs, exponents, and mantissas from the IEEE format
operands. Second, the mantissas are aligned for addition.
Third, the addition is performed on the mantissa <'Uld the
exponents are adjusted according to the result. Fourth, the
result is normalized according to the IEEE format. Fifth, the
result is rounded. All four rounding modes as defined in the
IEEE standlU"d are implemented in this circuit [2]. Finally,
the result is packed into IEEE format and delivered to the
output of the adder. This organization is clearly suitable
for pipelining to improve the performance of the adder;
although, for this first prototype, pipelineing was not used.
Because the adder circuits are self-timed, adding pipelining
is as simple as adding pipeline latches between each of the
stages shown in Figure 1.

The adder is packaged in a 65-pin PGA. It consists of
15090 transistors in a die area of 400 mil2• A total of 49
user I/O pins are used. The adder was tested for functionality
by applying a large number of test patters to the simulation,
and then using the smne patterns on the fabricated chips. To
measure performance a test platform was constructed that
sends data to the chip as quickly as the chip can respond.
Because the interface is self-timed, a simple asynchronous

5.4.2
86

R A e c
q k

Figure 1: Adder Block Diagrmn

stale machine can send data to the chip in response to the
acknowledge from the previous data. Using this platform,
this unpipelined version of the adder chip was measured at
256.4 KFLOPS.

4 Multiplier and Divider

A serial-parallel or "pencil and paper" algorithm is used
for multiplication and division. This simple algorithm wa'i
used for two primary reasons. First, it is consistent with
the FPU's principle of operation. That is, the project is a
first attempt at fully self-timed floating point and its design
should be kept simple to maximize the probability of correct
operation. Second. it allows the multiplier and divider to
share hardware, saving space on the FPGAs.

Figure 2 shows the block diagram of the multiply/divide
unit's data path. After unpacking the mantissas and expo­
nents from the floating point arguments, the shared adder
is used to perform all required operations. In the case of
multiplication, the mantissas are multiplied by shifting and
adding through the P and A registers shown in Figure 2. The
exponents ,rre then added using the same adder, the result
is normalized, rounded, ,md packed back into IEEE format.
The division uses the s(rrnt~ hardware to shift and subtract
the mantissas during division, subtract the exponents, <Uld
then repack the result. Because of the sharing of hardware,
this implementation is less suitable for pipelining than the
adder. The multiply/divide unit works on a single operation

Figure 2: MuItiplier/Divider Block Diagram

at a time. Future versions could use the smne interface with
a different implementation to improve performance. In this
case, the self-timed nature of the circuit ensures that the FPU
would continue to function properly, only the performance
is affected.

The use of FPGAs in the multiply and divide circuitry
allowed greater experimentation in self-timed design. For
example, a carry completion sensing adder is used for integer
arithmetic. This type of adder computes its sum in response
to a Req signal. By sensing that every bit of the adder
has correctly computed its sum and carry, the adder also
generates an Ack signal when the sum is correct. Because
the carry chain of any particular addition is likely to be short,
this adder exhibits extremely fast operation on average, only
slowing down in the rare cases when the carry chain must
propagate along many bit of the adder.

The circuitry is contained in two Actel1280 FPGAs. The
1280s are 1.2 micron CMOS devices in 160-pin PQFPs [7].
The first 1280 contains interface circuitry, control modules,
and rounding logic. It utilizes 93% of the available logic
modules (1148/1232) and 69% of the available I/O pins
(97/140). The second 1280 contains the data path shown
in Figure 2. It utilizes 100% of the available modules
(1232/1232) and 42% of the I/O pins (59/140). As with
the adder, a large number of test patterns were used during
the simulation of the multiply/divide unit, and these smne
patterns were then used on the completed FPGAs. The test
platform used for the adder to measure merformance was
also used on the multiply/divide unit. This implementa­
tion using the Actel FPGAs was measured at 20.0 KFLOPS
average for multiplication and 15.4 KFLOPS average for
division. Note that these performance numbers are average
case performance using our current data sets. The data­
dependent completion time of the adder used in the multi­
ply/divide unit means that individual operations may take
slightly more or slightly less time depending on the length
of the internal carry chain required by the v,rrious additions.

5.4.3
87

5 Controller

The system controller is the interface between the host
computer and the FPU. It interprets the computer's instruc­
tions and directs the FPU to operate accordingly. All
operands and results are transferred to and from the host
computer through the controller in 16-bit words to match the
cartridge interface port of the Atari ST. Also, the Atari car­
tridge port uses four-phase return-to-zero signalling. This
is translated by the controller to the two-phase transition
signalling used by the FPU. Data passed from the host com­
puter to the FPU includes an operation code (add, multiply,
or divide) and 32-bit IEEE format data passed in 16-bit
words. Results from the FPU are also passed back to the
host computer in 16-bit words.

The self-timed FPU's addition hardware is independent
of its multiplication and division hardware. The system
controller takes advantage of this fact by allowing parallel
instruction scheduling. Out of order instruction completion
is also allowed. An extra bit in the result lets the computer
determine what type of operation completes first. The con­
troller circuitry is also built as a self-timed circuit using the
same set of circuit modules used in the FPU, and is con­
t.'lined in one Actel1020A FPGA. It is a 1.2 micron CMOS
chip packaged in an 84-pin PLCC. The control chip utilizes
n% of the available logic modules (436/547) and 97% of
the I/O pins (67/69).

6 System Performance

Performance of the FPU as a system was measured by
connecting the completed FPU to the Atari ST through its
cmtridge port. The Atari ST is based on ,ill MC68000 run­
ning at 8Mhz and is thus a rather slow, albiet convenient,
platform. When interfaced to an Atari ST, the adder is capa­
ble of 13.6 KFLOPS. This is considerably slower than the
measured rate of 256.4 KFLOPS for the adder alone and is
due to the overhead of the Atari cartridge port and the soft­
ware overhead of using the FPU. The multiplier and divider
operate at 10.7 KFLOPS when interfaced to the Atari ST.
This is compared to 20.0 KFLOPS and 15.4 KFLOPS for
multiplication and division respectively without the system
overhead.

The linpack benchmark prognun running on the Atari
was used to determine the overall speed of the FPU running
floating point code. It rated the FPU at 8 KFLOPS without
using parallel instruction scheduling. Using parallel instruc­
tion scheduling and accounting for I/O overhead, the FPU
could theoretically run at 60 KFLOPS.

88

7 Conclusions

Self-timed circuits constitute an interesting design do­
main. Many small scale examples of self-timed circuits can
readily be found; however, realistic self-timed circuits are
rare. We have built, using a blend of FPGAs and custom
CMOS chips, a self-timed IEEE single precision floating
point processor. The FPU has been interfaced to a commer­
cial computer system for testing and evaluation. FPGAs are
well suited to experimenting with and developing novel sys­
tems like self-timed systems. The quick turn around time of
the FPGA coupled with the ease with which self-timed cir­
cuits can be interchanged allow the designer to experiment
with and fabricate different implementations of the same
circuit in a timely manner.

References

[1] I. Sutherland, "Micropipelines," CACM, vol. 32, no. 6,
1989.

[2] "IEEE standard for binary floating point arithmetic,"
August 1985. ANSIIIEEE Std 754-1985.

[3] R. Constan, "A 16-bit cartridge port interface," ST Log.
January 1989.

[4] C. L. Seitz, "System timing," in Mead and Conway,
Introduction to VLSI Systems, ch. 7, Addison-Wesley,
1980.

[5] E. Brunvand, "Using FPGAs to implement self-timed
systems;' Journal of VLSI Signal Processing, vol. 6,
1993. Special issue on field programmable logic.

[6] E. Brunvand, "A cell set for self-timed design using actel
FPGAs;' Technical Report UUCS-91-013, University
of Utah, 1991.

[7] Actel Corporation, ACT Family Field Programmable
Gate Array Databook, March 1991.

[8] E. Brunvand, N. Michell, and K. Smith, "A comparison
of self-timed design using FPGA, CMOS, and GaAs
technologies," in International Conference on Com­
puter Design, (Cambridge, Mass.), October 1992.

[9] J. Gu and K. F. Smith, "A structured approach for VLSI
circuit design," Computer, November 1989.

5.4.4

